Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Plant J ; 77(4): 627-38, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24354545

RESUMEN

Furanocoumarins constitute a sub-family of coumarin compounds with important defense properties against pathogens and insects, as well as allelopathic functions in plants. Furanocoumarins are divided into two sub-groups according to the alignment of the furan ring with the lactone structure: linear psoralen and angular angelicin derivatives. Determination of furanocoumarin type is based on the prenylation position of the common precursor of all furanocoumarins, umbelliferone, at C6 or C8, which gives rise to the psoralen or angelicin derivatives, respectively. Here, we identified a membrane-bound prenyltransferase PcPT from parsley (Petroselinum crispum), and characterized the properties of the gene product. PcPT expression in various parsley tissues is increased by UV irradiation, with a concomitant increase in furanocoumarin production. This enzyme has strict substrate specificity towards umbelliferone and dimethylallyl diphosphate, and a strong preference for the C6 position of the prenylated product (demethylsuberosin), leading to linear furanocoumarins. The C8-prenylated derivative (osthenol) is also formed, but to a much lesser extent. The PcPT protein is targeted to the plastids in planta. Introduction of this PcPT into the coumarin-producing plant Ruta graveolens showed increased consumption of endogenous umbelliferone. Expression of PcPT and a 4-coumaroyl CoA 2'-hydroxylase gene in Nicotiana benthamiana, which does not produce furanocoumarins, resulted in formation of demethylsuberosin, indicating that furanocoumarin production may be reconstructed by a metabolic engineering approach. The results demonstrate that a single prenyltransferase, such as PcPT, opens the pathway to linear furanocoumarins in parsley, but may also catalyze the synthesis of osthenol, the first intermediate committed to the angular furanocoumarin pathway, in other plants.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Furocumarinas/metabolismo , Regulación Enzimológica de la Expresión Génica , Petroselinum/enzimología , Ruta/enzimología , Secuencia de Bases , Cumarinas/química , Cumarinas/metabolismo , Dimetilaliltranstransferasa/genética , Furocumarinas/química , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Datos de Secuencia Molecular , Cebollas/citología , Cebollas/genética , Cebollas/metabolismo , Especificidad de Órganos , Petroselinum/genética , Petroselinum/efectos de la radiación , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión , Ruta/genética , Ruta/efectos de la radiación , Análisis de Secuencia de ADN , Especificidad por Sustrato , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/efectos de la radiación , Rayos Ultravioleta , Umbeliferonas/química , Umbeliferonas/metabolismo
2.
Appl Environ Microbiol ; 78(3): 684-94, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22101053

RESUMEN

7-O-Methyl aromadendrin (7-OMA) is an aglycone moiety of one of the important flavonoid-glycosides found in several plants, such as Populus alba and Eucalyptus maculata, with various medicinal applications. To produce such valuable natural flavonoids in large quantity, an Escherichia coli cell factory has been developed to employ various plant biosynthetic pathways. Here, we report the generation of 7-OMA from its precursor, p-coumaric acid, in E. coli for the first time. Primarily, naringenin (NRN) (flavanone) synthesis was achieved by feeding p-coumaric acid and reconstructing the plant biosynthetic pathway by introducing the following structural genes: 4-coumarate-coenzyme A (CoA) ligase from Petroselinum crispum, chalcone synthase from Petunia hybrida, and chalcone isomerase from Medicago sativa. In order to increase the availability of malonyl-CoA, a critical precursor of 7-OMA, genes for the acyl-CoA carboxylase α and ß subunits (nfa9890 and nfa9940), biotin ligase (nfa9950), and acetyl-CoA synthetase (nfa3550) from Nocardia farcinica were also introduced. Thus, produced NRN was hydroxylated at position 3 by flavanone-3-hydroxylase from Arabidopsis thaliana, which was further methylated at position 7 to produce 7-OMA in the presence of 7-O-methyltransferase from Streptomyces avermitilis. Dihydrokaempferol (DHK) (aromadendrin) and sakuranetin (SKN) were produced as intermediate products. Overexpression of the genes for flavanone biosynthesis and modification pathways, along with malonyl-CoA overproduction in E. coli, produced 2.7 mg/liter (8.9 µM) 7-OMA upon supplementation with 500 µM p-coumaric acid in 24 h, whereas the strain expressing only the flavanone modification enzymes yielded 30 mg/liter (99.2 µM) 7-OMA from 500 µM NRN in 24 h.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Flavonoides/metabolismo , Ingeniería Metabólica , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Ácidos Cumáricos/metabolismo , Medicago sativa/enzimología , Medicago sativa/genética , Nocardia/enzimología , Nocardia/genética , Petroselinum/enzimología , Petroselinum/genética , Petunia/enzimología , Petunia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Propionatos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces/enzimología , Streptomyces/genética
3.
Biosci Biotechnol Biochem ; 72(4): 968-73, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18391443

RESUMEN

Arabidopsis thaliana lacks the flavone biosynthetic pathway, probably because of a lack or low activity of a flavone synthase. To establish this biosynthetic pathway in Arabidopsis, we subjected this model plant to transformation with the parsley gene for flavone synthase type I (FNS-I). Transgenic seedlings expressing FNS-I were cultured in liquid medium with or without naringenin, and plant extracts were then analyzed by high-performance liquid chromatography. In contrast to wild-type seedlings, the transgenic seedlings accumulated substantial amounts of apigenin, which is produced from naringenin by FNS-I, and the apigenin level correlated with the abundance of FNS-I mRNA in three different transgenic lines. These results indicate that the FNS-I transgene produces a functional enzyme that catalyzes the conversion of naringenin to apigenin in Arabidopsis. These FNS-I transgenic lines should prove useful in investigating the in vivo functions of enzymes that mediate the synthesis of the wide variety of flavones found in other plants.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/biosíntesis , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Petroselinum/enzimología , Apigenina/metabolismo , Clonación Molecular , Flavanonas/metabolismo , Flavonas , Petroselinum/genética , Plantas Modificadas Genéticamente
4.
Cytometry A ; 71(12): 1039-44, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17990323

RESUMEN

"Bead beating" is commonly used to release DNA from cells for genomic studies but it was used here to prepare suspensions of plant nuclei for measurement of DNA amounts by flow cytometry. Plant material was placed in 2-ml screw-capped tubes containing beads of zirconia/silica (2.5 mm diameter) or glass (2.5 or 1.0 mm diameter) and 1 ml of lysis buffer. The tubes were mechanically shaken with an FP120 FastPrep Cell Disrupter to release intact nuclei from plant tissue by the impact of the beads. The nuclei were then stained with propidium iodide (PI) and analyzed by flow cytometry. The method was tested using fresh leaves, fresh petals and herbarium leaves of Rosa canina, leaves and pollen of R. rugosa, and fresh leaves of Petroselinum crispum, Nicotiana tabacum, and Allium cepa. Batches of 12 samples of fresh leaves were prepared, simultaneously, in 45 s by bead beating in the Cell Disrupter. In flow cytometry histograms, nuclei of fresh leaves gave G(1)/G(0) peaks with CVs of less than 3.0% and nuclei from fresh petals and herbarium leaves of R. canina, and pollen of the generative nuclei of R. rugosa gave peaks with coefficients of variation (CVs) of less than 4.0%. DNA amounts estimated from 24-month-old herbarium leaves, using P. crispum as an internal standard, were less than those of fresh leaves by a small but significant amount. Suspensions of nuclei can be prepared rapidly and conveniently from a diversity of tissues by bead beating. Exposure of laboratory workers to harmful substances in the lysis buffer is minimized.


Asunto(s)
Núcleo Celular/química , ADN de Plantas/análisis , Citometría de Flujo/métodos , Magnoliopsida/química , Núcleo Celular/genética , Separación Celular/métodos , ADN de Plantas/aislamiento & purificación , Magnoliopsida/genética , Cebollas/química , Cebollas/genética , Petroselinum/química , Petroselinum/genética , Hojas de la Planta/química , Hojas de la Planta/genética , Polen/química , Polen/genética , Rosa/química , Rosa/genética , Nicotiana/química , Nicotiana/genética
5.
Appl Microbiol Biotechnol ; 70(1): 85-91, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16025328

RESUMEN

Flavones are plant secondary metabolites with potent pharmacological properties. We report the functional expression of FSI, a flavonoid 2-oxoglutarate-dependent dioxygenase-encoding flavone synthase from parsley in Escherichia coli. This expression allows the biosynthesis of various flavones from phenylpropanoid acids in recombinant E. coli strains simultaneously expressing five plant-specific flavone biosynthetic genes. The gene ensemble consists of 4CL-2 (4-coumarate:CoA ligase) and FSI (flavone synthase I) from parsley, chsA (chalcone synthase) and chiA (chalcone isomerase) from Petunia hybrida, and OMT1A (7-O-methyltransferase) from peppermint. After a 24-h cultivation, the recombinant E. coli produces significant amounts of apigenin (415 microg/l), luteolin (10 microg/l), and genkwanin (208 microg/l). The majority of the flavone products are excreted in the culture media; however, 25% is contained within the cells. The metabolic engineering strategy presented demonstrates that plant-specific flavones are successfully produced in E. coli for the first time by incorporating a soluble flavone synthase confined only in Apiaceae.


Asunto(s)
Escherichia coli/metabolismo , Expresión Génica , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Fitoestrógenos/metabolismo , Escherichia coli/genética , Fermentación , Flavonas/química , Flavonas/metabolismo , Ingeniería Genética , Estructura Molecular , Petroselinum/enzimología , Petroselinum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solubilidad
6.
Plant Physiol Biochem ; 42(7-8): 593-600, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15331087

RESUMEN

The catecholamine compounds in potato (Solanum tuberosum L.) leaves and tubers have been identified by gas chromatography coupled to mass spectrometry (GC-MS) measurements. The finding that the catecholamine level is dramatically increased upon tyrosine decarboxylase (TD) overexpression potentiates the investigation on their physiological significance in plants. It was then evidenced that catecholamines play an important role in regulation of starch-sucrose conversion in plants. In this paper we investigated catecholamine biosynthetic pathway in potato plants exposed to the different stress conditions. The activation of TD (EC 4.1.1.25), tyrosine hydroxylase (TH, EC 1.14.18.1) and l-Dopa decarboxylase (DD, EC 4.1.1.25) was a characteristic feature of the potato leaves treated with abscisic acid (ABA). In high salt condition only TD activity was increased and in drought both TH and DD were activated. UV light activated predominantly DD activity. Leaves of plants grown in the dark and in red light circumstances were characterized by significantly decreased activities of all the three enzymes whereas those grown in cold were characterized by the decreased activity of DD only. In all, stress conditions the normetanephrine level and thus catecholamine catabolism was significantly decreased. Increased catecholamine level in TD-overexpressing potato resulted in enhanced pathogen resistance. Our data suggest that plant catecholamines are involved in plant responses towards biotic and abiotic stresses. It has to be pointed out that this is the first report proposing catecholamine as new stress agent compounds in plants.


Asunto(s)
Catecolaminas/biosíntesis , Solanum tuberosum/fisiología , Ácido Abscísico/farmacología , Aclimatación , Frío , Dopamina/metabolismo , Norepinefrina/metabolismo , Normetanefrina/metabolismo , Petroselinum/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA