Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Cell ; 30(12): 2959-2972, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30377238

RESUMEN

Self-incompatibility (SI) in Petunia is regulated by a polymorphic S-locus. For each S-haplotype, the S-locus contains a pistil-specific S-RNase gene and multiple pollen-specific S-locus F-box (SLF) genes. Both gain-of-function and loss-of-function experiments have shown that S-RNase alone regulates pistil specificity in SI. Gain-of-function experiments on SLF genes suggest that the entire suite of encoded proteins constitute the pollen specificity determinant. However, clear-cut loss-of-function experiments must be performed to determine if SLF proteins are essential for SI of pollen. Here, we used CRISPR/Cas9 to generate two frame-shift indel alleles of S2 -SLF1 (SLF1 of S2 -haplotype) in S2S3 plants of P. inflata and examined the effect on the SI behavior of S2 pollen. In the absence of a functional S2-SLF1, S2 pollen was either rejected by or remained compatible with pistils carrying one of eight normally compatible S-haplotypes. All results are consistent with interaction relationships between the 17 SLF proteins of S2 -haplotype and these eight S-RNases that had been determined by gain-of-function experiments performed previously or in this work. Our loss-of-function results provide definitive evidence that SLF proteins are solely responsible for SI of pollen, and they reveal their diverse and complex interaction relationships with S-RNases to maintain SI while ensuring cross-compatibility.


Asunto(s)
Proteínas F-Box/metabolismo , Petunia/metabolismo , Petunia/fisiología , Polen/metabolismo , Polen/fisiología , Autoincompatibilidad en las Plantas con Flores/fisiología , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Petunia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Polen/genética , Ribonucleasas/genética , Ribonucleasas/metabolismo , Autoincompatibilidad en las Plantas con Flores/genética
2.
Plant Reprod ; 31(2): 129-143, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29192328

RESUMEN

KEY MESSAGE: Function of Petunia PiSSK1. Self-incompatibility (SI), an inbreeding-preventing mechanism, is regulated in Petunia inflata by the polymorphic S-locus, which houses multiple pollen-specific S-locus F-box (SLF) genes and a single pistil-specific S-RNase gene. S 2-haplotype and S 3-haplotype possess the same 17 polymorphic SLF genes (named SLF1 to SLF17), and each SLF protein produced in pollen is assembled into an SCF (Skp1-Cullin1-F-box) E3 ubiquitin ligase complex. A complete suite of SLF proteins is thought to collectively interact with all non-self S-RNases to mediate their ubiquitination and degradation by the 26S proteasome, allowing cross-compatible pollination. For each SCFSLF complex, the Cullin1 subunit (named PiCUL1-P) and Skp1 subunit (named PiSSK1), like the F-box protein subunits (SLFs), are pollen-specific, raising the possibility that they also evolved specifically to function in SI. Here we used CRISPR/Cas9-meditated genome editing to generate frame-shift indel mutations in PiSSK1 and examined the SI behavior of a T 0 plant (S 2 S 3) with biallelic mutations in the pollen genome and two progeny plants (S 2 S 2) each homozygous for one of the indel alleles and not carrying the Cas9-containing T-DNA. Their pollen was completely incompatible with pistils of seven otherwise-compatible S-genotypes, but fully compatible with pistils of an S 3 S 3 transgenic plant in which production of S3-RNase was completely suppressed by an antisense S 3-RNase gene, and with pistils of immature flower buds, which produce little S-RNase. These results suggest that PiSSK1 specifically functions in SI and support the hypothesis that SLF-containing SCF complexes are essential for compatible pollination.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas F-Box/metabolismo , Petunia/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ribonucleasas/genética , Autoincompatibilidad en las Plantas con Flores/genética , Alelos , Proteínas F-Box/genética , Flores/enzimología , Flores/genética , Flores/fisiología , Técnicas de Inactivación de Genes , Petunia/enzimología , Petunia/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/enzimología , Polen/genética , Polen/fisiología , Polinización , Complejo de la Endopetidasa Proteasomal/genética , Ribonucleasas/metabolismo
3.
Protoplasma ; 255(3): 751-759, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29134282

RESUMEN

The formation of fertile male gametophyte is known to require timely degeneration of polyfunctional tapetum tissue. The last process caused by the programmed cell death (PCD) is a part of the anther program maturation which leads to sequential anther tissue destruction coordinated with pollen differentiation. In the present work, distribution of abscisic acid (ABA) and indole-3-acetic acid (IAA) in developing anthers of male-fertile and male-sterile lines of petunia (Petunia hybrida L.) was analyzed by using the immunohistochemical method. It was established that the development of fertile male gametophyte was accompanied by monotonous elevation of ABA and IAA levels in reproductive cells and, in contrast, their monotonous lowering in tapetum cells and the middle layers. Abortion of microsporocytes in the meiosis prophase in the sterile line caused by premature tapetum degeneration along with complete maintenance of the middle layers was accompanied by dramatic, twofold elevation in the levels of both the phytohormones in reproductive cells. The data obtained allowed us to conclude that at the meiosis stage ABA and IAA are involved in the PCD of microsporocytes.


Asunto(s)
Ácido Abscísico/farmacología , Gametogénesis en la Planta/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Petunia/fisiología , Ácido Abscísico/metabolismo , Fluorescencia , Ácidos Indolacéticos/metabolismo , Petunia/efectos de los fármacos , Infertilidad Vegetal/efectos de los fármacos , Polen/citología , Polen/efectos de los fármacos
4.
Planta ; 245(5): 909-926, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28078426

RESUMEN

MAIN CONCLUSION: Calreticulin is involved in stabilization of the tip-focused Ca 2+ gradient and the actin cytoskeleton arrangement and function that is required for several key processes driving Petunia pollen tube tip growth. Although the precise mechanism is unclear, stabilization of a tip-focused calcium (Ca2+) gradient seems to be critical for pollen germination and pollen tube growth. We hypothesize that calreticulin (CRT), a Ca2+-binding/buffering chaperone typically residing in the lumen of the endoplasmic reticulum (ER) of eukaryotic cells, is an excellent candidate to fulfill this role. We previously showed that in Petunia pollen tubes growing in vitro, CRT is translated on ER membrane-bound ribosomes that are abundant in the subapical zone of the tube, where CRT's Ca2+-buffering and chaperone activities might be particularly required. Here, we sought to determine the function of CRT using small interfering RNA (siRNA) to, for the first time in pollen tubes growing in vitro, knockdown expression of a gene. We demonstrate that siRNA-mediated post-transcriptional silencing of Petunia hybrida CRT gene (PhCRT) expression strongly impairs pollen tube growth, cytoplasmic zonation, actin cytoskeleton organization, and the tip-focused Ca2+ gradient. Moreover, reduction of CRT alters the localization and disturbs the structure of the ER in abnormally elongating pollen tubes. Finally, cytoplasmic streaming is inhibited, and most of the pollen tubes rupture. Our data clearly show an interplay between CRT, Ca2+ gradient, actin-dependent cytoplasmic streaming, organelle positioning, and vesicle trafficking during pollen tube elongation. Thus, we suggest that CRT functions in Petunia pollen tube growth by stabilizing Ca2+ homeostasis and acting as a chaperone to assure quality control of glycoproteins passing through the ER.


Asunto(s)
Calcio/metabolismo , Calreticulina/metabolismo , Regulación de la Expresión Génica de las Plantas , Petunia/fisiología , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/metabolismo , Actinas/ultraestructura , Calreticulina/genética , Citoplasma/metabolismo , Citoplasma/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Homeostasis , Petunia/genética , Petunia/crecimiento & desarrollo , Petunia/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Polen/ultraestructura , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/fisiología , Tubo Polínico/ultraestructura , Polinización , Transporte de Proteínas , ARN Interferente Pequeño
5.
Plant Cell Physiol ; 57(11): 2403-2416, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27565207

RESUMEN

Self-incompatibility (SI) in flowering plants is a genetic reproductive barrier to distinguish self- and non-self pollen to promote outbreeding. In Solanaceae, self-pollen is rejected by the ribonucleases expressed in the styles (S-RNases), via its cytotoxic function. On the other side, the male-determinant is the S-locus F-box proteins (SLFs) expressed in pollen. Multiple SLFs collaboratively detoxify non-self S-RNases, therefore, non-self recognition is the mode of self-/non-self discrimination in Solanaceae. It is considered that SLFs function as a substrate-recognition module of the Skp1-Cullin1-F-box (SCF) complex that inactivates non-self S-RNases via their polyubiquitination, which leads to degradation by 26S proteasome. In fact, PhSSK1 (Petunia hybrida SLF-interacting Skp1-like1) was identified as a specific component of SCFSLF and was shown to be essential for detoxification of S-RNase in Petunia However, different molecules are proposed as the candidate Cullin1, another component of SCFSLF, and there is as yet no definite conclusion. Here, we identified five Cullin1s from the expressed sequence tags (ESTs) derived from the male reproductive organ in Petunia Among them, only PhCUL1-P was co-immunoprecipitated with S7-SLF2. In vitro protein-binding assay suggested that PhSSK1 specifically forms a complex with PhCUL1-P in an SLF-dependent manner. Knockdown of PhCUL1-P suppressed fertility of transgenic pollen in cross-compatible pollination in the functional S-RNase-dependent manner. These results suggested that SCFSLF selectively uses PhCUL1-P. Phylogeny of Cullin1s indicates that CUL1-P is recruited into the SI machinery during the evolution of Solanaceae, suggesting that the SI components have evolved differently among species in Solanaceae and Rosaceae, despite both families sharing the S-RNase-based SI.


Asunto(s)
Proteínas Cullin/metabolismo , Petunia/metabolismo , Petunia/fisiología , Proteínas de Plantas/metabolismo , Autoincompatibilidad en las Plantas con Flores , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , MicroARNs/metabolismo , Especificidad de Órganos/genética , Penetrancia , Petunia/genética , Filogenia , Proteínas de Plantas/genética , Polen/genética , Polinización , Unión Proteica , Reproducción , Ribonucleasas/metabolismo , Rosaceae/genética , Autoincompatibilidad en las Plantas con Flores/genética , Transgenes
6.
Phytopathology ; 104(9): 964-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25116641

RESUMEN

Embryo infection is important for efficient seed transmission of viroids. To identify the major pattern of seed transmission of viroids, we used in situ hybridization to histochemically analyze the distribution of Potato spindle tuber viroid (PSTVd) in each developmental stage of petunia (flowering to mature seed stages). In floral organs, PSTVd was present in the reproductive tissues of infected female × infected male and infected female × healthy male but not of healthy female × infected male before embryogenesis. After pollination, PSTVd was detected in the developed embryo and endosperm in all three crosses. These findings indicate that PSTVd is indirectly delivered to the embryo through ovule or pollen during the development of reproductive tissues before embryogenesis but not directly through maternal tissues as cell-to-cell movement during embryogenesis.


Asunto(s)
Petunia/virología , Enfermedades de las Plantas/virología , Solanum lycopersicum/virología , Viroides/fisiología , Flores/citología , Flores/crecimiento & desarrollo , Flores/fisiología , Flores/virología , Hibridación in Situ , Meristema/citología , Meristema/crecimiento & desarrollo , Meristema/fisiología , Meristema/virología , Petunia/citología , Petunia/crecimiento & desarrollo , Petunia/fisiología , Brotes de la Planta/citología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Brotes de la Planta/virología , Tubérculos de la Planta/virología , Polen/citología , Polen/crecimiento & desarrollo , Polen/fisiología , Polen/virología , Reproducción , Semillas/citología , Semillas/crecimiento & desarrollo , Semillas/fisiología , Semillas/virología
7.
Plant Cell ; 26(7): 2873-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25070642

RESUMEN

Petunia possesses self-incompatibility, by which pistils reject self-pollen but accept non-self-pollen for fertilization. Self-/non-self-recognition between pollen and pistil is regulated by the pistil-specific S-RNase gene and by multiple pollen-specific S-locus F-box (SLF) genes. To date, 10 SLF genes have been identified by various methods, and seven have been shown to be involved in pollen specificity. For a given S-haplotype, each SLF interacts with a subset of its non-self S-RNases, and an as yet unknown number of SLFs are thought to collectively mediate ubiquitination and degradation of all non-self S-RNases to allow cross-compatible pollination. To identify a complete suite of SLF genes of P. inflata, we used a de novo RNA-seq approach to analyze the pollen transcriptomes of S2-haplotype and S3-haplotype, as well as the leaf transcriptome of the S3S3 genotype. We searched for genes that fit several criteria established from the properties of the known SLF genes and identified the same seven new SLF genes in S2-haplotype and S3-haplotype, suggesting that a total of 17 SLF genes constitute pollen specificity in each S-haplotype. This finding lays the foundation for understanding how multiple SLF genes evolved and the biochemical basis for differential interactions between SLF proteins and S-RNases.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Petunia/genética , Proteínas de Plantas/genética , Autoincompatibilidad en las Plantas con Flores/genética , Transcriptoma , Alelos , Cartilla de ADN/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Flores/enzimología , Flores/genética , Flores/fisiología , Perfilación de la Expresión Génica , Ligamiento Genético , Sitios Genéticos/genética , Haplotipos , Petunia/enzimología , Petunia/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Polen/enzimología , Polen/genética , Polen/fisiología , Polinización , Proteolisis , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ubiquitinación
8.
J Agric Food Chem ; 62(10): 2175-81, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24524670

RESUMEN

Flavonoids are polyphenolic compounds required in the fertilization process in many, if not all, plants. However, the exact biological mechanism(s) and the interacting proteins are unknown. To determine the characteristics important in activating or inhibiting the pollination sequence, a structure-activity relationship analysis of natural and synthetic flavonols was conducted. Flavonol analogues were synthesized through a modified "one-pot" procedure that utilized a Baker-Venkataraman type rearrangement and a Suzuki-Miyaura cross-coupling of a halo-flavonol with an organotrifluoroborate. Of the flavonols tested, kaempferol was the only compound to act as a full agonist. The other smaller, less sterically hindered flavonols (galangin, kaempferide, and 4'-methyl flavonol) acted as partial agonists. Larger more hydrophobic flavonol analogues (3'- and 4'-benzoyl, 3'- and 4'-phenyl, and 3'- and 4'-iodo flavonols) had minimal or no agonist activity. Competition assays between kaempferol and these minimally activating flavonols showed that these analogues inhibited the action of kaempferol in a manner consistent with noncompetitive antagonism. The results suggest that steric hindrance is the most important factor in determining a good agonist. Hydrogen bonding also had a positive effect as long as the substituent did not cause any steric hindrance.


Asunto(s)
Flavonoles/química , Flavonoles/farmacología , Polen/efectos de los fármacos , Relación Estructura-Actividad , Técnicas de Química Sintética , Flavonoides/química , Flavonoides/farmacología , Flavonoles/agonistas , Flavonoles/síntesis química , Germinación/efectos de los fármacos , Enlace de Hidrógeno , Quempferoles/química , Quempferoles/farmacología , Petunia/efectos de los fármacos , Petunia/genética , Petunia/fisiología , Plantas Modificadas Genéticamente/efectos de los fármacos , Polen/fisiología
9.
Plant Reprod ; 27(1): 31-45, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24381071

RESUMEN

The polymorphic S-locus regulating self-incompatibility (SI) in Petunia contains the S-RNase gene and a number of S-locus F-box (SLF) genes. While penetrating the style through the stigma, a pollen tube takes up all S-RNases, but only self S-RNase inhibits pollen tube growth. Recent evidence suggests that SLFs produced by pollen collectively interact with and detoxify non-self S-RNases, but none can interact with self S-RNase. An SLF may be the F-box protein component of an SCF complex (containing Cullin1, Skp1 and Rbx1), which mediates ubiquitination of protein substrates for degradation by the 26S proteasome. However, the precise nature of the complex is unknown. We used pollen extracts of a transgenic plant over-expressing GFP-fused S2-SLF1 (SLF1 of S 2-haplotype) for co-immunoprecipitation (Co-IP) followed by mass spectrometry (MS). We identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (an Rbx1). To validate the results, we raised transgenic plants over-expressing PiSSK1:FLAG:GFP and used pollen extracts for Co-IP-MS. The results confirmed the presence of PiCUL1-P and PiRBX1 in the complex and identified two different SLFs as the F-box protein component. Thus, all but Rbx1 of the complex may have evolved in SI, and all SLFs may be the F-box component of similar complexes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Petunia/genética , Proteínas de Plantas/metabolismo , Autoincompatibilidad en las Plantas con Flores/genética , Secuencia de Bases , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Flores/genética , Flores/fisiología , Biblioteca de Genes , Genes Reporteros , Genotipo , Inmunoprecipitación , Espectrometría de Masas , Datos de Secuencia Molecular , Petunia/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polen/fisiología , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión , Análisis de Secuencia de ADN
11.
Planta ; 239(2): 437-54, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24213153

RESUMEN

Calreticulin (CRT) is a highly conserved and ubiquitously expressed Ca²âº-binding protein in multicellular eukaryotes. As an endoplasmic reticulum-resident protein, CRT plays a key role in many cellular processes including Ca²âº storage and release, protein synthesis, and molecular chaperoning in both animals and plants. CRT has long been suggested to play a role in plant sexual reproduction. To begin to address this possibility, we cloned and characterized the full-length cDNA of a new CRT gene (PhCRT) from Petunia. The deduced amino acid sequence of PhCRT shares homology with other known plant CRTs, and phylogenetic analysis indicates that the PhCRT cDNA clone belongs to the CRT1/CRT2 subclass. Northern blot analysis and fluorescent in situ hybridization were used to assess PhCRT gene expression in different parts of the pistil before pollination, during subsequent stages of the progamic phase, and at fertilization. The highest level of PhCRT mRNA was detected in the stigma-style part of the unpollinated pistil 1 day before anthesis and during the early stage of the progamic phase, when pollen is germinated and tubes outgrow on the stigma. In the ovary, PhCRT mRNA was most abundant after pollination and reached maximum at the late stage of the progamic phase, when pollen tubes grow into the ovules and fertilization occurs. PhCRT mRNA transcripts were seen to accumulate predominantly in transmitting tract cells of maturing and receptive stigma, in germinated pollen/growing tubes, and at the micropylar region of the ovule, where the female gametophyte is located. From these results, we suggest that PhCRT gene expression is up-regulated during secretory activity of the pistil transmitting tract cells, pollen germination and outgrowth of the tubes, and then during gamete fusion and early embryogenesis.


Asunto(s)
Calcio/metabolismo , Calreticulina/genética , Regulación de la Expresión Génica de las Plantas , Petunia/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Calreticulina/metabolismo , ADN Complementario/química , ADN Complementario/genética , ADN de Plantas/química , ADN de Plantas/genética , Flores/citología , Flores/genética , Flores/fisiología , Expresión Génica , Homeostasis , Datos de Secuencia Molecular , Petunia/citología , Petunia/fisiología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/citología , Polen/genética , Polen/fisiología , Polinización , Estructura Terciaria de Proteína , Alineación de Secuencia , Análisis de Secuencia de ADN
12.
Plant Cell ; 25(2): 470-85, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23444333

RESUMEN

The highly polymorphic S (for self-incompatibility) locus regulates self-incompatibility in Petunia inflata; the S-RNase regulates pistil specificity, and multiple S-locus F-box (SLF) genes regulate pollen specificity. The collaborative non-self recognition model predicts that, for any S-haplotype, an unknown number of SLFs collectively recognize all non-self S-RNases to mediate their ubiquitination and degradation. Using a gain-of-function assay, we examined the relationships between S2-SLF1 (for S2-allelic product of Type-1 SLF) and four S-RNases. The results suggest that S2-SLF1 interacts with S7- and S13-RNases, and the previously identified S1- and S3-RNases, but not with S5- or S11-RNase. An artificial microRNA expressed by the S2-SLF1 promoter, but not by the vegetative cell-specific promoter, Late Anther Tomato 52, suppressed expression of S2-SLF1 in S2 pollen, suggesting that SLF1 is specific to the generative cell. The S2 pollen with S2-SLF1 suppressed was compatible with S3-, S5-, S7-, S11-, and S13-carrying pistils, confirming that other SLF proteins are responsible for detoxifying S5- and S11-RNases and suggesting that S2-SLF1 is not the only SLF in S2 pollen that interacts with S3-, S7-, and S13-RNases. Petunia may have evolved at least two types of SLF proteins to detoxify any non-self S-RNase to minimize the deleterious effects of mutation in any SLF.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Petunia/genética , Proteínas de Plantas/genética , Ribonucleasas/metabolismo , Autoincompatibilidad en las Plantas con Flores , Citoplasma/genética , Citoplasma/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Flores/genética , Sitios Genéticos , Solanum lycopersicum/genética , MicroARNs , Datos de Secuencia Molecular , Petunia/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/genética , Regiones Promotoras Genéticas , Ribonucleasas/genética
13.
Plant J ; 68(1): 11-27, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21623977

RESUMEN

Petunia is an excellent model system, especially for genetic, physiological and molecular studies. Thus far, however, genome-wide expression analysis has been applied rarely because of the lack of sequence information. We applied next-generation sequencing to generate, through de novo read assembly, a large catalogue of transcripts for Petunia axillaris and Petunia inflata. On the basis of both transcriptomes, comprehensive microarray chips for gene expression analysis were established and used for the analysis of global- and organ-specific gene expression in Petunia axillaris and Petunia inflata and to explore the molecular basis of the seed coat defects in a Petunia hybrida mutant, anthocyanin 11 (an11), lacking a WD40-repeat (WDR) transcription regulator. Among the transcripts differentially expressed in an11 seeds compared with wild type, many expected targets of AN11 were found but also several interesting new candidates that might play a role in morphogenesis of the seed coat. Our results validate the combination of next-generation sequencing with microarray analyses strategies to identify the transcriptome of two petunia species without previous knowledge of their genome, and to develop comprehensive chips as useful tools for the analysis of gene expression in P. axillaris, P. inflata and P. hybrida.


Asunto(s)
Petunia/genética , Proteínas de Plantas/genética , Proantocianidinas/biosíntesis , Transcriptoma , Secuencia de Bases , Secuencia de Consenso , Regulación hacia Abajo/genética , Flores/citología , Flores/genética , Flores/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Petunia/química , Petunia/citología , Petunia/fisiología , Extractos Vegetales/química , Proteínas de Plantas/metabolismo , Proantocianidinas/análisis , ARN de Planta/genética , Plantones/citología , Plantones/genética , Plantones/fisiología , Semillas/química , Semillas/citología , Semillas/genética , Semillas/fisiología , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
14.
Ann Bot ; 108(4): 637-46, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21193481

RESUMEN

BACKGROUND: For the Solanaceae-type self-incompatibility, also possessed by Rosaceae and Plantaginaceae, the specificity of self/non-self interactions between pollen and pistil is controlled by two polymorphic genes at the S-locus: the S-locus F-box gene (SLF or SFB) controls pollen specificity and the S-RNase gene controls pistil specificity. SCOPE: This review focuses on the work from the authors' laboratory using Petunia inflata (Solanaceae) as a model. Here, recent results on the identification and functional studies of S-RNase and SLF are summarized and a protein-degradation model is proposed to explain the biochemical mechanism for specific rejection of self-pollen tubes by the pistil. CONCLUSIONS: The protein-degradation model invokes specific degradation of non-self S-RNases in the pollen tube mediated by an SLF, and can explain compatible versus incompatible pollination and the phenomenon of competitive interaction, where SI breaks down in pollen carrying two different S-alleles. In Solanaceae, Plantaginaceae and subfamily Maloideae of Rosaceae, there also exist multiple S-locus-linked SLF/SFB-like genes that potentially function as the pollen S-gene. To date, only three such genes, all in P. inflata, have been examined, and they do not function as the pollen S-gene in the S-genotype backgrounds tested. Interestingly, subfamily Prunoideae of Rosaceae appears to possess only a single SLF/SFB gene, and competitive interaction, observed in Solanaceae, Plantaginaceae and subfamily Maloideae, has not been observed. Thus, although the cytotoxic function of S-RNase is an integral part of SI in Solanaceae, Plantaginaceae and Rosaceae, the function of SLF/SFB may have diverged. This highlights the complexity of the S-RNase-based SI mechanism. The review concludes by discussing some key experiments that will further advance our understanding of this self/non-self discrimination mechanism.


Asunto(s)
Petunia/enzimología , Petunia/fisiología , Ribonucleasas/metabolismo , Autoincompatibilidad en las Plantas con Flores/fisiología , Especificidad de Órganos , Proteínas de Plantas/metabolismo , Polen/metabolismo
15.
Plant J ; 65(1): 156-168, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21175898

RESUMEN

Gene silencing through transcriptional repression can be induced by targeting double-stranded RNA (dsRNA) to a gene promoter. It has been reported that a transgene was silenced by targeting dsRNA to the promoter, and the silenced state was inherited to the progeny plant even after removal of the silencing inducer from cells. In contrast, no plant has been produced that harbors silenced endogenous gene after removal of promoter-targeting dsRNA. Here, we show that heritable gene silencing can be induced by targeting dsRNA to the endogenous gene promoters in petunia and tomato plants, using the Cucumber mosaic virus (CMV)-based vector. We found that efficient silencing of endogenous genes depends on the function of the 2b protein encoded in the vector virus, which has the ability to facilitate epigenetic modifications through the transport of short interfering RNA to nucleus. Bisulfite sequencing analyses on the targeted promoter in the virus-infected and its progeny plants revealed that cytosine methylation was found not only at CG or CNG but also at CNN sites. The observed inheritance of asymmetric DNA methylation is quite unique, suggesting that plants have a mechanism to maintain even asymmetric methylation. This CMV-based gene silencing system provides a useful tool to artificially modify DNA methylation in plant genomes and elucidate the mechanism for epigenetic controls.


Asunto(s)
Cucumovirus/genética , Silenciador del Gen/fisiología , Vectores Genéticos/genética , Plantas Modificadas Genéticamente/metabolismo , Metilación de ADN , Flores/genética , Flores/metabolismo , Flores/fisiología , Petunia/genética , Petunia/metabolismo , Petunia/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Polen/genética , Polen/metabolismo , Polen/fisiología , ARN Bicatenario/genética , ARN Interferente Pequeño/genética
17.
Science ; 330(6005): 796-9, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-21051632

RESUMEN

Self-incompatibility in flowering plants prevents inbreeding and promotes outcrossing to generate genetic diversity. In Solanaceae, a multiallelic gene, S-locus F-box (SLF), was previously shown to encode the pollen determinant in self-incompatibility. It was postulated that an SLF allelic product specifically detoxifies its non-self S-ribonucleases (S-RNases), allelic products of the pistil determinant, inside pollen tubes via the ubiquitin-26S-proteasome system, thereby allowing compatible pollinations. However, it remained puzzling how SLF, with much lower allelic sequence diversity than S-RNase, might have the capacity to recognize a large repertoire of non-self S-RNases. We used in vivo functional assays and protein interaction assays to show that in Petunia, at least three types of divergent SLF proteins function as the pollen determinant, each recognizing a subset of non-self S-RNases. Our findings reveal a collaborative non-self recognition system in plants.


Asunto(s)
Proteínas F-Box/fisiología , Petunia/genética , Petunia/fisiología , Proteínas de Plantas/fisiología , Polen/genética , Polen/fisiología , Ribonucleasas/metabolismo , Alelos , Secuencia de Aminoácidos , Cruzamientos Genéticos , Proteínas F-Box/química , Proteínas F-Box/genética , Flores/genética , Flores/fisiología , Perfilación de la Expresión Génica , Genes de Plantas , Variación Genética , Haplotipos , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Tubo Polínico/fisiología , Polinización , Mapeo de Interacción de Proteínas , Ribonucleasas/genética , Autofecundación , Transgenes
18.
Sex Plant Reprod ; 22(4): 263-75, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20033448

RESUMEN

The specificity of S-RNase-based self-incompatibility (SI) is controlled by two S-locus genes, the pistil S-RNase gene and the pollen S-locus-F-box gene. S-RNase is synthesized in the transmitting cell; its signal peptide is cleaved off during secretion into the transmitting tract; and the mature "S-RNase", the subject of this study, is taken up by growing pollen tubes via an as-yet unknown mechanism. Upon uptake, S-RNase is sequestered in a vacuolar compartment in both non-self (compatible) and self (incompatible) pollen tubes, and the subsequent disruption of this compartment in incompatible pollen tubes correlates with the onset of the SI response. How the S-RNase-containing compartment is specifically disrupted in incompatible pollen tubes, however, is unknown. Here, we circumvented the uptake step of S-RNase by directly expressing S(2)-RNase, S(3)-RNase and non-glycosylated S(3)-RNase of Petunia inflata, with green fluorescent protein (GFP) fused at the C-terminus of each protein, in self (incompatible) and non-self (compatible) pollen of transgenic plants. We found that none of these ectopically expressed S-RNases affected the viability or the SI behavior of their self or non-self-pollen/pollen tubes. Based on GFP fluorescence of in vitro-germinated pollen tubes, all were sequestered in both self and non-self-pollen tubes. Moreover, the S-RNase-containing compartment was dynamic in living pollen tubes, with movement dependent on the actin-myosin-based molecular motor system. All these results suggest that glycosylation is not required for sequestration of S-RNase expressed in pollen tubes, and that the cytosol of pollen is the site of the cytotoxic action of S-RNase in SI.


Asunto(s)
Expresión Génica , Petunia/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Glicosilación , Petunia/genética , Petunia/fisiología , Polen/enzimología , Polen/genética , Polen/fisiología , Polinización , Transporte de Proteínas
19.
J Exp Bot ; 60(7): 2179-90, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19380421

RESUMEN

The programmed degradation of macromolecules during petal senescence allows the plant to remobilize nutrients from dying to developing tissues. Ethylene is involved in regulating the timing of nucleic acid degradation in petunia, but it is not clear if ethylene has a role in the remobilization of phosphorus during petal senescence. To investigate ethylene's role in nutrient remobilization, the P content of petals (collectively called the corolla) during early development and senescence was compared in ethylene-sensitive wild type Petunia x hybrida 'Mitchell Diploid' (MD) and transgenic petunias with reduced sensitivity to ethylene (35S::etr1-1). When compared to the total P content of corollas on the day of flower opening (the early non-senescing stage), P in MD corollas had decreased 74% by the late stage of senescence (advanced wilting). By contrast, P levels were only reduced by an average of 32% during etr1-1 corolla (lines 44568 and Z00-35-10) senescence. A high-affinity phosphate transporter, PhPT1 (PhPht1;1), was cloned from senescing petunia corollas by RT-PCR. PhPT1 expression was up-regulated during MD corolla senescence and a much smaller increase was detected during the senescence of etr1-1 petunia corollas. PhPT1 mRNA levels showed a rapid increase in detached corollas (treated at 1 d after flower opening) following treatment with low levels of ethylene (0.1 microl l(-1)). Transcripts accumulated in the presence of the protein synthesis inhibitor, cycloheximide, indicating that PhPT1 is a primary ethylene response gene. PhPT1 is a putative phosphate transporter that may function in Pi translocation during senescence.


Asunto(s)
Etilenos/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Petunia/fisiología , Proteínas de Transporte de Fosfato/genética , Fósforo/metabolismo , Proteínas de Plantas/genética , Envejecimiento , Transporte Biológico , Flores/genética , Datos de Secuencia Molecular , Petunia/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/clasificación , Plantas/genética
20.
Plant Cell ; 19(3): 779-90, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17337627

RESUMEN

Animal-mediated pollination is essential in plant reproductive biology and is often associated with pollination syndromes, sets of floral traits, such as color, scent, shape, or nectar content. Selection by pollinators is often considered a key factor in floral evolution and plant speciation. Our aim is the identification and characterization of the genetic changes that caused the evolution of divergent pollination syndromes in closely related plant species. We focus on ANTHOCYANIN2 (AN2), a well-defined myb-type transcription factor that is a major determinant of flower color variation between Petunia integrifolia and Petunia axillaris. Analysis of sequence variation in AN2 in wild P. axillaris accessions showed that loss-of-function alleles arose at least five times independently. DNA sequence analysis was complemented by functional assays for pollinator preference using genetic introgressions and transgenics. These results show that AN2 is a major determinant of pollinator attraction. Therefore, changes in a single gene cause a major shift in pollination biology and support the notion that the adaptation of a flowering plant to a new pollinator type may involve a limited number of genes of large effect. Gene identification and analysis of molecular evolution in combination with behavioral and ecological studies can ultimately unravel the evolutionary genetics of pollination syndromes.


Asunto(s)
Abejas/fisiología , Escarabajos/fisiología , Genes de Plantas , Petunia/genética , Petunia/fisiología , Polen/fisiología , Animales , Teorema de Bayes , Conducta Animal , ADN Complementario/genética , Ecosistema , Evolución Molecular , Datos de Secuencia Molecular , Petunia/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA