Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072168

RESUMEN

This study aims to investigate whether the in vitro-cultured L. pumila var. alata has higher antioxidant activity than its wild plant. An 8-week-old L. pumila var. alata nodal segment and leaf explants were cultured onto Murashige and Skoog (MS) medium supplemented with various cytokinins (zeatin, kinetin, and 6-benzylaminopurine (BAP)) for shoot multiplication and auxins (2,4-dichlorophenoxyacetic acid (2,4-D) and picloram) for callus induction, respectively. The results showed that 2 mg/L zeatin produced the optimal results for shoot and leaf development, and 0.5 mg/L 2,4-D produced the highest callus induction results (60%). After this, 0.5 mg/L 2,4-D was combined with 0.25 mg/L cytokinins and supplemented to the MS medium. The optimal results for callus induction (100%) with yellowish to greenish and compact texture were obtained using 0.5 mg/L 2,4-D combined with 0.25 mg/L zeatin. Leaves obtained from in vitro plantlets and wild plants as well as callus were extracted and analyzed for their antioxidant activities (DPPH and FRAP methods) and polyphenolic properties (total flavonoid and total phenolic content). When compared with leaf extracts of in vitro plantlets and wild plants of L. pumila var. alata, the callus extract displayed significantly higher antioxidant activities and total phenolic and flavonoid content. Hence, callus culture potentially can be adapted for antioxidant and polyphenolic production to satisfy pharmaceutical and nutraceutical needs while conserving wild L. pumila var. alata.


Asunto(s)
Callo Óseo/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Polifenoles/química , Primulaceae/efectos de los fármacos , Ácido 2,4-Diclorofenoxiacético/química , Antioxidantes/química , Compuestos de Bencilo/química , Compuestos de Bifenilo/química , Medios de Cultivo , Suplementos Dietéticos , Flavonoides/química , Técnicas In Vitro , Cinetina/química , Fenol/química , Picloram/química , Picratos/química , Hojas de la Planta , Proteínas de Plantas , Raíces de Plantas/efectos de los fármacos , Plantas/efectos de los fármacos , Purinas/química , Zeatina/química
2.
J Agric Food Chem ; 51(9): 2659-64, 2003 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-12696954

RESUMEN

Photocatalytic degradation of pesticides with titanium dioxide (TiO(2)) and other catalysts has shown promise as a potential water remediation method. Titanium-based powders have been used in photocatalytic degradation studies but have limitations. The objective of this study was to determine picloram degradation in water using various UV light sources and low-pressure metal organic chemical vapor deposition titanium dioxide alumina beads (TDABs) as a catalyst. A triple-annular, flow-through photoreactor was used as a degradation chamber. A picloram test solution of 50 microg/mL was introduced to the photoreactor inlet and recycled for 10 h at a flow rate of 50 mL/min. Three ultraviolet light sources were compared for their photocatalytic capacity (UV-A, UV-B, and UV-C) both with and without TDABs. TDABs were added to the photoreactor at 1.8 g/cm(3). Dark treatments with and without TDABs were included to quantify hydrolysis or adsorption. A 500-microL aliquot was taken from the test solution 14 times during the 10-h recycling period. Sampling times ranged from 0 to 600 min (10 h). These aliquots were placed in a vial and analyzed by high performance liquid chromatography equipped with a photodiode array detector. Picloram was not significantly hydrolyzed or adsorbed to TDABs during the experiment. The picloram degradation rate with UV-A and TDABs (t(1/2) = 119.5 min) was greater than the degradation rate of UV-A alone (t(1/2)=2288 min). Picloram degradation was not enhanced by the presence of TDABs with either UV-B or UV-C. This may be attributed to inadequate TDAB densities and/or poor light penetration in the photoreactor. Rapid picloram degradation occurred with both UV-B and UV-C, regardless of the presence of TDABs with mean half-lives ranging from 7 to 18 min. These rates were 8 to 16 times faster than picloram degradation using UV-A with TDABs. TDABs' greatest photocatalytic effect was with the lowest energy light source (UV-A). However, picloram degradation was not enhanced when TDABs were combined with more powerful, shorter wavelength light.


Asunto(s)
Herbicidas/química , Fármacos Fotosensibilizantes/farmacología , Picloram/química , Titanio/farmacología , Óxido de Aluminio , Catálisis , Herbicidas/efectos de la radiación , Microesferas , Fotólisis , Picloram/efectos de la radiación , Factores de Tiempo , Rayos Ultravioleta , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA