Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
2.
Plant Cell Rep ; 40(3): 559-573, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33403499

RESUMEN

KEY MESSAGE: Salicylic acid and iron-oxide nanoparticles alleviated salt toxicity and improved plant growth by stimulating the activities of H+-ATPase and H+-PPase and preventing nutrient imbalance. Two factorial experiments were undertaken in a greenhouse during 2018 and 2019, to evaluate the impacts of SA (1 mM) and nano-Fe2O3 (3 mM) sprays at 7 leaves and flowering stages on vacuolar H+-pumps, growth and essential oil of salt-subjected (0, 4, 8 and 12 dS m-1 NaCl) ajowan plants. Measurements of plant traits were started at about 12 days after the last foliar spray and continued up to maturity. The H+-ATPase and H+-PPase activities and root ATP content were enhanced under low salinity, but higher salinities reduced these parameters. Rising salinity enhanced Na uptake and translocation, endogenous SA and DPPH activity, while reduced K+/Na+ ratio and nutrients uptake, leading to a reduction in plant biomass. Treatment with SA, nano-Fe2O3 and their combination improved H+-pumps activities and ATP content in roots and leaves. The SA-related treatments caused the highest activities of H+-pumps in roots, but Fe-related treatments resulted in the highest activities of these pumps in leaves. Increasing H+-pumps activities reduced sodium uptake and translocation and enhanced nutrients uptake. Foliar treatments, especially SA + nano-Fe2O3 augmented endogenous SA, DPPH activity, and plant growth in salt-stressed plants. Essential oil contents of vegetative and inflorescence organs under severe salinity and seeds under moderate and severe salinities were enhanced. Maximum essential oil was obtained from seeds of SA + nano-Fe2O3-treated plants, which was strongly correlated with endogenous SA and DPPH. Nevertheless, the SA + nano-Fe2O3 was the best treatment for diminishing salt toxicity and improving ajowan plant growth and essential oil production.


Asunto(s)
Apiaceae/efectos de los fármacos , Apiaceae/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Apiaceae/crecimiento & desarrollo , Pirofosfatasa Inorgánica/metabolismo , Metales/metabolismo , Metales/farmacocinética , Aceites Volátiles/química , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo , Potasio/metabolismo , Ácido Salicílico/metabolismo , Estrés Salino/efectos de los fármacos , Sodio/metabolismo
3.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33374906

RESUMEN

Plant vacuoles are unique compartments that play a critical role in plant growth and development. The vacuolar H+-ATPase (V-ATPase), together with the vacuolar H+-pyrophosphatase (V-PPase), generates the proton motive force that regulates multiple cell functions and impacts all aspects of plant life. We investigated the effect of V-ATPase activity in the vacuole on plant growth and development. We used an Arabidopsisthaliana (L.) Heynh. double mutant, vha-a2 vha-a3, which lacks two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a. The mutant is viable but exhibits impaired growth and leaf chlorosis. Nitrate assimilation led to excessive ammonium accumulation in the shoot and lower nitrogen uptake, which exacerbated growth retardation of vha-a2 vha-a3. Ion homeostasis was disturbed in plants with missing VHA-a2 and VHA-a3 genes, which might be related to limited growth. The reduced growth and excessive ammonium accumulation of the double mutant was alleviated by potassium supplementation. Our results demonstrate that plants lacking the two tonoplast-localized subunits of V-ATPase can be viable, although with defective growth caused by multiple factors, which can be alleviated by adding potassium. This study provided a new insight into the relationship between V-ATPase, growth, and ammonium accumulation, and revealed the role of potassium in mitigating ammonium toxicity.


Asunto(s)
Compuestos de Amonio/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Homeostasis/efectos de los fármacos , Homeostasis/genética , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Mutación , Nitrógeno/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Potasio/farmacología , Fuerza Protón-Motriz , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/genética
4.
Plant Physiol ; 183(3): 1391-1404, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32321844

RESUMEN

Self-incompatibility (SI) is used by many angiosperms to prevent self-fertilization and inbreeding. In common poppy (Papaver rhoeas), interaction of cognate pollen and pistil S-determinants triggers programmed cell death (PCD) of incompatible pollen. We previously identified that reactive oxygen species (ROS) signal to SI-PCD. ROS-induced oxidative posttranslational modifications (oxPTMs) can regulate protein structure and function. Here, we have identified and mapped oxPTMs triggered by SI in incompatible pollen. Notably, SI-induced pollen had numerous irreversible oxidative modifications, while untreated pollen had virtually none. Our data provide a valuable analysis of the protein targets of ROS in the context of SI-induction and comprise a benchmark because currently there are few reports of irreversible oxPTMs in plants. Strikingly, cytoskeletal proteins and enzymes involved in energy metabolism are a prominent target of ROS. Oxidative modifications to a phosphomimic form of a pyrophosphatase result in a reduction of its activity. Therefore, our results demonstrate irreversible oxidation of pollen proteins during SI and provide evidence that this modification can affect protein function. We suggest that this reduction in cellular activity could lead to PCD.


Asunto(s)
Papaver/fisiología , Proteínas de Plantas/metabolismo , Polen/fisiología , Autoincompatibilidad en las Plantas con Flores/fisiología , Actinas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Peróxido de Hidrógeno/toxicidad , Pirofosfatasa Inorgánica/metabolismo , Nitrosación , Oxidación-Reducción , Papaver/efectos de los fármacos , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Proteínas de Plantas/química , Polen/efectos de los fármacos , Tubo Polínico/efectos de los fármacos , Tubo Polínico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Autoincompatibilidad en las Plantas con Flores/efectos de los fármacos , Solubilidad
5.
Plant Sci ; 274: 271-283, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30080613

RESUMEN

Abiotic stresses are major threats to agricultural production. Drought and salinity as two of the major abiotic stresses cause billions of losses in agricultural productivity worldwide each year. Thus, it is imperative to make crops more tolerant. Overexpression of AVP1 or PP2A-C5 was previously shown to increase drought and salt stress tolerance, respectively, in transgenic plants. In this study, the hypothesis that co-overexpression of AVP1 and PP2A-C5 would combine their respective benefits and further improve salt tolerance was tested. The two genes were inserted into the same T-DNA region of the binary vector and then introduced into the Arabidopsis genome through Agrobacterium-mediated transformation. Transgenic Arabidopsis plants expressing both AVP1 and PP2A-C5 at relatively high levels were identified and analyzed. These plants displayed enhanced tolerance to NaCl compared to either AVP1 or PP2A-C5 overexpressing plants. They also showed tolerance to other stresses such as KNO3 and LiCl at harmful concentrations, drought, and phosphorus deficiency at comparable levels with either AVP1 or PP2A-C5 overexpressing plants. This study demonstrates that introducing multiple genes in single T-DNA region is an effective approach to create transgenic plants with enhanced tolerance to multiple stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Pirofosfatasa Inorgánica/metabolismo , Proteína Fosfatasa 2/metabolismo , Estrés Fisiológico , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Sequías , Expresión Génica , Pirofosfatasa Inorgánica/genética , Mutagénesis Insercional , Fósforo/deficiencia , Plantas Modificadas Genéticamente , Proteína Fosfatasa 2/genética , Salinidad , Tolerancia a la Sal , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología , Cloruro de Sodio/farmacología
6.
J Agric Food Chem ; 66(33): 8772-8782, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30074786

RESUMEN

In this study, five genes involved in malic acid (MA) metabolism, including a cytosolic NAD-dependent malate dehydrogenase gene ( cyNAD-MDH), a cytosolic NADP-dependent malic enzyme gene ( cyNADP-ME), two vacuolar H+-ATPase genes ( vVAtp1 and vVAtp2), and one vacuolar inorganic pyrophosphatase gene ( vVPp), were characterized from pear fruit based on bioinformatic and experimental analysis. Their expression profile in "Housui" pear was tissue-specific, and their expression patterns during fruit development were diverse. During "Housui" pear storage, MA content decreased, which was associated with the downregulated transcripts of MA metabolism-related genes and cyNAD-MDH activity and higher cyNADP-ME activity. The response of MA metabolism to postharvest 1.5 µL L-1 1-MCP fumigation and 0.5 mL L-1 ethrel dipping was distinct: 1-MCP fumigation upregulated gene expression and cyNAD-MDH activity and suppressed cyNADP-ME activity, and thus maintained higher MA abundance when compared with those in the control; on the other hand, an opposite behavior was observed in ethrel-treated fruit.


Asunto(s)
Ciclopropanos/farmacología , Malatos/metabolismo , Compuestos Organofosforados/farmacología , Proteínas de Plantas/genética , Pyrus/efectos de los fármacos , Frutas/efectos de los fármacos , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/crecimiento & desarrollo , Pyrus/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
7.
J Exp Bot ; 69(8): 1913-1924, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29538769

RESUMEN

The importance of a plastidial soluble inorganic pyrophosphatase (psPPase) and an ATP/ADP translocator (NTT) for starch composition and tuber formation in potato (Solanum tuberosum) was evaluated by individual and simultaneous down-regulation of the corresponding endogenous genes. Starch and amylose content of the transgenic lines were considerably lower, and granule size substantially smaller, with down-regulation of StpsPPase generating the most pronounced effects. Single-gene down-regulation of either StpsPPase or StNTT resulted in increased tuber numbers per plant and higher fresh weight yield. In contrast, when both genes were inhibited simultaneously, some lines developed only a few, small and distorted tubers. Analysis of metabolites revealed altered amounts of sugar intermediates, and a substantial increase in ADP-glucose content of the StpsPPase lines. Increased amounts of intermediates of vitamin C biosynthesis were also observed. This study suggests that hydrolysis of pyrophosphate (PPi) by action of a psPPase is vital for functional starch accumulation in potato tubers and that no additional mechanism for consuming, hydrolysing, or exporting PPi exists in the studied tissue. Additionally, it demonstrates that functional PPi hydrolysis in combination with efficient ATP import is essential for tuber formation and development.


Asunto(s)
Pirofosfatasa Inorgánica/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo , Plastidios/enzimología , Solanum tuberosum/enzimología , Almidón/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Regulación de la Expresión Génica de las Plantas , Pirofosfatasa Inorgánica/genética , Translocasas Mitocondriales de ADP y ATP/genética , Proteínas de Plantas/genética , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Plastidios/genética , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo
8.
Plant Physiol ; 173(3): 1606-1616, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28126844

RESUMEN

Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca2+ and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.


Asunto(s)
Pirofosfatasa Inorgánica/metabolismo , Papaver/enzimología , Proteínas de Plantas/metabolismo , Polen/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Calcio/metabolismo , Calcio/farmacología , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Pirofosfatasa Inorgánica/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación , Oxidantes/farmacología , Papaver/genética , Fosforilación , Filogenia , Proteínas de Plantas/genética , Polen/genética , Proteínas Quinasas/clasificación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Solubilidad , Especificidad por Sustrato , Espectrometría de Masas en Tándem
9.
J Genet ; 95(3): 565-72, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27659326

RESUMEN

The H⁺-pyrophosphatase (H⁺-PPase) gene plays an important role in maintaining intracellular proton gradients. Here, we characterized the full-length complementary DNA (cDNA) and DNA of the H⁺-PPase gene ScHP1 in rye (Secale cereale L. 'Qinling'). We determined the subcellular localization of this gene and predicted the corresponding protein structure. We analysed the evolutionary relationship between ScHP1 and H⁺-PPase genes in other species, and did real-time quantitative polymerase chain reaction to explore the expression patterns of ScHP1 in rye plants subjected to N, P and K deprivation and to cold, high-salt and drought stresses. ScHP1 cDNA included a 2289 bp open reading frame (ORF) encoding 762 amino acid residues with 14 transmembrane domains. The genomic ScHP1 DNA was 4354 bp and contained eight exons and seven introns. ScHP1 was highly homologous with other members of the H⁺-PPase gene family. When the full-length ORF was inserted into the expression vector pA7-YFP, the fluorescent microscopy revealed that ScHP1-YFP fusion protein was located in the plasma membrane. Rye plants that were subjected to N deprivation, cold and high-salt stresses, ScHP1 expression was higher in the leaves than roots. Conversely, plants subjected to P and K deprivation and drought stress, ScHP1 expression was higher in the roots than leaves. Under all the investigated stress conditions, expression of ScHP1 was lower in the stem than in the leaves and roots. Our results imply that ScHP1 functions under abiotic stress response.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pirofosfatasa Inorgánica/genética , Proteínas de Plantas/genética , Protones , Secale/genética , Estrés Fisiológico/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Frío , ADN Complementario/genética , ADN Complementario/metabolismo , Sequías , Exones , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Intrones , Modelos Moleculares , Nitrógeno/deficiencia , Nitrógeno/farmacología , Sistemas de Lectura Abierta , Fósforo/deficiencia , Fósforo/farmacología , Filogenia , Células Vegetales/efectos de los fármacos , Células Vegetales/enzimología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/enzimología , Tallos de la Planta/genética , Potasio/farmacología , Secale/clasificación , Secale/efectos de los fármacos , Secale/enzimología , Cloruro de Sodio/farmacología
10.
J Biol Chem ; 290(38): 23348-60, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26221030

RESUMEN

Triphosphate tunnel metalloenzymes (TTMs) are present in all kingdoms of life and catalyze diverse enzymatic reactions such as mRNA capping, the cyclization of adenosine triphosphate, the hydrolysis of thiamine triphosphate, and the synthesis and breakdown of inorganic polyphosphates. TTMs have an unusual tunnel domain fold that harbors substrate- and metal co-factor binding sites. It is presently poorly understood how TTMs specifically sense different triphosphate-containing substrates and how catalysis occurs in the tunnel center. Here we describe substrate-bound structures of inorganic polyphosphatases from Arabidopsis and Escherichia coli, which reveal an unorthodox yet conserved mode of triphosphate and metal co-factor binding. We identify two metal binding sites in these enzymes, with one co-factor involved in substrate coordination and the other in catalysis. Structural comparisons with a substrate- and product-bound mammalian thiamine triphosphatase and with previously reported structures of mRNA capping enzymes, adenylate cyclases, and polyphosphate polymerases suggest that directionality of substrate binding defines TTM catalytic activity. Our work provides insight into the evolution and functional diversification of an ancient enzyme family.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Pirofosfatasa Inorgánica/química , Metaloproteínas/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Evolución Molecular , Pirofosfatasa Inorgánica/genética , Metaloproteínas/genética , Homología Estructural de Proteína
11.
Genet Mol Res ; 13(2): 3615-26, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24854441

RESUMEN

We recently cloned MtVP1, a type I vacuolar-type H(+)-translocating inorganic pyrophosphatase from Medicago truncatula. In the present study, we investigated the cellular location and the function of this H(+)-PPase in Arabidopsis and potato (Solanum tuberosum L.). An MtVP1::enhanced green fluorescent protein fusion was constructed, which localized to the plasma membrane of onion epidermal cells. Transgenic Arabidopsis thaliana overexpressing MtVP1 had more robust root systems and redder shoots than wild-type (WT) plants under conditions of cold stress. Furthermore, overexpression of MtVP1 in potato accelerated the formation and growth of vegetative organs. The tuber buds and stem base of transgenic potatoes became redder than those of WT plants, but flowering was delayed by approximately half a month. Interestingly, anthocyanin biosynthesis was promoted in transgenic Arabidopsis seedlings and potato tuber buds. The sucrose concentration of transgenic potato tubers and tuber buds was enhanced compared with that of WT plants. Furthermore, sucrose concentration in tubers was higher than that in tuber buds. Although there was no direct evidence to support Fuglsang's hypothetical model regarding the effects of H(+)-PPase on sucrose phloem loading, we speculated that sucrose concentration was increased in tuber buds owing to the increased concentration in tubers. Therefore, overexpressed MtVP1 enhanced sucrose accumulation of source organs, which might enhance sucrose transport to sink organs, thus affecting anthocyanin biosynthesis.


Asunto(s)
Antocianinas/biosíntesis , Pirofosfatasa Inorgánica/metabolismo , Solanum tuberosum/genética , Regulación de la Expresión Génica de las Plantas , Pirofosfatasa Inorgánica/genética , Medicago truncatula/enzimología , Medicago truncatula/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Solanum tuberosum/crecimiento & desarrollo , Sacarosa/metabolismo
12.
J Exp Bot ; 65(12): 3045-53, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24723407

RESUMEN

Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (P<0.01) in both greenhouse and field trials compared with the control plants. These results suggest that selection of tomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.


Asunto(s)
Proteínas de Arabidopsis/genética , Frutas/enzimología , Pirofosfatasa Inorgánica/genética , Raíces de Plantas/enzimología , Solanum lycopersicum/enzimología , Solanum lycopersicum/crecimiento & desarrollo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Expresión Génica , Pirofosfatasa Inorgánica/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Fósforo/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
13.
New Phytol ; 197(1): 186-193, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23106517

RESUMEN

The objective of this study was to investigate the isotopic composition of oxygen bound to phosphate (δ(18)O-PO(4)) in different phosphorus (P) pools in plant leaves. As a model plant we used soybean (Glycine max cv Toliman) grown in the presence of ample P in hydroponic cultures. The leaf blades were extracted with 0.3 M trichloroacetic acid (TCA) and with 10 M nitric acid. These extractions allowed measurement of the TCA-soluble reactive P (TCA P) that is rapidly cycled within the cell and the total leaf P. The difference between total leaf P and TCA P yielded the structural P which includes organic P compounds not extractable by TCA. P uptake and its translocation and transformation within the soybean plants lead to an (18)O enrichment of TCA P (δ(18)O-PO(4) between 16.9 and 27.5‰) and structural P (δ(18)O-PO(4) between 42.6 and 68.0 ‰) compared with 12.4‰ in the phosphate in the nutrient solution. δ(18)O values of phosphate extracted from soybean leaves grown under optimal conditions are greater than the δ(18)O-PO(4) values of the provided P source. Furthermore, the δ(18)O-PO(4) of TCA P seems to be controlled by the δ(18)O of leaf water and the activity of inorganic pyrophosphatase or other pyrophosphatases.


Asunto(s)
Glycine max/química , Organofosfatos/química , Oxígeno/química , Fósforo/química , Hojas de la Planta/química , Fosfatasa Ácida/química , Transporte Biológico , Activación Enzimática , Pruebas de Enzimas , Hidroponía , Pirofosfatasa Inorgánica/química , Organofosfatos/aislamiento & purificación , Oxígeno/aislamiento & purificación , Isótopos de Oxígeno/química , Isótopos de Oxígeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Semillas/química , Glycine max/enzimología , Glycine max/crecimiento & desarrollo , Ácido Tricloroacético/química , Agua/química
14.
Plant Mol Biol ; 79(1-2): 137-55, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22415161

RESUMEN

Abiotic stress tolerance of plants is a very complex trait and involves multiple physiological and biochemical processes. Thus, the improvement of plant stress tolerance should involve pyramiding of multiple genes. In the present study, we report the construction and application of a bicistronic system, involving the internal ribosome entry site (IRES) sequence from the 5'UTR of the heat-shock protein of tobacco gene NtHSF-1, to the improvement of salt tolerance in transgenic tobacco plants. Two genes from wheat encoding two important vacuolar ion transporters, Na(+)/H(+) antiporter (TNHXS1) and H(+)-pyrophosphatase (TVP1), were linked via IRES to generate the bicistronic construct TNHXS1-IRES-TVP1. Molecular analysis of transgenic tobacco plants revealed the correct integration of the TNHXS1-IRES-TVP1construct into tobacco genome and the production of the full-length bicistronic mRNA from the 35S promoter. Ion transport analyses with tonoplast vesicles isolated from transgenic lines confirmed that single-transgenic lines TVP1cl19 and TNHXS1cl7 had greater H(+)-PPiase and Na(+)/H(+) antiport activity, respectively, than the WT. Interestingly, the co-expression of TVP1 and TNHXS1 increased both Na(+)/H(+) antiport and H(+)-PPiase activities and induced the H(+) pumping activity of the endogenous V-ATPase. Transgenic tobacco plants expressing TNHXS1-IRES-TVP1 showed a better performance than either of the single gene-transformed lines and the wild type plants when subjected to salt treatment. In addition, the TNHXS1-IRES-TVP1 transgenic plants accumulated less Na(+) and more K(+) in their leaf tissue than did the wild type and the single gene-transformed lines. These results demonstrate that IRES system, described herein, can co-ordinate the expression of two important abiotic stress-tolerance genes and that this expression system is a valuable tool for obtaining transgenic plants with improved salt tolerance.


Asunto(s)
Pirofosfatasa Inorgánica/genética , Nicotiana/genética , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Intercambiadores de Sodio-Hidrógeno/genética , Transcripción Genética , Triticum/genética , Adaptación Fisiológica/efectos de los fármacos , Catalasa/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Clorofila/metabolismo , Cinamatos/farmacología , Clonación Molecular , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Higromicina B/análogos & derivados , Higromicina B/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Potasio/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Sodio/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Nicotiana/efectos de los fármacos , Nicotiana/crecimiento & desarrollo , Transcripción Genética/efectos de los fármacos , Triticum/efectos de los fármacos , Triticum/enzimología , Vacuolas/efectos de los fármacos , Vacuolas/enzimología
16.
Plant Sci ; 187: 39-48, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22404831

RESUMEN

Phosphorus is an essential element for all living cells, but its availability is often limiting in the soil. Plants have adapted to such limitation and respond to phosphorus deficiency. The soluble inorganic pyrophosphatases (PPase; EC 3.6.1.1) recycle the pyrophosphate produced by many biosynthetic reactions, and may play a role in the plant adaptation to phosphorus deficiency. In this work, three PPase mRNAs were identified from the Phaseolus vulgaris EST international database and their sequences were corroborated and completed using 3'RACE. After design and validation of the appropriate oligonucleotide primers, the PPase mRNA expression was measured by qRT-PCR in leaves, stems, and roots of bean plants grown with 1mM phosphate or under phosphate starvation. The plant tissues were classified according to their position on the plant, and some physiological signs of stress were recorded. qRT-PCR revealed changes in mRNA expression, but not for all isozymes under analysis, and not for all tissues. In addition, changes in the activity of some PPases were observed in zymograms. Our data are consistent with an important role for pyrophosphate in the adaptation of the plant to phosphate starvation.


Asunto(s)
Adaptación Fisiológica , Expresión Génica , Pirofosfatasa Inorgánica/metabolismo , Phaseolus/enzimología , Fosfatos/metabolismo , Fósforo/deficiencia , Estrés Fisiológico , Secuencia de Bases , Cartilla de ADN , Difosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Pirofosfatasa Inorgánica/genética , Isoenzimas , Phaseolus/genética , Phaseolus/metabolismo , Fósforo/metabolismo , Estructuras de las Plantas , ARN Mensajero/metabolismo , Suelo , Solubilidad
17.
Biosci Biotechnol Biochem ; 74(7): 1507-11, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20622427

RESUMEN

Although coloration in plants is ascribable to both the accumulation of anthocyanin pigments in vacuoles and to the acidification of vacuolar pH, the environmental factors causing the decrease in vacuolar pH are unknown. We found that blue-light irradiation of buckwheat seedlings using light-emitting diodes caused reddening on the surface of the hypocotyls. It has also been reported that light stimulation induces an accumulation of anthocyanin pigments. However, here we confirmed for the first time on the basis of real-time PCR analysis that light stimulation simultaneously triggers expression of the genes coding for subunit A of vacuolar H+-ATPase (V-ATPase) and vacuolar H(+)-pyrophosphatase (V-PPase).


Asunto(s)
Fagopyrum/genética , Fagopyrum/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Pirofosfatasa Inorgánica/genética , Luz , ATPasas de Translocación de Protón Vacuolares/genética , Pigmentación/efectos de la radiación , Plantones/genética , Plantones/efectos de la radiación
18.
Plant Cell Environ ; 33(2): 272-89, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19930128

RESUMEN

The Arabidopsis vacuolar H(+)-pyrophosphatase (AVP1), when over-expressed in transgenic (TG) plants, regulates root and shoot development via facilitation of auxin flux, and enhances plant resistance to salt and drought stresses. Here, we report that TG perennial creeping bentgrass plants over-expressing AVP1 exhibited improved resistance to salinity than wild-type (WT) controls. Compared to WT plants, TGs grew well in the presence of 100 mm NaCl, and exhibited higher tolerance and faster recovery from damages from exposure to 200 and 300 mm NaCl. The improved performance of the TG plants was associated with higher relative water content (RWC), higher Na(+) uptake and lower solute leakage in leaf tissues, and with higher concentrations of Na(+), K(+), Cl(-) and total phosphorus in root tissues. Under salt stress, proline content was increased in both WT and TG plants, but more significantly in TGs. Moreover, TG plants exhibited greater biomass production than WT controls under both normal and elevated salinity conditions. When subjected to salt stress, fresh (FW) and dry weights (DW) of both leaves and roots decreased more significantly in WT than in TG plants. Our results demonstrated the great potential of genetic manipulation of vacuolar H(+)-pyrophosphatase expression in TG perennial species for improvement of plant abiotic stress resistance.


Asunto(s)
Agrostis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Pirofosfatasa Inorgánica/metabolismo , Plantas Tolerantes a la Sal/metabolismo , Agrostis/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloruros/metabolismo , Clorofila/análisis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/análisis , Pirofosfatasa Inorgánica/genética , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Potasio/metabolismo , Plantas Tolerantes a la Sal/genética , Sodio/metabolismo , Estrés Fisiológico , Transformación Genética , Agua/metabolismo
20.
Rev Med Chir Soc Med Nat Iasi ; 112(1): 21-34, 2008.
Artículo en Rumano | MEDLINE | ID: mdl-18677900

RESUMEN

Arterial calcification was previously viewed as an inevitable, passive, and degenerative process that occurred at the end stages of atherosclerosis. Recent studies, however, have demonstrated that calcification of arteries is a complex and regulated process. It may occur in conjunction with atherosclerosis or in an isolated form that is commonly associated with diabetes and renal failure. Higher artery calcium scores are associated with increased cardiovascular events, and some aspects of arterial calcification are similar to the biology of forming bone. Arterial calcification can thus be viewed as a distinct inflammatory arteriopathy, much like atherosclerosis and aneurysms, with its own contribution to cardiovascular morbidity and mortality. Current research involves efforts to define the complex interactions between cellular and molecular mediators of arterial calcification and, in particular, the role of endogenous calcification inhibitors. This review discusses the clinical relevance, cellular events, and suspected molecular pathways that control arterial calcification.


Asunto(s)
Arteriosclerosis/metabolismo , Calcinosis/metabolismo , Calcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Túnica Media/metabolismo , Arteriosclerosis/complicaciones , Arteriosclerosis/patología , Calcinosis/complicaciones , Calcinosis/patología , Proteínas de Unión al Calcio/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Hiperglucemia/metabolismo , Hiperinsulinismo/metabolismo , Mediadores de Inflamación/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Leptina/metabolismo , Fósforo/metabolismo , Túnica Media/patología , Vitamina K/metabolismo , Proteína Gla de la Matriz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA