Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 154: 557-563, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32912489

RESUMEN

The ubiquitin-proteasome system (UPS) is one of the main ways of eukaryotic protein degradation and post-translational modification. It has proven as an essential process for plants to respond to abiotic stresses. Plant U-box (PUB) protein acts as a ubiquitin ligase, which recognizes and ubiquitinates the target proteins. Many PUBs have been involved in water stress in Arabidopsis and rice, but similar comprehensive studies in potato remained limited. In this study, the overexpressed and interfered transgenic potato plants of StPUB27 were obtained and their performances were evaluated under osmotic stress. The result showed that overexpression of StPUB27 accelerated the dehydration of detached leaves companied with greater stomatal conductance, while the down-regulated StPUB27 expression by RNA interference (RNAi) showed a smaller stomatal conductance and a lower rate of water loss in detached leaves, thus showing higher tolerance to osmotic stress. In addition, no significant changes in the proline content were observed between StPUB27 overexpressed and RNAi potato plants. The result demonstrated that potato E3 ubiquitin ligase PUB27 may negatively regulate drought tolerance by mediating stomatal conductance.


Asunto(s)
Sequías , Proteínas de Plantas/metabolismo , Estomas de Plantas/fisiología , Solanum tuberosum , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/genética
2.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093420

RESUMEN

Erigeron breviscapus (Vant.) Hand.-Mazz. is a famous traditional Chinese medicine that has positive effects on the treatment of cardiovascular and cerebrovascular diseases. With the increase of market demand (RMB 500 million per year) and the sharp decrease of wild resources, it is an urgent task to cultivate high-quality and high-yield varieties of E. breviscapus. However, it is difficult to obtain homozygous lines in breeding due to the self-incompatibility (SI) of E. breviscapus. Here, we first proved that E. breviscapus has sporophyte SI (SSI) characteristics. Characterization of the ARC1 gene in E. breviscapus showed that EbARC1 is a constitutive expression gene located in the nucleus. Overexpression of EbARC1 in Arabidopsis thaliana L. (Col-0) could cause transformation of transgenic lines from self-compatibility (SC) into SI. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that EbARC1 and EbExo70A1 interact with each other in the nucleus, and the EbARC1-ubox domain and EbExo70A1-N are the key interaction regions, suggesting that EbARC1 may ubiquitinate EbExo70A to regulate SI response. This study of the SSI mechanism in E. breviscapus has laid the foundation for further understanding SSI in Asteraceae and breeding E. breviscapus varieties.


Asunto(s)
Arabidopsis , Erigeron/genética , Proteínas de Plantas , Plantas Modificadas Genéticamente , Ubiquitina-Proteína Ligasas , Arabidopsis/enzimología , Arabidopsis/genética , Erigeron/enzimología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Ubiquitina-Proteína Ligasas/biosíntesis , Ubiquitina-Proteína Ligasas/genética
3.
Plant Signal Behav ; 14(8): 1620059, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31131700

RESUMEN

Fertilization-related kinase (FRK) is a group of the mitogen-activated protein kinase kinase kinase (MAP3K or MEKK) that has proliferated in Solanaceae species. Studies on the wild potato Solanum chacoense have shown that three ScFRKs are directly involved in female gametophyte development. Decreasing the expression of ScFRK1 and ScFRK3 by RNA interference lead to embryonic sac development arrest at the functional megaspore (FM) stage. As for ScFRK2, the first FRK studied, antisense and co-suppression lines showed no abnormality, while overexpression lines lead to a drastic decrease in seed numbers, presumably caused by a conversion of the ovule into a carpel-like structure. Here we show that in ScFRK2 overexpression lines, carpel-like structures from the ovule cannot explain the drastic decrease in seeds considering the low percentage of these carpel-like structures but occurs in early ovule development as observed in Scfrk1 and Scfrk3 knockdown mutants were most ovules are arrested at the FM stage. The highly similar phenotype from knockdown mutants (Scfrk1 and Scfrk3) and ScFRK2 overexpression lines suggests that these MAP kinases could operate antagonistically through a balance between ScFRK1 and 3 on one side and ScFRK2 on the other. This study strongly suggests the importance of the FRK family expression levels during early stages of ovule development in Solanum chacoense embryo sac.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Plantas Modificadas Genéticamente/embriología , Plantas Modificadas Genéticamente/enzimología , Solanum/embriología , Solanum/enzimología , Regulación de la Expresión Génica de las Plantas , Quinasas Quinasa Quinasa PAM/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/embriología , Semillas/enzimología , Semillas/metabolismo , Solanum/metabolismo
4.
J Agric Food Chem ; 67(7): 1982-1989, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30742432

RESUMEN

Oleanane-type saponins considered as the main medicinal ingredients in Panax japonicus are not found in Panax notoginseng. ß-Amyrin synthase (ßAS) was recognized as the first key enzyme in the biosynthetic branch of oleanane-type saponins. In this study, ßAS gene from P. japonicus ( PjßAS) was transferred into P. notoginseng cells. Along with PjßAS expression in the transgenic cells, the expression levels of several key enzyme genes related to triterpenoid saponins biosynthesis and the content of P. notoginseng saponins were also increased. Two oleanane-type saponins, chikusetsusaponin IV and chikusetsusaponin IVa, contained in P. japonicus were first discovered in transgenic P. notoginseng cells. This study successfully constructed a biosynthetic pathway of oleanane-type saponins in P. notoginseng by introducing just one gene into the species. On the basis of this discovery and previous studies, the common biosynthetic pathway of triterpenoid saponins in Panax genus may be unified to some extent.


Asunto(s)
Transferasas Intramoleculares/genética , Ácido Oleanólico/análogos & derivados , Panax notoginseng/metabolismo , Panax/enzimología , Saponinas/biosíntesis , Expresión Génica , Técnicas de Transferencia de Gen , Ácido Oleanólico/biosíntesis , Ácido Oleanólico/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Triterpenos/metabolismo
5.
Sci Rep ; 8(1): 12659, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30139985

RESUMEN

Artemisinin, an effective anti-malarial drug is synthesized in the specialized 10-celled biseriate glandular trichomes of some Artemisia species. In order to have an insight into artemisinin biosynthesis in species other than A. annua, five species with different artemisinin contents were investigated for the expression of key genes that influence artemisinin content. The least relative expression of the examined terpene synthase genes accompanied with very low glandular trichome density (4 No. mm-2) and absence of artemisinin content in A. khorassanica (S2) underscored the vast metabolic capacity of glandular trichomes. A. deserti (S4) with artemisinin content of 5.13 mg g-1 DW had a very high expression of Aa-ALDH1 and Aa-CYP71AV1 and low expression of Aa-DBR2. It is possible to develop plants with high artemisinin synthesis ability by downregulating Aa-ORA in S4, which may result in the reduction of Aa-ALDH1 and Aa-CYP71AV1 genes expression and effectively change the metabolic flux to favor more of artemisinin production than artemisinic acid. Based on the results, the Aa-ABCG6 transporter may be involved in trichome development. S4 had high transcript levels and larger glandular trichomes (3.46 fold) than A. annua found in Iran (S1), which may be due to the presence of more 2C-DNA (3.48 fold) in S4 than S1.


Asunto(s)
Artemisia/metabolismo , Artemisininas/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Antimaláricos/metabolismo , Artemisia/enzimología , Artemisia/genética , Artemisia annua/enzimología , Artemisia annua/genética , Artemisia annua/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tricomas/genética , Tricomas/metabolismo
6.
PLoS One ; 13(4): e0194666, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29649228

RESUMEN

Chile pepper (Capsicum annuum) is an important high valued crop worldwide, and when grown on a large scale has problems with weeds. One important herbicide used is glyphosate. Glyphosate inactivates the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme in the synthesis of aromatic amino acids. A transgenic approach towards making glyphosate resistant plants, entails introducing copies of a gene encoding for glyphosate-resistant EPSPS enzyme into the plant. The main objective of our work was to use an intragenic approach to confer resistance to glyphosate in chile which would require using only chile genes for transformation including the selectable marker. Tobacco was used as the transgenic system to identify different gene constructs that would allow for the development of the intragenic system for chile, since chile transformation is inefficient. An EPSPS gene was isolated from chile and mutagenized to introduce substitutions that are known to make the encoded enzyme resistant to glyphosate. The promoter for EPSPS gene was isolated from chile and the mutagenized chile EPSPS cDNA was engineered behind both the CaMV35S promoter and the EPSPS promoter. The leaves from the transformants were checked for resistance to glyphosate using a cut leaf assay. In tobacco, though both gene constructs exhibited some degree of resistance to glyphosate, the construct with the CaMV35S promoter was more effective and as such chile was transformed with this gene construct. The chile transformants showed resistance to low concentrations of glyphosate. Furthermore, preliminary studies showed that the mutated EPSPS gene driven by the CaMV35S promoter could be used as a selectable marker for transformation. We have shown that an intragenic approach can be used to confer glyphosate-resistance in chile. However, we need a stronger chile promoter and a mutated chile gene that encodes for a more glyphosate resistant EPSPS protein.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa/metabolismo , Capsicum/enzimología , Capsicum/genética , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Transfección , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Biología Computacional , ADN Complementario/metabolismo , Genes de Plantas , Glicina/química , Herbicidas/química , Mutágenos , Mutación , Filogenia , Malezas , Plantas Modificadas Genéticamente/enzimología , Regiones Promotoras Genéticas , Nicotiana/genética , Transgenes , Glifosato
7.
Plant Physiol Biochem ; 127: 47-54, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29549757

RESUMEN

N-methylputrescine is the precursor of nicotine and pharmaceutical tropane alkaloids such as hyoscyamine. Putrescine N-methyltransferase (PMT) catalyzes the N-methylation of putrescine to form N-methylputrescine. While the role of PMT in nicotine biosynthesis is clear, knowledge of PMT in the biosynthesis of tropane alkaloids (TAs) and the regulation of polyamines remains limited. We characterized a PMT gene from Hyoscyamus niger, designated HnPMT that was specifically expressed in roots, especially in the secondary roots and dramatically induced by methyl jasmonate (MeJA). The GUS gene was specifically expressed in Arabidopsis roots or in the vascular tissues, including pericycles and endodermis, of the H. niger hairy root cultures, when it was driven by the 5'-flanking promoter region of HnPMT. The recombinant HnPMT was purified for enzymatic assays. HnPMT converted putrescine to form N-methylputrescine, as confirmed by LC-MS. The kinetics analysis revealed that HnPMT had high affinity with putrescine but low catalytic activity, suggesting that it was a rate-limiting enzyme. When HnPMT was suppressed in the H. niger plants by using the VIGS approach, the contents of N-methylputrescine and hyoscyamine were markedly decreased, but the contents of putrescine, spermidine and a mixture of spermine and thermospermine were significantly increased; this suggested that HnPMT was involved in the biosynthesis of tropane alkaloids and played a competent role in regulating the biosynthesis of polyamines. Functional identification of HnPMT facilitated the understanding of TA biosynthesis and thus implied that the HnPMT-catalyzed step might be a target for metabolic engineering of the TA production in H. niger.


Asunto(s)
Hyoscyamus , Metiltransferasas , Raíces de Plantas , Arabidopsis/enzimología , Arabidopsis/genética , Hyoscyamus/enzimología , Hyoscyamus/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética
8.
Nat Biotechnol ; 36(3): 249-257, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29431741

RESUMEN

Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an α-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.


Asunto(s)
Biocombustibles , Pared Celular/genética , Glucuronosiltransferasa/genética , Pectinas/biosíntesis , Biomasa , Boro/metabolismo , Calcio/metabolismo , Pared Celular/enzimología , Pared Celular/metabolismo , Productos Agrícolas , Glucuronosiltransferasa/química , Panicum/enzimología , Panicum/genética , Pectinas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Populus/enzimología , Populus/genética , Azúcares/metabolismo
9.
Biotechnol Bioeng ; 115(3): 673-683, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29105731

RESUMEN

The monoterpene indole alkaloids vindoline and catharanthine, which are exclusively synthesized in the medicinal plant Catharanthus roseus, are the two important precursors for the production of pharmaceutically important anti-cancer medicines vinblastine and vincristine. Hairy root culture is an ideal platform for alkaloids production due to its industrial scalability, genetic and chemical stability, and availability of genetic engineering tools. However, C. roseus hairy roots do not produce vindoline due to the lack of expression of the seven-step pathway from tabersonine to vindoline [Murata & De Luca (2015) Plant Journal, 44, 581-594]. The present study describes the genetic engineering of the first two genes tabersonine 16-hydroxylase (T16H) and 16-O-methyl transferase (16OMT) in the missing vindoline pathway under the control of a glucocorticoid-inducible promoter to direct tabersonine toward vindoline biosynthesis in C. roseus hairy roots. In two transgenic hairy roots, the induced overexpression of T16H and 16OMT resulted in the accumulation of vindoline pathway metabolites 16-hydroxytabersonine and 16-methoxytabersonine. The levels of root-specific alkaloids, including lochnericine, 19-hydroxytabersonine and hörhammericine, significantly decreased in the induced hairy roots in comparison to the uninduced control lines. This suggests tabersonine was successfully channeled to the vindoline pathway away from the roots competing pathway based on the overexpression. Interestingly, another two new metabolites were detected in the induced hairy roots and proposed to be the epoxidized-16-hydroxytabersonine and lochnerinine. Thus, the introduction of vindoline pathway genes in hairy roots can cause unexpected terpenoid indole alkaloids (TIA) profile alterations. Furthermore, we observed complex transcriptional changes in TIA genes and regulators detected by RT-qPCR which highlight the tight regulation of the TIA pathway in response to T16H and 16OMT engineering in C. roseus hairy roots.


Asunto(s)
Catharanthus/enzimología , Sistema Enzimático del Citocromo P-450/biosíntesis , Expresión Génica , Alcaloides Indólicos/metabolismo , Proteínas de Plantas/biosíntesis , Raíces de Plantas/enzimología , Plantas Modificadas Genéticamente/enzimología , Quinolinas/metabolismo , Catharanthus/genética , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética
10.
Zhongguo Zhong Yao Za Zhi ; 42(20): 3901-3905, 2017 Oct.
Artículo en Chino | MEDLINE | ID: mdl-29243425

RESUMEN

Protein complexes are involved in the synthesis of multiple secondary metabolites in plants, and their separation is essential to elucidate plant secondary metabolism and improve in vitro catalytic efficiency. In this study, the transgenic hairy roots of CYP76AH1, a key enzyme of tanshinone synthesis pathway, was constructed and the transgenic hairy roots of Danshen overexpressing CYP76AH1 protein were screened by Western blotting and used as a tissue culture material for the subsequent extraction of protein complex in tanshinone synthesis pathway. By optimizing the type and concentration of the detergent in the protein extraction buffer, the buffer containing 0.5% Triton X-100 was selected as the best extraction buffer, and a relatively large amount of soluble CYP76AH1 protein was isolated. This study lays the foundation for the further separation and purification of protein complexes interacting with CYP76AH1, and provides the idea for deep analysis of tanshinone metabolic pathway.


Asunto(s)
Familia 7 del Citocromo P450/genética , Raíces de Plantas/enzimología , Salvia miltiorrhiza/enzimología , Abietanos/biosíntesis , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Salvia miltiorrhiza/genética
11.
J Plant Physiol ; 219: 12-21, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28957691

RESUMEN

Transgenic plants obtained from a hairy root line (PVG) of Vinca minor were characterized in relation to terpenoid indole alkaloids (TIAs) pathway gene expression and vincamine production. The hairy roots formed callus with green nodular protuberances when transferred onto agar-gelled MS medium containing 3.0mg/l zeatin. These meristematic zones developed into shoot buds on medium with 1.0mg/l 2, 4-dichlorophenoxyacetic acid and 40mg/l ascorbic acid. These shoot buds subsequently formed rooted plants when shifted onto a hormone-free MS medium with 6% sucrose. Transgenic nature of the plants was confirmed by the presence of rol genes of the Ri plasmid in them. The transgenic plants (TP) had elongated internodes and a highly proliferating root system. During glass house cultivation TP consistently exhibited slower growth rate, low chlorophyll content (1.02±0.08mg/gm fr. wt.), reduced carbon exchange rate (2.67±0.16µmolm-2s-1), less transpiration rate (2.30±0.20mmolm-2 s-1) and poor stomatal conductance (2.21±0.04mmolm-2 s-1) when compared with non-transgenic population. The activity of rubisco enzyme in the leaves of TP was nearly two folds less in comparison to non-transgenic controls (1.80milliunitsml-1mgprotein-1 against 3.61milliunits ml-1mgprotein-1, respectively). Anatomically, the TP had a distinct tetarch arrangement of vascular bundles in their stem and roots against a typical ployarched pattern in the non-transgenic plants. Significantly, the transgenic plants accumulated 35% higher amount of total TIAs (3.10±0.21% dry wt.) along with a 0.03% dry wt. content of its vasodilatory and nootropic alkaloid vincamine in their leaves. Higher productivity of alkaloids in TP was corroborated with more than four (RQ=4.60±0.30) and five (RQ=5.20±0.70) times over-expression of TIAs pathway genes tryptophan decarboxylase (TDC) and strictosidine synthase (STR) that are responsible for pushing the metabolic flux towards TIAs synthesis in this medicinal herb.


Asunto(s)
Agrobacterium/fisiología , Fotosíntesis , Proteínas de Plantas/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Vinca/fisiología , Vincamina/metabolismo , Expresión Génica , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente/anatomía & histología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/fisiología , Vinca/anatomía & histología , Vinca/enzimología
12.
Plant Cell Physiol ; 58(5): 885-892, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28371895

RESUMEN

During phosphate (Pi) starvation or leaf senescence, the accumulation of intracellular and extracellular purple acid phosphatases (PAPs) increases in plants in order to scavenge organic phosphorus (P). In this study, we demonstrated that a PAP-encoding gene in rice, OsPAP26, is constitutively expressed in all tissues. While the abundance of OsPAP26 transcript is not affected by Pi supply, it is up-regulated during leaf senescence. Furthermore, Pi deprivation and leaf senescence greatly increased the abundance of OsPAP26 protein. Overexpression or RNA interference (RNAi) of OsPAP26 in transgenic rice significantly increased or reduced APase activities, respectively, in leaves, roots and growth medium. Compared with wild-type (WT) plants, Pi concentrations of OsPAP26-overexpressing plants increased in the non-senescing leaves and decreased in the senescing leaves. The increased remobilization of Pi from the senescing leaves to non-senescing leaves in the OsPAP26-overexpressing plants resulted in better growth performance when plants were grown in Pi-depleted condition. In contrast, OsPAP26-RNAi plants retained more Pi in the senescing leaves, and were more sensitive to Pi starvation stress. OsPAP26 was found to localize to the apoplast of rice cells. Western blot analysis of protein extracts from callus growth medium confirmed that OsPAP26 is a secreted PAP. OsPAP26-overexpressing plants were capable of converting more ATP into inorganic Pi in the growth medium, which further supported the potential role of OsPAP26 in utilizing organic P in the rhizosphere. In summary, we concluded that OsPAP26 performs dual functions in plants: Pi remobilization from senescing to non-senescing leaves; and organic P utilization.


Asunto(s)
Fosfatasa Ácida/metabolismo , Glicoproteínas/metabolismo , Oryza/enzimología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fosfatasa Ácida/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glicoproteínas/genética , Oryza/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
13.
J Agric Food Chem ; 65(13): 2737-2742, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28294619

RESUMEN

Potatoes (Solanum tuberosum) are deficient in methionine, an essential amino acid in human and animal diets. Higher methionine levels increase the nutritional quality and promote the typically pleasant aroma associated with baked and fried potatoes. Several attempts have been made to elevate tuber methionine levels by genetic engineering of methionine biosynthesis and catabolism. Overexpressing Arabidopsis thaliana cystathionine γ-synthase (AtCGS) in S. tuberosum up-regulates a rate-limiting step of methionine biosynthesis and increases tuber methionine levels. Alternatively, silencing S. tuberosum methionine γ-lyase (StMGL), which causes decreased degradation of methionine into 2-ketobutyrate, also increases methionine levels. Concurrently enhancing biosynthesis and reducing degradation were predicted to provide further increases in tuber methionine content. Here we report that S. tuberosum cv. Désirée plants with AtCGS overexpression and StMGL silenced by RNA interference are morphologically normal and accumulate higher free methionine levels than either single-transgenic line.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Liasas de Carbono-Oxígeno/genética , Liasas de Carbono-Azufre/genética , Metionina/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/genética , Proteínas de Arabidopsis/metabolismo , Liasas de Carbono-Oxígeno/metabolismo , Liasas de Carbono-Azufre/metabolismo , Regulación de la Expresión Génica de las Plantas , Ingeniería Metabólica , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Solanum tuberosum/enzimología , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo
14.
Plant J ; 90(6): 1052-1063, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28258968

RESUMEN

The sesquiterpenoid polygodial, which belongs to the drimane family, has been shown to be an antifeedant for a number of herbivorous insects. It is presumed to be synthesized from farnesyl diphosphate via drimenol, subsequent C-12 hydroxylation and further oxidations at both C-11 and C-12 to form a dialdehyde. Here, we have identified a drimenol synthase (PhDS) and a cytochrome P450 drimenol oxidase (PhDOX1) from Persicaria hydropiper. Expression of PhDS in yeast and plants resulted in production of drimenol alone. Co-expression of PhDS with PhDOX1 in yeast yielded drimendiol, the 12-hydroxylation product of drimenol, as a major product, and cinnamolide. When PhDS and PhDOX1 were transiently expressed by agro-infiltration in Nicotiana benthamiana leaves, drimenol was almost completely converted into cinnamolide and several additional drimenol derivatives were observed. In vitro assays showed that PhDOX1 only catalyses the conversion from drimenol to drimendiol, and not the further oxidation into an aldehyde. In yeast and heterologous plant hosts, the C-12 position of drimendiol is therefore likely to be further oxidized by endogenous enzymes into an aldehyde and subsequently converted to cinnamolide, presumably by spontaneous hemiacetal formation with the C-11 hydroxyl group followed by oxidation. Purified cinnamolide was confirmed by NMR and shown to be deterrent with an effective deterrent dose (ED50 ) of about 200-400 µg g-1 fresh weight against both whiteflies and aphids. The putative additional physiological and biochemical requirements for polygodial biosynthesis and stable storage in plant tissues are discussed.


Asunto(s)
Polygonaceae/enzimología , Polygonaceae/metabolismo , Sesquiterpenos/metabolismo , Animales , Áfidos/efectos de los fármacos , Hemípteros/efectos de los fármacos , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Sesquiterpenos Policíclicos , Polygonaceae/genética , Sesquiterpenos/farmacología , Terpenos/metabolismo , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/metabolismo
15.
Sci Rep ; 7: 45333, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28350010

RESUMEN

Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the rate-limiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Transferasas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Clonación Molecular , ADN Bacteriano/genética , ADN Complementario/metabolismo , Frutas/química , Frutas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Mutagénesis , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Interferencia de ARN , Plantones/crecimiento & desarrollo , Transferasas/antagonistas & inhibidores , Transferasas/genética
16.
Plant Biotechnol J ; 15(8): 1054-1067, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28116829

RESUMEN

Phosphate (Pi) deficiency in soil system is a limiting factor for rice growth and yield. Majority of the soil phosphorus (P) is organic in nature, not readily available for root uptake. Low Pi-inducible purple acid phosphatases (PAPs) are hypothesized to enhance the availability of Pi in soil and cellular system. However, information on molecular and physiological roles of rice PAPs is very limited. Here, we demonstrate the role of a novel rice PAP, OsPAP21b in improving plant utilization of organic-P. OsPAP21b was found to be under the transcriptional control of OsPHR2 and strictly regulated by plant Pi status at both transcript and protein levels. Biochemically, OsPAP21b showed hydrolysis of several organophosphates at acidic pH and possessed sufficient thermostability befitting for high-temperature rice ecosystems with acidic soils. Interestingly, OsPAP21b was revealed to be a secretory PAP and encodes a distinguishable major APase (acid phosphatase) isoform under low Pi in roots. Further, OsPAP21b-overexpressing transgenics showed increased biomass, APase activity and P content in both hydroponics supplemented with organic-P sources and soil containing organic manure as sole P source. Additionally, overexpression lines depicted increased root length, biomass and lateral roots under low Pi while RNAi lines showed reduced root length and biomass as compared to WT. In the light of these evidences, present study strongly proposes OsPAP21b as a useful candidate for improving Pi acquisition and utilization in rice.


Asunto(s)
Fosfatasa Ácida/metabolismo , Glicoproteínas/metabolismo , Oryza/enzimología , Oryza/metabolismo , Fosfatos/metabolismo , Fosfatasa Ácida/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glicoproteínas/genética , Oryza/genética , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN
17.
PLoS One ; 12(1): e0169610, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28056069

RESUMEN

Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (de)phosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal). Interestingly, expression of an (engineered) laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf). Modified starches exhibited altered granule morphology and size compared to the control. About 20-30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself.


Asunto(s)
Fosfatos/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/metabolismo , Almidón/metabolismo , Amilosa/metabolismo , Mutación/genética , Fosforilación , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Solanum tuberosum/enzimología , Solanum tuberosum/genética
18.
Plant J ; 89(5): 914-926, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27880021

RESUMEN

Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme that catalyzes the transfer of the γ-phosphate from a donor nucleoside triphosphate to an acceptor nucleoside diphosphate. In this study we used a targeted metabolomic approach and measurement of physiological parameters to report the effects of the genetic manipulation of cytosolic NDPK (NDPK1) expression on physiology and carbon metabolism in potato (Solanum tuberosum) roots. Sense and antisense NDPK1 constructs were introduced in potato using Agrobacterium rhizogenes to generate a population of root clones displaying a 40-fold difference in NDPK activity. Root growth, O2 uptake, flux of carbon between sucrose and CO2 , levels of reactive oxygen species and some tricarboxylic acid cycle intermediates were positively correlated with levels of NDPK1 expression. In addition, NDPK1 levels positively affected UDP-glucose and cellulose contents. The activation state of ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was higher in antisense roots than in roots overexpressing NDPK1. Further analyses demonstrated that ADP-glucose pyrophosphorylase was more oxidized, and therefore less active, in sense clones than antisense clones. Consequently, antisense NDPK1 roots accumulated more starch and the starch to cellulose ratio was negatively affected by the level of NDPK1. These data support the idea that modulation of NDPK1 affects the distribution of carbon between starch and cellulose biosynthetic pathways.


Asunto(s)
Carbono/metabolismo , Citosol/metabolismo , Nucleósido-Difosfato Quinasa/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/enzimología , Solanum tuberosum/metabolismo , Ciclo del Ácido Cítrico/genética , Ciclo del Ácido Cítrico/fisiología , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Nucleósido-Difosfato Quinasa/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Especies Reactivas de Oxígeno/metabolismo , Solanum tuberosum/genética , Sacarosa/metabolismo
19.
Acta Pol Pharm ; 74(2): 642-652, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29624270

RESUMEN

Previously it was documented that transgenic flax plants, which contained an increased level of polyphenolic compounds, significantly improved healing of skin wounds lesions. In order to recognize mechanisms of beneficial action of transgenic flax fabrics on wound healing, in the present study the impact of flax fabric pieces/cuts from three types of transgenic flax on normal human dermal fibroblasts primary culture (NHDF) was investigated. NHDF cell cultures were exposed for 48 h to specific area of flax fabric cuts, made from M50, B 14 and M50+B14 (intertwined fibers of M and B), or parallely, extracts from fibers of the tested flax materials to cell culture medium. Cultures were inspected for cell viability, proliferation, cell cycle changes and for their resistance to oxidative stress (consecutive addition of H2,O2, to harvested cell cultures). None of the tested flax fabrics were cytotoxic to fibroblast cultures and also did not increase significantly a frequency of apoptotic cells in cultures. In the comet assay, the tested flax fabrics revealed significant protective effect on DNA damage ciused by addition of H202 to the cultures at the end of incubation time. Fabrics from transgenic flax significantly enhanced fibroblasts proliferation in vitro estimated with the SRB test. Flow cytometric analysis revealed higher frequency of cells in the S phase, in the presence of transgenic flax fabrics. Fabrics from B14 and M50+B14 flax are the most potent activators of NHDF cells in applied in vityo tests, hence they could be recommended for elaboration of new type bandage, able to improve skin wound healing.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Lino/genética , Preparaciones de Plantas/farmacología , Plantas Modificadas Genéticamente/genética , Textiles , Cicatrización de Heridas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Células 3T3 BALB , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Lino/enzimología , Lino/crecimiento & desarrollo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Humanos , Peróxido de Hidrógeno/toxicidad , Ratones , Estrés Oxidativo/efectos de los fármacos , Preparaciones de Plantas/toxicidad , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Fase S/efectos de los fármacos , Factores de Tiempo
20.
Plant Cell ; 28(8): 1795-814, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27385817

RESUMEN

Parasitic plants in the Orobanchaceae cause serious agricultural problems worldwide. Parasitic plants develop a multicellular infectious organ called a haustorium after recognition of host-released signals. To understand the molecular events associated with host signal perception and haustorium development, we identified differentially regulated genes expressed during early haustorium development in the facultative parasite Phtheirospermum japonicum using a de novo assembled transcriptome and a customized microarray. Among the genes that were upregulated during early haustorium development, we identified YUC3, which encodes a functional YUCCA (YUC) flavin monooxygenase involved in auxin biosynthesis. YUC3 was specifically expressed in the epidermal cells around the host contact site at an early time point in haustorium formation. The spatio-temporal expression patterns of YUC3 coincided with those of the auxin response marker DR5, suggesting generation of auxin response maxima at the haustorium apex. Roots transformed with YUC3 knockdown constructs formed haustoria less frequently than nontransgenic roots. Moreover, ectopic expression of YUC3 at the root epidermal cells induced the formation of haustorium-like structures in transgenic P. japonicum roots. Our results suggest that expression of the auxin biosynthesis gene YUC3 at the epidermal cells near the contact site plays a pivotal role in haustorium formation in the root parasitic plant P. japonicum.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Yucca/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oxigenasas de Función Mixta/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Yucca/enzimología , Yucca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA