Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Radiat Biol ; 99(5): 866-874, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36107031

RESUMEN

PURPOSE: To study the effects of gamma radiation on tea seed germination, morphological changes, and genetic variation by using gamma radiation. MATERIAL AND METHOD: Fresh Tea seed material were irradiated with twenty different doses of gamma radiation such as 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80 90, 100, 200, 500 and 1000 Gy from Cobalt 60Co source from Regional Nuclear Agriculture Research Center, Bidhan Chandra Krishi Viswavidyalaya (BCKV), West Bengal, in between 2019 and 2020. RESULT AND CONCLUSION: The growth behavior of tea seedling was recorded under varying levels of gamma radiation and its performance at nursery stages. It was observed seed irradiated with doses from 35 Gy to 100 Gy could germinate but could not survive beyond five (05) months. When treated with higher doses as 200 Gy, 500 Gy and 1000 Gy, no seed germination takes places due to possible damages occur in the DNA structure. Screening of growth characteristics of tea plant generally monitored by the characteristics like plant height, number of leaves, number of primary branches, base diameter, and total leaf area of plants and we found that these characteristics significantly increased with the progress of time and increasing levels of gamma radiation; however, the plant height showed decreasing trend with the increasing levels of gamma radiation, which could be due to the change in chromosomal structure and genetic alteration. After 90 weeks of planting, the plant height, no. of primary branches, the number of leaves, plant base diameter, and total leaf area per plant recorded were 36.42 cm, 1/plant, 7.11/plant, 0.62 c.m, 22.92 cm2/plant respectively under the radiation level 30 Gy, whereas the corresponding figures of the above parameters at the control treatment were 85.32 cm, 1/plant, 18.84/plant, 1.18 c.m and 26.68 cm2/plant, respectively. The total plant height, no. of primary branches, the number of leaves, plant base diameter, and total leaf area per plant were significantly influenced by the rising levels of gamma radiation (up to 100 Gy), finally, after 90 weeks of planting, the maximum no. of branching was observed in the treatment of 8 Gy, 10 Gy and 15 Gy respectively. The study reveals a hitherto open the possibility of using gamma radiation on tea plant for creation of variation in the tea seed planting materials. Further studies on mutation using tea planting materials would give an insight into its mutable gene behavior.


Asunto(s)
Camellia sinensis , Rayos gamma , Plantones/efectos de la radiación , Mutación , Hojas de la Planta ,
2.
Dokl Biochem Biophys ; 503(1): 85-89, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35538284

RESUMEN

The effect of γ-radiation on the growth and cytogenetic endpoints of Allium cepa L. seedlings in a long period after irradiation in absorbed doses from 1.0 to 10.7 Gy were examined. The chromosome aberration rate was most sensitive to the radiation: it increased immediately after exposure at all doses. In the recovery period (up to 216 h) after irradiation, the chromosome aberration frequency naturally decreased but at the end of experiment in maximum doses remained above the control values. The impact of the initial level of chromosome aberrations on the inhibition of onion roots growth in the long terms after irradiation is discussed.


Asunto(s)
Cebollas , Plantones , Aberraciones Cromosómicas , Análisis Citogenético , Rayos gamma , Cebollas/genética , Cebollas/efectos de la radiación , Plantones/genética , Plantones/efectos de la radiación
3.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768948

RESUMEN

The objective of our study was to characterise the growth of tomato seedlings under various light spectra, but special attention has been paid to gaining a deeper insight into the details of photosynthetic light reactions. The following light combinations (generated by LEDs, constant light intensity at 300 µmol m-2 s-1) were used: blue/red light; blue/red light + far red; blue/red light + UV; white light that was supplemented with green, and white light that was supplemented with blue. Moreover, two combinations of white light for which the light intensity was changed by imitating the sunrise, sunset, and moon were also tested. The reference point was also light generated by high pressure sodium lamps (HPS). Plant growth/morphological parameters under various light conditions were only partly correlated with the photosynthetic efficiency of PSI and PSII. Illumination with blue/red as the main components had a negative effect on the functioning of PSII compared to the white light and HPS-generated light. On the other hand, the functioning of PSI was especially negatively affected under the blue/red light that was supplemented with FR. The FT-Raman studies showed that the general metabolic profile of the leaves (especially proteins and ß-carotene) was similar in the plants that were grown under the HPS and under the LED-generated white light for which the light intensity changed during a day. The effect of various light conditions on the leaf hormonal balance (auxins, brassinosteroids) is also discussed.


Asunto(s)
Fotosíntesis , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de la radiación , Brasinoesteroides/metabolismo , Clorofila/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Solanum lycopersicum/crecimiento & desarrollo , Metaboloma , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de la radiación , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Espectrometría Raman
4.
BMC Plant Biol ; 21(1): 478, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34670494

RESUMEN

BACKGROUND: Catechins are crucial in determining the flavour and health benefits of tea, but it remains unclear that how the light intensity regulates catechins biosynthesis. Therefore, we cultivated tea plants in a phytotron to elucidate the response mechanism of catechins biosynthesis to light intensity changes. RESULTS: In the 250 µmol·m- 2·s- 1 treatment, the contents of epigallocatechin, epigallocatechin gallate and total catechins were increased by 98.94, 14.5 and 13.0% respectively, compared with those in the 550 µmol·m- 2·s- 1 treatment. Meanwhile, the photosynthetic capacity was enhanced in the 250 µmol·m- 2·s- 1 treatment, including the electron transport rate, net photosynthetic rate, transpiration rate and expression of related genes (such as CspsbA, CspsbB, CspsbC, CspsbD, CsPsbR and CsGLK1). In contrast, the extremely low or high light intensity decreased the catechins accumulation and photosynthetic capacity of the tea plants. The comprehensive analysis revealed that the response of catechins biosynthesis to the light intensity was mediated by the photosynthetic capacity of the tea plants. Appropriately high light upregulated the expression of genes related to photosynthetic capacity to improve the net photosynthetic rate (Pn), transpiration rate (Tr), and electron transfer rate (ETR), which enhanced the contents of substrates for non-esterified catechins biosynthesis (such as EGC). Meanwhile, these photosynthetic capacity-related genes and gallic acid (GA) biosynthesis-related genes (CsaroB, CsaroDE1, CsaroDE2 and CsaroDE3) co-regulated the response of GA accumulation to light intensity. Eventually, the epigallocatechin gallate content was enhanced by the increased contents of its precursors (EGC and GA) and the upregulation of the CsSCPL gene. CONCLUSIONS: In this study, the catechin content and photosynthetic capacity of tea plants increased under appropriately high light intensities (250 µmol·m- 2·s- 1 and 350 µmol·m- 2·s- 1) but decreased under extremely low or high light intensities (150 µmol·m- 2·s- 1 or 550 µmol·m- 2·s- 1). We found that the control of catechin accumulation by light intensity in tea plants is mediated by the plant photosynthetic capacity. The research provided useful information for improving catechins content and its light-intensity regulation mechanism in tea plant.


Asunto(s)
Camellia sinensis/efectos de la radiación , Catequina/análogos & derivados , Catequina/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fotosíntesis/efectos de la radiación , Proteínas de Plantas/metabolismo , Camellia sinensis/genética , Camellia sinensis/fisiología , Catequina/efectos de la radiación , Luz , Proteínas de Plantas/genética , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Regulación hacia Arriba
5.
J Photochem Photobiol B ; 216: 112144, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33556702

RESUMEN

Withania somnifera (L.) Dunal, generally well-known as Ashwagandha, is part of Indian traditional medicinal systems like Ayurveda, Siddha, and Unani for over 3000 years for treating an array of disorders. The chief bioactive component of this plant is the withanolides, a group of C28-steroidal lactone triterpenoids. These compounds are present in very low concentrations and hence cell culture methods have been used to enhance their production. Low-level laser irradiation has been reported to have elicited the seed germination, agronomical characters, biosynthesis of bioactive compounds in some plants. Therefore, the objective of the study was to investigate the effect of red (He-Ne) laser irradiation on seed germination, growth characters, pigment contents and withanolide content in W. somnifera. The seeds were inoculated onto two different combinations of Murashige and Skoog (MS) media and incubated for germination. The highest germination percentage was observed in ½ MS with pH 6.5 and GA3 presoaking followed by ½ MS with different pH. Four different doses of Helium-Neon (He-Ne) laser (10, 15, 20 and 25 J/cm2) were used to irradiate the seeds at 632.8 nm and germinated in vitro on ½ MS with pH 6.5. The maximum germination percentage, 63.88% was noted from seeds irradiated with 25 J/cm2 (P = 0.04). The highest total length of 13.33 cm was observed in the seedlings irradiated with 25 J/cm2 groups (P = 0.008). The highest total chlorophyll content of 329.5 µg/g fresh weight (FW) was observed for seedlings irradiated with 15 J/cm2 (P = 0.02) and the highest carotenoid content of 49.6 µg/g FW was observed for 25 J/cm2 treated seedlings. Further, primary root length was measured and found to be highest (11.14 cm) in seedlings irradiated with 10 J/cm2 and the highest number of lateral roots were observed for 15 and 25 J/cm2 groups. The significant amount of Withanolide A (WA) 0.52 µg/g dry weight (DW) and 0.60 µg/g DW was noted in 15 (P = 0.01) and 20 J/cm2 (P = 0.002) groups, respectively than control. The present investigation thus reveals the positive impact of red laser on the germination of seeds, growth characters and withanolide contents under in vitro environment.


Asunto(s)
Germinación/efectos de la radiación , Extractos Vegetales/metabolismo , Plantones/efectos de la radiación , Semillas/efectos de la radiación , Withania/efectos de la radiación , Witanólidos/metabolismo , Carotenoides/análisis , Carotenoides/metabolismo , Técnicas de Cultivo de Célula , Clorofila/análisis , Clorofila/metabolismo , Relación Dosis-Respuesta en la Radiación , Rayos Láser , Extractos Vegetales/efectos de la radiación , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de la radiación , Dosis de Radiación , Plantones/metabolismo , Semillas/metabolismo , Withania/crecimiento & desarrollo , Witanólidos/efectos de la radiación
6.
Bioelectromagnetics ; 42(2): 173-185, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33427347

RESUMEN

Electromagnetic energy is the "backbone" of wireless communication systems, and its progressive use is considered to have a low but measurable impact on a wide range of biological systems. Even though a growing amount of data has reported electromagnetic energy absorption in humans along with subsequent biological effects, the consequences of electromagnetic energy absorption on plants have been insufficiently addressed. The higher surface to volume ratio along with the enormous water-ion concentrations makes the plant an ideal model to interact with non-ionizing electromagnetic radiation. In this study, controlled and periodic electromagnetic exposure of 1837.50 MHz, 2.75 W/m2 for 6 h a day on a popular rice variety (var. Satabdi) reduced the seed germination rate. The same dose of periodic electromagnetic exposure upregulated phytochrome B and phytochrome C gene transcripts in 12-day-old seedlings, whereas, in 32-day-old plants, the dose upregulated calmodulin and phytochrome C while the bZIP1 gene showed repression. However, the transcript abundance of bZIP1, phytochrome B, and phytochrome C genes was enhanced even in 12-day-old Satabdi seedlings following instantaneous short-duration (2 h 30 min) controlled electromagnetic exposure to 1837.50 MHz, 2.75 W/m2 . The reported responses in rice were observed below the international electromagnetic regulatory limits. Thus, rice plants perceived electromagnetic energy emitted by the wireless communication system as abiotic stress as per its response by upregulation or repression of known stress-sensing genes. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Oryza/fisiología , Oryza/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Oryza/genética , Oryza/metabolismo , Plantones/genética , Plantones/efectos de la radiación
7.
Int J Radiat Biol ; 97(2): 276-281, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33125300

RESUMEN

PURPOSE: The purpose of this study was to assess the long-term effects of gamma-radiation, including low-dose radiation, on growth parameters of onion (Allium cepa) seedling roots 6-10 days after irradiation. MATERIALS AND METHODS: Onion seedlings were exposed to a 137Cs gamma source at doses ranging from 0.1 to 10 grays (Gy). Responses of root and shoot length growth were studied 6 and 10 days after irradiation. RESULTS: Our results showed inhibition of the root and shoot length growth 6 days after exposure at all doses, including the low dose - 0.1 Gy. At a later point in time (day 10), root and shoot inhibition was only observed after irradiation at high doses (above 5 Gy), and that suggested the occurrence of cell repair after irradiation at low doses. The results indicated that the length of seedling roots was more sensitive to gamma-irradiation than the shoot length. CONCLUSION: The results of the study suggested that short-term gamma-irradiation of onion seedlings (absorbed doses of 0.1-10 Gy) caused inhibition of plant growth 6 and 10 days after irradiation. The dose dependence of the onion root length was linear. The present study showed for the first time that short-term low-dose gamma-irradiation could induce long-term negative effects on plant growth.


Asunto(s)
Rayos gamma/efectos adversos , Cebollas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Cebollas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación
8.
BMC Plant Biol ; 20(1): 476, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076818

RESUMEN

BACKGROUND: Sarcandra glabra is an evergreen and traditional Chinese herb with anti-oxidant, anti-bacterial, anti-inflammatory, and anti-tumor effects. Light is one of the most influential factor affecting the growth and quality of herbs. In recent times, the introduction of Light Emission Diode (LED) technology has been widely used for plants in greenhouse. However, the impact of such lights on plant growth and the regulatory mechanism of phenylpropanoid-derived compounds in S. glabra remain unclear. RESULTS: The red LED light (RL) substantially increased the plant height and decreased the stem diameter and leaf area relative to the white LED light (WL), while the blue LED light (BL) significantly reduced the height and leaf area of S. glabra. According to transcriptomic profiling, 861, 378, 47, 10,033, 7917, and 6379 differentially expressed genes (DEGs) were identified among the groups of leaf tissue under BL (BY) vs. leaf tissue under RL (RY), BY vs. leaf tissue under WL (WY), RY vs. WY, root tissue under WL (WG) vs. WY, stem tissue under WL (WJ) vs. WG, and WJ vs. WY, respectively. We identified 46 genes encoding for almost all known enzymes involved in phenylpropanoid biosynthesis, e.g., phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), and flavonol synthase (FLS). We found 53 genes encoding R2R3-MYB proteins and bHLH proteins, respectively, where several were related to flavonoids biosynthesis. A total of 454 metabolites were identified based on metabolomic profiling, of which 44, 87, and 296 compounds were differentially produced in WY vs. RY, WY vs. BY, and WY vs. WG. In BY there was a substantial reduction in the production of esculetin, caffeic acid, isofraxidin, and fraxidin, while the yields of quercitrin and kaempferol were significantly up-regulated. In RY, the contents of cryptochlorogenic acid, cinnamic acid, and kaempferol decreased significantly. Besides, in WG, the production of metabolites (e.g. chlorogenic acid, cryptochlorogenic acid, and scopolin) declined, while their yields increased significantly (e.g. esculetin, fraxetin, isofraxidin, and fraxidin). CONCLUSION: These results provide further insight into the regulatory mechanism of accumulation patterns of phenylpropanoid-derived compounds in S. glabra under various light conditions, allowing optimum breeding conditions to be developed for this plant.


Asunto(s)
Magnoliopsida/metabolismo , Plantones/metabolismo , Medicamentos Herbarios Chinos , Genes de Plantas , Luz , Magnoliopsida/anatomía & histología , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/efectos de la radiación , Metabolómica , Filogenia , Proteínas de Plantas/metabolismo , Plantones/anatomía & histología , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Factores de Transcripción/metabolismo , Transcriptoma
9.
Molecules ; 25(20)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086545

RESUMEN

Selenium (Se) supplement was combined with different LED light qualities to investigate mutual effects on the growth, nutritional quality, contents of glucosinolates and mineral elements in broccoli sprouts. There were five treatments: CK:1R1B1G, 1R1B1G+Se (100 µmol L-1 Na2SeO3), 1R1B+Se, 1R2B+Se, 2R1B+Se, 60 µmol m-2 s-1 PPFD, 12 h/12 h (light/dark). Sprouts under a combination of selenium and LED light quality treatment exhibited no remarkable change fresh weight, but had a shorter hypocotyl length, lower moisture content and heavier dry weight, especially with 1R2B+Se treatment. The contents of carotenoid, soluble protein, soluble sugar, vitamin C, total flavonoids, total polyphenol and contents of total glucosinolates and organic Se were dramatically improved through the combination of Se and LED light quality. Moreover, heat map and principal component analysis showed that broccoli sprouts under 1R2B+Se treatment had higher nutritional quality and health-promoting compound contents than other treatments. This suggests that the Se supplement under suitable LED lights might be beneficial to selenium-biofortified broccoli sprout production.


Asunto(s)
Brassica/crecimiento & desarrollo , Proteínas/metabolismo , Plantones/crecimiento & desarrollo , Selenio/farmacología , Ácido Ascórbico/biosíntesis , Brassica/efectos de los fármacos , Brassica/metabolismo , Brassica/efectos de la radiación , Carotenoides/metabolismo , Flavonoides/biosíntesis , Glucosinolatos/biosíntesis , Humanos , Luz , Polifenoles/biosíntesis , Plantones/efectos de los fármacos , Plantones/efectos de la radiación , Selenio/metabolismo , Azúcares/metabolismo
10.
Biomolecules ; 10(4)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32225015

RESUMEN

: Ultraviolet-B (UV-B) radiation (280-320 nm) may induce photobiological stress in plants, activate the plant defense system, and induce changes of metabolites. In our previous work, we found that between the two Astragalus varieties prescribed by the Chinese Pharmacopoeia, Astragalus mongholicus has better tolerance to UV-B. Thus, it is necessary to study the metabolic strategy of Astragalus under UV-B radiation further. In the present study, we used untargeted gas chromatography-mass spectrometry (GC-MS) and targeted liquid chromatography-mass spectrometry (LC-MS techniques) to investigate the profiles of primary and secondary metabolic. The profiles revealed the metabolic response of Astragalus to UV-B radiation. We then used real-time polymerase chain reaction (RT-PCR) to obtain the transcription level of relevant genes under UV-B radiation (UV-B supplemented in the field, λmax = 313 nm, 30 W, lamp-leaf distance = 60 cm, 40 min·day-1), which annotated the responsive mechanism of phenolic metabolism in roots. Our results indicated that supplemental UV-B radiation induced a stronger shift from carbon assimilation to carbon accumulation. The flux through the phenylpropanoids pathway increased due to the mobilization of carbon reserves. The response of metabolism was observed to be significantly tissue-specific upon the UV-B radiation treatment. Among phenolic compounds, C6C1 carbon compounds (phenolic acids in leaves) and C6C3C6 carbon compounds (flavones in leaves and isoflavones in roots) increased at the expense of C6C3 carbon compounds. Verification experiments show that the response of phenolics in roots to UV-B is activated by upregulation of relevant genes rather than phenylalanine. Overall, this study reveals the tissues-specific alteration and mechanism of primary and secondary metabolic strategy in response to UV-B radiation.


Asunto(s)
Astragalus propinquus/metabolismo , Astragalus propinquus/efectos de la radiación , Fenoles/metabolismo , Astragalus propinquus/genética , Cromatografía Liquida , Flavonoides/genética , Flavonoides/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Hidroxibenzoatos/metabolismo , Espectrometría de Masas , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Medicinales , Metabolismo Secundario , Plantones/genética , Plantones/metabolismo , Plantones/efectos de la radiación , Rayos Ultravioleta
11.
J Photochem Photobiol B ; 203: 111745, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31931381

RESUMEN

Light affects many aspects of cell development. Tomato seedlings growing at different light qualities (white, blue, green, red, far-red) and in the dark displayed alterations in cell wall structure and composition. A strong and negative correlation was found between cell wall thickness and hypocotyl growth. Cell walls was thicker under blue and white lights and thinner under far-red light and in the dark, while intermediate values was observed for red or green lights. Additionally, the inside layer surface of cell wall presented random deposited microfibrillae angles under far-red light and in the dark. However, longitudinal transmission electron microscopy indicates a high frequency of microfibrils close to parallels related to the elongation axis in the outer layer. This was confirmed by ultra-high resolution small angle X-ray scattering. These data suggest that cellulose microfibrils would be passively reoriented in the longitudinal direction. As the cell expands, the most recently deposited layers (inside) behave differentially oriented compared to older (outer) layers in the dark or under FR lights, agreeing with the multinet growth hypothesis. High Ca and pectin levels were found in the cell wall of seedlings growing under blue and white light, also contributing to the low extensibility of the cell wall. Low Ca and pectin contents were found in the dark and under far-red light. Auxins marginally stimulated growth in thin cell wall circumstances. Hypocotyl growth was stimulated by gibberellins under blue light.


Asunto(s)
Pared Celular/fisiología , Luz , Solanum lycopersicum/fisiología , Antocianinas/análisis , Calcio/metabolismo , Pared Celular/química , Cromatografía Líquida de Alta Presión , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/efectos de la radiación , Microfibrillas/química , Microscopía Electrónica de Transmisión , Pectinas/metabolismo , Reguladores del Crecimiento de las Plantas/análisis , Reguladores del Crecimiento de las Plantas/metabolismo , Análisis de Componente Principal , Dispersión del Ángulo Pequeño , Plantones/crecimiento & desarrollo , Plantones/fisiología , Plantones/efectos de la radiación , Difracción de Rayos X
12.
Life Sci Space Res (Amst) ; 21: 40-48, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31101154

RESUMEN

Light emitting diode (LED) lighting technology for crop production is advancing at a rapid pace, both in terms of the technology itself (e.g., spectral composition and efficiency), and the research that the technological advances have enabled. The application of LED technology for crop production was first explored as a tool for improving the safety and reliability of plant-based bioregenerative life-support systems for long duration human space exploration. Developing and optimizing the lighting environment (spectral quality and quantity) for bioregenerative life-support applications and other controlled environment plant production applications, such as microgreens and sprout production, continues to be an active area of research and LED technology development. This study examines the influence of monochromatic and dichromatic red and blue light on the early development of six food crop species; Cucumis sativa, Solanum lycopersicum, Glycine max, Raphanus sativus, Pisum sativum, and Capsicum annum. Results support previous findings that light responses are often species specific. The results also support the assertion that monochromatic light can interfere with the normal interaction of various photoreceptors (co-action disruption) resulting in intermediate and sometimes unpredictable responses to a given light environment. The nature of the responses reported inform both bioregenerative life-support designs as well as light quality selection for the production of controlled environment crops.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/efectos de la radiación , Sistemas de Manutención de la Vida , Luz , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Capsicum/crecimiento & desarrollo , Capsicum/efectos de la radiación , Producción de Cultivos , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/efectos de la radiación , Sistemas Ecológicos Cerrados , Pisum sativum/crecimiento & desarrollo , Pisum sativum/efectos de la radiación , Raphanus/crecimiento & desarrollo , Raphanus/efectos de la radiación , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/efectos de la radiación , Glycine max/crecimiento & desarrollo , Glycine max/efectos de la radiación
13.
Plant Physiol Biochem ; 137: 130-143, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30780050

RESUMEN

Effects of supplemented UV radiation and diminished water supply on the leaf concentrations of phenols and antioxidants of two Mediterranean resprouter species, Arbutus unedo and Quercus suber, were assessed before and after entire aerial biomass removal. Potted seedlings of both species were grown outdoors for 8 months with enhanced UV-A + UV-B, enhanced UV-A or ambient UV, in combination with two watering conditions (field capacity or watering reduction). After this period, all aerial biomass was removed and new shoots (resprouts) developed for a further 8 months under the two treatments. In general, the investment in leaf phenols was substantially greater in A. unedo than in Q. suber, while Q. suber allocated more resources to non-phenolic antioxidants (ascorbate and glutathione). In response to enhanced UV-B radiation, Q. suber leaves rose their UV-screening capacity mainly via accumulation of kaempferols, accompanied by an increased concentration of rutins, being these effects exacerbated under low-watering conditions. Conversely, A. unedo leaves responded to UV-B radiation reinforcing the antioxidant machinery by increasing the overall amount of flavonols (especially quercetins) in seedlings, and of ascorbate and glutathione, along with catalase activity, in resprouts. Nevertheless, UV effects on the amount/activity of non-phenolic antioxidants of A. unedo resprouts were modulated by water supply. Indeed, the highest concentration of glutathione was found under the combination of enhanced UV-B radiation and reduced watering, suggesting an enlargement of the antioxidant response in A. unedo resprouts. Different biochemical responses to enhanced UV and drier conditions in seedlings and resprouts of these two species might modulate their competitive interactions in the near future.


Asunto(s)
Ericaceae/metabolismo , Fenoles/metabolismo , Hojas de la Planta/metabolismo , Quercus/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Ericaceae/efectos de la radiación , Glutatión/metabolismo , Región Mediterránea , Componentes Aéreos de las Plantas , Hojas de la Planta/efectos de la radiación , Quercus/efectos de la radiación , Plantones/efectos de la radiación , Rayos Ultravioleta , Agua
14.
Zhongguo Zhong Yao Za Zhi ; 44(23): 5118-5123, 2019 Dec.
Artículo en Chino | MEDLINE | ID: mdl-32237347

RESUMEN

The aim of this study was to study the effects of different light intensity on the growth,biomass accumulation and distribution,chlorophyll content and effective components of Uncaria rhynchophylla seedlings,and explore the suitable light intensity conditions for artificial cultivation of U. rhynchophylla seedlings. Three-year-old U. rhynchophylla seedlings were used as experimental materials. Four light intensity levels( 100%,70%-75%,30%-35%,5%-10%) were set up with different layers of black shading net. With the decrease of light intensity,the results showed that the plant height,basal diameter and biomass( root,stem,leaf and hook) of U.rhynchophylla seedlings exhibited the trend of " increase-decrease". Under 70%-75% light intensity,the plant height,basal diameter,biomass( root,stem,leaf,hook) of U. rhynchophylla seedlings were significantly higher than those of other treatments( P< 0. 05);under 5%-10% light intensity,the plant height,basal diameter and biomass( root,hook) of U. rhynchophylla seedlings were significantly lower than those of other treatments( P<0. 05). With the decrease of light intensity,the chlorophyll content of U. rhynchophylla seedlings increased gradually: under 100% light intensity,the chlorophyll content of U. rhynchophylla seedlings were the smallest,while under 100% light intensity,its chlorophyll content was the highest. With the decrease of light intensity,the contents of rhynchophylline and isorhynchophylline in different organs of U. rhynchophylla seedlings varied: under 30%-35% light intensity,the contents of rhynchophylline and isorhynchophylline in hooks and rhynchophylline content in stems were the highest; under 5%-10% light intensity,the contents of rhynchophylline and isorhynchophylline in leaves and stems of U. rhynchophylla were the highest. In conclusion,70%-75% light intensity is suitable for seedling growth and biomass accumulation,and 30%-35% light intensity is suitable for the accumulation of effective components in U. rhynchophylla seedlings.


Asunto(s)
Fitoquímicos/análisis , Uncaria/química , Uncaria/crecimiento & desarrollo , Uncaria/efectos de la radiación , Biomasa , Clorofila/análisis , Luz , Oxindoles/análisis , Plantones/química , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación
15.
Dokl Biochem Biophys ; 489(1): 362-366, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32130600

RESUMEN

The effect of γ-radiation on the level of nuclear DNA damage in onion seedlings (Allium-test) was studied using the comet assay. DNA breaks were first found in cells of onion seedlings exposed to low-dose radiation (≤ 0.1 Gy). Dose dependence of DNA damage parameters showed nonlinear behavior: a linear section in the low-dose region (below 0.1 Gy) and a dose-independent plateau in the dose range between 1 and 5 Gy. Thus, the comet assay can be used to estimate the biological effects of low-dose γ-radiation on Allium cepa seedlings.


Asunto(s)
Daño del ADN , Rayos gamma/efectos adversos , Cebollas/genética , Cebollas/efectos de la radiación , Plantones/genética , Plantones/efectos de la radiación , Relación Dosis-Respuesta en la Radiación
16.
Nat Plants ; 4(12): 1089-1101, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518831

RESUMEN

Phosphorus (P) is a key macronutrient whose availability has a profound effect on plant growth and productivity. The understanding of the mechanism underlying P availability-responsive P acquisition has expanded largely in the past decade; however, effects of other environmental factors on P acquisition and utilization remain elusive. Here, by imaging natural variation in phosphate uptake in 200 natural accessions of Arabidopsis, we identify two accessions with low phosphate uptake activity, Lm-2 and CSHL-5. In these accessions, natural variants of phytochrome B were found to cause both decreased light sensitivity and lower phosphate uptake. Furthermore, we also found that expression levels of phosphate starvation-responsive genes are directly modulated by phytochrome interacting factors (PIF) PIF4/PIF5 and HY5 transcription factors whose activity is under the control of phytochromes. These findings disclose a new molecular mechanism underlying red-light-induced activation of phosphate uptake, which is responsible for different activity for P acquisition in some natural accessions of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Nucleares/metabolismo , Fósforo/metabolismo , Fitocromo B/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Proteínas Nucleares/genética , Fosfatos/metabolismo , Fitocromo B/genética , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Transducción de Señal/efectos de la radiación
17.
Dokl Biochem Biophys ; 481(1): 181-185, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30168054

RESUMEN

The effect of γ-radiation on the cytogenetic parameters of root meristem cells of onion seedlings was studied in laboratory experiments (Allium-test). An increase in the overall frequency of chromosomal aberrations and micronucleus frequencies in seedling cells at low γ-radiation doses (≤0.1 Gy) was detected for the first time. At a maximum absorbed dose of 13 Gy, chromosomal aberrations were detected in the majority of cells in the anaphase and telophase stages of the cell cycle, and the number of cells with multiple aberrations increased. The main contribution to the overall frequency of chromosomal aberrations, in addition to multiple aberrations, is made by the bridge-type aberrations, fragments, and lagging chromosomes. The data obtained allow using the cytogenetic indices of Allium cepa seedlings to assess the biological effects of lowdose γ-radiation.


Asunto(s)
Análisis Citogenético , Cebollas/genética , Cebollas/efectos de la radiación , Plantones/genética , Plantones/efectos de la radiación , Relación Dosis-Respuesta en la Radiación
18.
J Environ Radioact ; 195: 1-8, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30237078

RESUMEN

Due to the fact that carbon ion beams irradiation as an important type of ionizing radiation can potentially cause oxidative stress in plants, it is significant to evaluate the antioxidant response of plants to carbon ion beams radiation. Therefore, the objective of this study is to investigate the effects of carbon ion beams irradiation on oxidative stress induced by reactive oxygen species (ROS) and antioxidant response in Arabidopsis thaliana seedlings by irradiating the dry seeds at various doses of carbon ion beams (0, 50, 100, 150 and 200 Gy) and measuring the plant growth parameters, ROS and malondialdehyde (MDA) levels, activities of antioxidant systems and antioxidant-related gene expression. The results showed that 50-Gy carbon ion beam irradiation exhibited stimulatory effects on germination index, root length and fresh weight in Arabidopsis seedlings, while high-dose irradiation (100-200 Gy) inhibited plant growth. Moreover, the production rate of superoxide anion radical, hydroxyl radical generation activity, hydrogen peroxide and MDA contents in Arabidopsis seedlings were obviously increased with the irradiation dose. Additionally, the antioxidant enzyme activities (superoxide dismutase, catalase and peroxidase) and non-enzymatic antioxidant contents (ascorbate and glutathione) in 50-Gy irradiated seedlings were apparently higher than control. Notably, transcriptional analysis displayed that 50-Gy carbon ion beams irradiation could enhance the expression of antioxidant-related genes in Arabidopsis seedlings. These results suggest that the improved activities of antioxidant systems induced by moderate ROS levels play important roles in growth promotion of Arabidopsis seedlings caused by low-dose carbon ion beams irradiation.


Asunto(s)
Arabidopsis/efectos de la radiación , Estrés Oxidativo/fisiología , Plantones/efectos de la radiación , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Carbono , Catalasa/metabolismo , Germinación/efectos de la radiación , Glutatión/metabolismo , Malondialdehído/metabolismo , Peroxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
19.
Plant Sci ; 266: 37-45, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29241565

RESUMEN

Abnormal environment weather can cause rice photoperiod-thermo-sensitive genic male sterile (PTGMS) lines fertile or partially fertile and thus cause the mixture of true hybrids with selfing seeds. Seedling-specific green-revertible albino leaf color mutant can be used to distinguish the real hybrids. Besides, it can also be used as an ideal material to research the development of chloroplast and biosynthesis of chlorophyll. The phenotype of leaf color mutants includes light green, yellowing, albino, green-revertible albino. Gene mutations affecting the synthesis and degradation of photosynthetic pigments, lycopene and heme, the differentiation and development of chloroplast, gibberellins (GAs) biosynthesis, can change the leaf color. We have created a PTGMS line with seedling-specific green-revertible albino leaf named W01S. The leaf phenotype, pollen sterility and fertility, agronomic traits, heredity, gene mapping and RNA-Seq of the differentially expressed genes between albino and green-revertible leaves were investigated. The results showed that W01S is a practical PTGMS line as Pei'ai 64S. The mutation of candidate gene Os03g0594100 (ent-isokaurene C2-hydroxylase-like) in W01S can be related to the biosynthesis of GAs, indole acetic acids, ethylene.


Asunto(s)
Calor , Oryza/genética , Fenotipo , Fotosíntesis , Cloroplastos/genética , Cloroplastos/fisiología , Cloroplastos/efectos de la radiación , Mapeo Cromosómico , Perfilación de la Expresión Génica , Oryza/fisiología , Oryza/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Polen/genética , Polen/fisiología , Polen/efectos de la radiación , Reproducción , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación
20.
Protoplasma ; 255(3): 761-771, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29138939

RESUMEN

UV-B acclimation effects and UV-B damage repair induced by a 632.8-nm He-Ne laser were investigated in Arabidopsis thaliana plants in response to supplementary UV-B stress. There was an increasing trend in growth parameters in the combination-treated plants with He-Ne laser and UV-B light compared to those stressed with enhanced UV-B light alone during different developmental stages of plants. The photosynthetic efficiency (Pn) and survival rates of seedlings were significantly higher in the combination treatments than UV-B stress alone. The expression of UVR8, phytochrome B (PhyB), and their mediated signal responsive genes such as COP1, HY5, and CHS were also significantly upregulated in plants with the laser irradiation compared with other groups without the laser. Levels of flavonol accumulation in leaves and capsule yield of He-Ne laser-treated plants were increased. The phyB-9 mutants were more sensitive to enhanced UV-B stress and had no obvious improvements in plant phenotypic development and physiological damage caused by enhanced UV-B stress after He-Ne laser irradiation. Our results suggested that UVR8 and its mediated signaling pathway via interaction with COP1 can be induced by He-Ne laser, and these processes were dependent on cytoplasmic PhyB levels in plant cells, which might be one of the most important mechanisms of He-Ne laser on UV-B protection and UV-B damage repair. These current data have also elucidated that the biostimulatory effects of He-Ne laser on Arabidopsis thaliana plants would happen not only during the early growth stage but also during the entire late developmental stage.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas Cromosómicas no Histona/metabolismo , Láseres de Gas , Fitocromo B/metabolismo , Transducción de Señal , Estrés Fisiológico/efectos de la radiación , Rayos Ultravioleta , Agricultura , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Mutación/genética , Fenotipo , Carácter Cuantitativo Heredable , Plantones/metabolismo , Plantones/efectos de la radiación , Transducción de Señal/efectos de la radiación , Transcripción Genética/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA