Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chem Biodivers ; 20(4): e202200271, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36890112

RESUMEN

The root extract of Nauclea xanthoxylon (A.Chev.) Aubrév. displayed significant 50 % inhibition concentration (IC50 s) of 0.57 and 1.26 µg/mL against chloroquine resistant and sensitive Plasmodium falciparum (Pf) Dd2 and 3D7 strains, respectively. Bio-guided fractionation led to an ethyl acetate fraction with IC50 s of 2.68 and 1.85 µg/mL and subsequently, to the new quinovic acid saponin named xanthoxyloside (1) with IC50 s of 0.33 and 1.30 µM, respectively against the tested strains. Further compounds obtained from ethyl acetate and hexane fractions were the known clethric acid (2), ursolic acid (3), quafrinoic acid (4), quinovic acid (5), quinovic acid 3-O-ß-D-fucopyranoside (6), oleanolic acid (7), oleanolic acid 3-acetate (8), friedelin (9), ß-sitosterol (10a), stigmasterol (10b) and stigmasterol 3-O-ß-D-glucopyranoside (11). Their structures were characterised with the aid of comprehensive spectroscopic methods (1 and 2D NMR, Mass). Bio-assays were performed using nucleic acid gel stain (SYBR green I)-based fluorescence assay with chloroquine as reference. Extracts and compounds exhibited good selectivity indices (SIs) of >10. Significant antiplasmodial activities measured for the crude extract, the ethyl acetate fraction and xanthoxyloside (1) from that fraction can justify the use of the root of N. xanthoxylon in ethnomedicine to treat malaria.


Asunto(s)
Antimaláricos , Rubiaceae , Saponinas , Antimaláricos/farmacología , Antimaláricos/química , Cloroquina/farmacología , Ácido Oleanólico , Extractos Vegetales/química , Plasmodium falciparum/metabolismo , Rubiaceae/química , Saponinas/química , Saponinas/farmacología , Ácido Ursólico
2.
Biochem Pharmacol ; 204: 115237, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36055381

RESUMEN

Dihydroorotate dehydrogenase (DHODH) catalyzes a key step in pyrimidine biosynthesis and has recently been validated as a therapeutic target for malaria through clinical studies on the triazolopyrimidine-based Plasmodium DHODH inhibitor DSM265. Selective toxicity towards Plasmodium species could be achieved because malaria parasites lack pyrimidine salvage pathways, and DSM265 selectively inhibits Plasmodium DHODH over the human enzyme. However, while DSM265 does not inhibit human DHODH, it inhibits DHODH from several preclinical species, including mice, suggesting that toxicity could result from on-target DHODH inhibition in those species. We describe here the use of dihydroorotate (DHO) as a biomarker of DHODH inhibition. Treatment of mammalian cells with DSM265 or the mammalian DHODH inhibitor teriflunomide led to increases in DHO where the extent of biomarker buildup correlated with both dose and inhibitor potency on DHODH. Treatment of mice with leflunomide (teriflunomide prodrug) caused a large dose-dependent buildup of DHO in blood (up to 16-fold) and urine (up to 5,400-fold) that was not observed for mice treated with DSM265. Unbound plasma teriflunomide levels reached 20-85-fold above the mouse DHODH IC50, while free DSM265 levels were only 1.6-4.2-fold above, barely achieving âˆ¼ IC90 concentrations, suggesting that unbound DSM265 plasma levels are not sufficient to block the pathway in vivo. Thus, any toxicity associated with DSM265 treatment in mice is likely caused by off-target mechanisms. The identification of a robust biomarker for mammalian DHODH inhibition represents an important advance to generally monitor for on-target effects in preclinical and clinical applications of DHODH inhibitors used to treat human disease.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Profármacos , Animales , Biomarcadores , Crotonatos , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hidroxibutiratos , Leflunamida/farmacología , Leflunamida/uso terapéutico , Mamíferos/metabolismo , Ratones , Nitrilos , Plasmodium falciparum/metabolismo , Profármacos/farmacología , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Toluidinas
3.
Hemoglobin ; 46(2): 100-105, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35924733

RESUMEN

Understanding the key regulator of iron homeostasis is critical to the improvement of iron supplementation practices in malaria-endemic areas. This study aimed to determine iron indices and hepcidin (HEPC) level in patients infected with Plasmodium falciparum compared to apparently healthy, malaria-negative subjects in Hodeidah, Yemen. The study included 70 Plasmodium falciparum-infected and 20 malaria-negative adults. Blood films were examined for detection and estimation of parasitemia. Hemoglobin (Hb) level was measured using an automated hematology analyzer. Serum iron and total iron binding capacity (TIBC) were determined by spectrophotometric methods. Levels of serum ferritin (FER) and HEPC were measured by enzyme-linked immunosorbent assays. Data were stratified by sex and age. Comparable Hb levels were found in P. falciparum-infected patients and malaria-negative subjects in each sex and age group (p > 0.05). Compared to their malaria-negative counterparts, disturbed iron homeostasis in patients was evidenced by the significantly lower serum iron levels in females (p = 0.007) and those aged <25 years (p = 0.02) and the significantly higher TIBC in males (p = 0.008). Levels of serum FER and HEPC were significantly elevated in P. falciparum-infected patients compared to the corresponding malaria-negative participants (p < 0.001). Serum FER correlated positively with parasite density (p = 0.004). In conclusion, patients with uncomplicated P. falciparum in Hodeidah display elevated levels of serum HEPC and FER. Hemoglobin level may not reflect the disturbed iron homeostasis in these patients. The combined measurement of iron indices and HEPC provides comprehensive information on the iron status so that the right intervention can be chosen.


Asunto(s)
Malaria Falciparum , Malaria , Adulto , Femenino , Ferritinas , Hemoglobinas/metabolismo , Hepcidinas , Humanos , Hierro/metabolismo , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Masculino , Plasmodium falciparum/metabolismo , Yemen/epidemiología
4.
Biomed Pharmacother ; 144: 112302, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34678731

RESUMEN

Malaria eradication is still a major global health problem in developing countries, which has been of more concern ever since the malaria parasite has developed resistance against frontline antimalarial drugs. Historical evidence proves that the plants possess a major resource for the development of novel anti-malarial drugs. In the present study, the bioactivity guided fractionation of the oleogum-resin of Boswellia serrata Roxb. yielded the optimum activity in the ethyl acetate fraction with an IC50 of 22 ± 3.9 µg/mL and 26.5 ± 4.5 µg/mL against chloroquine sensitive (NF54) and resistant (K1) strains of Plasmodium falciparum respectively. Further, upon fractionation, the ethyl acetate fraction yielded four major compounds, of which 3-Hydroxy-11-keto-ß-boswellic acid (KBA) was found to be the most potent with IC50 values 4.5 ± 0.60 µg/mL and 6.25 ± 1.02 µg/mL against sensitive and resistant strains respectively. KBA was found to inhibit heme detoxification pathways, one of the most common therapeutic targets, which probably lead to an increase in reactive oxygen species (ROS) and nitric oxide (NO) detrimental to P. falciparum. Further, the induced intracellular oxidative stress affected the macromolecules in terms of DNA damage, increased lipid peroxidation, protein carbonylation as well as loss of mitochondrial membrane potential. However, it did not exhibit any cytotoxic effect in VERO cells. Under in vivo conditions, KBA exhibited a significant reduction in parasitemia, retarding the development of anaemia, resulting in an enhancement of the mean survival time in Plasmodium yoelii nigeriensis (chloroquine-resistant) infected mice. Further, KBA did not exhibit any abnormality in serum biochemistry of animals that underwent acute oral toxicity studies at 2000 mg/kg body weight.


Asunto(s)
Antimaláricos/farmacología , Boswellia , Hemo/metabolismo , Malaria/tratamiento farmacológico , Extractos Vegetales/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium yoelii/efectos de los fármacos , Triterpenos/farmacología , Animales , Antimaláricos/aislamiento & purificación , Antimaláricos/toxicidad , Boswellia/química , Chlorocebus aethiops , Modelos Animales de Enfermedad , Peroxidación de Lípido/efectos de los fármacos , Malaria/sangre , Malaria/parasitología , Ratones , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Plasmodium yoelii/metabolismo , Plasmodium yoelii/patogenicidad , Carbonilación Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Resinas de Plantas , Triterpenos/aislamiento & purificación , Triterpenos/toxicidad , Células Vero
5.
Molecules ; 26(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066964

RESUMEN

The serine protease, DegP exhibits proteolytic and chaperone activities, essential for cellular protein quality control and normal cell development in eukaryotes. The P. falciparum DegP is essential for the parasite survival and required to combat the oscillating thermal stress conditions during the infection, protein quality checks and protein homeostasis in the extra-cytoplasmic compartments, thereby establishing it as a potential target for drug development against malaria. Previous studies have shown that diisopropyl fluorophosphate (DFP) and the peptide SPMFKGV inhibit E. coli DegP protease activity. To identify novel potential inhibitors specific to PfDegP allosteric and the catalytic binding sites, we performed a high throughput in silico screening using Malaria Box, Pathogen Box, Maybridge library, ChEMBL library and the library of FDA approved compounds. The screening helped identify five best binders that showed high affinity to PfDegP allosteric (T0873, T2823, T2801, RJC02337, CD00811) and the catalytic binding site (T0078L, T1524, T2328, BTB11534 and 552691). Further, molecular dynamics simulation analysis revealed RJC02337, BTB11534 as the best hits forming a stable complex. WaterMap and electrostatic complementarity were used to evaluate the novel bio-isosteric chemotypes of RJC02337, that led to the identification of 231 chemotypes that exhibited better binding affinity. Further analysis of the top 5 chemotypes, based on better binding affinity, revealed that the addition of electron donors like nitrogen and sulphur to the side chains of butanoate group are more favoured than the backbone of butanoate group. In a nutshell, the present study helps identify novel, potent and Plasmodium specific inhibitors, using high throughput in silico screening and bio-isosteric replacement, which may be experimentally validated.


Asunto(s)
Antimaláricos/farmacología , Simulación por Computador , Diseño de Fármacos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Antimaláricos/química , Sitios de Unión , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Evolución Molecular , Simulación del Acoplamiento Molecular , Péptidos/química , Péptidos/farmacología , Dominios Proteicos , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Electricidad Estática , Termodinámica , Agua/química
6.
J Biol Chem ; 296: 100614, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839154

RESUMEN

Epigenetic modifications have emerged as critical regulators of virulence genes and stage-specific gene expression in Plasmodium falciparum. However, the specific roles of histone core epigenetic modifications in regulating the stage-specific gene expression are not well understood. In this study, we report an unconventional trimethylation at lysine 64 on histone 3 (H3K64me3) and characterize its functional relevance in P. falciparum. We show that PfSET4 and PfSET5 proteins of P. falciparum methylate H3K64 and that they prefer the nucleosome as a substrate over free histone 3 proteins. Structural analysis of PfSET5 revealed that it interacts with the nucleosome as a dimer. The H3K64me3 mark is dynamic, being enriched in the ring and trophozoite stages and drastically reduced in the schizont stages. Stage-specific global chromatin immunoprecipitation -sequencing analysis of the H3K64me3 mark revealed the selective enrichment of this methyl mark on the genes of exported family proteins in the ring and trophozoite stages and a significant reduction of the same in the schizont stages. Collectively, our data identify a novel epigenetic mark that is associated with the subset of genes encoding for exported proteins, which may regulate their expression in different stages of P. falciparum.


Asunto(s)
Eritrocitos/parasitología , Código de Histonas , Histonas/química , Lisina/química , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , Metilación de ADN , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Malaria Falciparum/genética , Malaria Falciparum/metabolismo , Nucleosomas/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética
7.
BMC Complement Med Ther ; 21(1): 71, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33607987

RESUMEN

BACKGROUND: In previous studies, Cassia spectabilis DC leaf has shown a good antiplasmodial activity. Therefore, this study is a follow-up study of the extract of leaf of C. spectabilis DC on its in vitro and in vivo antiplasmodial activity and mechanism as an antimalarial. METHODS: The extract was fractionated, sub-fractionated and isolated to obtain the purified compound. In vitro antiplasmodial activity test against Plasmodium falciparum to find out the active compound. In vivo test against P. berghei ANKA-infected mice was conducted to determine prophylactic activity and antiplasmodial activity either alone or in combination with artesunate. The inhibition of heme detoxification test as one of the antimalarial mechanisms was carried out using the Basilico method. RESULTS: The results showed that active antimalarial compound isolated from C. spectabilis DC leaf had a structural pattern that was identical to (-)-7-hydroxycassine. Prophylactic test of 90% ethanolic extract of C. spectabilis DC leaf alone against P. berghei ANKA-infected mice obtained the highest percentage inhibition was 68.61%, while positive control (doxycycline 13 mg/kg) was 73.54%. In combination with artesunate, 150 mg/kg three times a day of C. spectabilis DC (D0-D2) + artesunate (D2) was better than the standard combination of amodiaquine + artesunate where the inhibition percentages were 99.18 and 92.88%, respectively. The IC50 of the extract for the inhibitory activity of heme detoxification was 0.375 mg/ml which was better than chloroquine diphosphate (0.682 mg/ml). CONCLUSION: C. spectabilis DC leaf possessed potent antiplasmodial activity and may offer a potential agent for effective and affordable antimalarial phytomedicine.


Asunto(s)
Antimaláricos/farmacología , Cassia/química , Hemo/metabolismo , Malaria/parasitología , Extractos Vegetales/farmacología , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/aislamiento & purificación , Antimaláricos/uso terapéutico , Artesunato/uso terapéutico , Cloroquina/análogos & derivados , Cloroquina/farmacología , Cetonas , Malaria/tratamiento farmacológico , Masculino , Ratones Endogámicos BALB C , Fitoterapia , Piperidinas , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo
8.
J Ethnopharmacol ; 264: 113262, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32818574

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In the Peruvian Amazon as in the tropical countries of South America, the use of medicinal Piper species (cordoncillos) is common practice, particularly against symptoms of infection by protozoal parasites. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point of this work was a set of interviews of people living in six rural communities from the Peruvian Amazon (Alto Amazonas Province) about their uses of plants from Piper genus: one community of Amerindian native people (Shawi community) and five communities of mestizos. Infections caused by parasitic protozoa take a huge toll on public health in the Amazonian communities, who partly fight it using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help to identify new antiprotozoal compounds. AIMS OF STUDY: To record and validate the use of medicinal Piper species by rural people of Alto Amazonas Province (Peru) and annotate active compounds using a correlation study and a data mining approach. MATERIALS AND METHODS: Rural communities were interviewed about traditional medication against parasite infections with medicinal Piper species. Ethnopharmacological surveys were undertaken in five mestizo villages, namely: Nueva Arica, Shucushuyacu, Parinari, Lagunas and Esperanza, and one Shawi community (Balsapuerto village). All communities belong to the Alto Amazonas Province (Loreto region, Peru). Seventeen Piper species were collected according to their traditional use for the treatment of parasitic diseases, 35 extracts (leaves or leaves and stems) were tested in vitro on P. falciparum (3D7 chloroquine-sensitive strain and W2 chloroquine-resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Assessments were performed on HUVEC cells and RAW 264.7 macrophages. The annotation of active compounds was realized by metabolomic analysis and molecular networking approach. RESULTS: Nine extracts were active (IC50 ≤ 10 µg/mL) on 3D7 P. falciparum and only one on W2 P. falciparum, six on L. donovani (axenic and intramacrophagic amastigotes) and seven on Trypanosoma brucei gambiense. Only one extract was active on all three parasites (P. lineatum). After metabolomic analyses and annotation of compounds active on Leishmania, P. strigosum and P. pseudoarboreum were considered as potential sources of leishmanicidal compounds. CONCLUSIONS: This ethnopharmacological study and the associated in vitro bioassays corroborated the relevance of use of Piper species in the Amazonian traditional medicine, especially in Peru. A series of Piper species with few previously available phytochemical data have good antiprotozoal activity and could be a starting point for subsequent promising work. Metabolomic approach appears to be a smart, quick but still limited methodology to identify compounds with high probability of biological activity.


Asunto(s)
Antiprotozoarios/metabolismo , Etnofarmacología/métodos , Medicina Tradicional/métodos , Metabolómica/métodos , Piper/metabolismo , Extractos Vegetales/metabolismo , Animales , Antimaláricos/aislamiento & purificación , Antimaláricos/metabolismo , Antimaláricos/uso terapéutico , Antiprotozoarios/aislamiento & purificación , Antiprotozoarios/uso terapéutico , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/metabolismo , Mesocricetus , Ratones , Perú/etnología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Células RAW 264.7 , Encuestas y Cuestionarios
9.
ChemMedChem ; 16(7): 1093-1103, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33247522

RESUMEN

Increasing reports of multidrug-resistant malaria parasites urge the discovery of new effective drugs with different chemical scaffolds. Protein kinases play a key role in many cellular processes such as signal transduction and cell division, making them interesting targets in many diseases. Protein kinase 7 (PK7) is an orphan kinase from the Plasmodium genus, essential for the sporogonic cycle of these parasites. Here, we applied a robust and integrative artificial intelligence-assisted virtual-screening (VS) approach using shape-based and machine learning models to identify new potential PK7 inhibitors with in vitro antiplasmodial activity. Eight virtual hits were experimentally evaluated, and compound LabMol-167 inhibited ookinete conversion of Plasmodium berghei and blood stages of Plasmodium falciparum at nanomolar concentrations with low cytotoxicity in mammalian cells. As PK7 does not have an essential role in the Plasmodium blood stage and our virtual screening strategy aimed for both PK7 and blood-stage inhibition, we conducted an in silico target fishing approach and propose that this compound might also inhibit P. falciparum PK5, acting as a possible dual-target inhibitor. Finally, docking studies of LabMol-167 with P. falciparum PK7 and PK5 proteins highlighted key interactions for further hit-to lead optimization.


Asunto(s)
Antimaláricos/farmacología , Inteligencia Artificial , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/metabolismo , Inhibidores de Proteínas Quinasas/química , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad
10.
Biochimie ; 181: 176-190, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33346039

RESUMEN

The malaria parasite has an extraordinary ability to evade the immune system due to which the development of a malaria vaccine is a challenging task. Extensive research on malarial infection in the human host particularly during the liver stage has resulted in the discovery of potential candidate vaccines including RTS,S/AS01 and R21. However, complete elimination of malaria would require a holistic multi-component approach. In line with this, under the World Health Organization's PATH Malaria Vaccine Initiative (MVI), the research focus has shifted towards the sexual stages of malaria in the mosquito host. Last two decades of scientific research obtained seminal information regarding the sexual/mosquito stages of the malaria. This updated and comprehensive review would provide the basis for consolidated understanding of cellular, biochemical, molecular and immunological aspects of parasite transmission right from the sexual stage commitment in the human host to the sporozoite delivery back into subsequent vertebrate host by the female Anopheles mosquito.


Asunto(s)
Anopheles/parasitología , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum , Plasmodium falciparum/metabolismo , Animales , Femenino , Humanos , Malaria Falciparum/metabolismo , Malaria Falciparum/prevención & control , Masculino
11.
Sci Rep ; 10(1): 17932, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087791

RESUMEN

Molecular hybridization of privileged scaffolds may generate novel antiplasmodial chemotypes that display superior biological activity and delay drug resistance. In the present study, we describe the in vitro activities and mode of action of 3',4'-dihydro-2'H-spiro[indoline-3,1'-isoquinolin]-2-ones, a novel class of spirofused tetrahydroisoquinoline-oxindole hybrids, as novel antimalarial agents. Whole cell phenotypic screening of these compounds identified (14b), subsequently named (±)-moxiquindole, as the most potent compound in the current series with equipotent antiplasmodial activity against both chloroquine sensitive and multidrug resistant parasite strains with good selectivity. The compound was active against all asexual stages of the parasite including inhibition of merozoite egress. Additionally, (±)-moxiquindole exhibited significant inhibitory effects on hemoglobin degradation, and disrupted vacuolar lipid dynamics. Taken together, our data confirm the antiplasmodial activity of (±)-moxiquindole, and identify 3'4'-dihydro-2'H-spiro[indoline-3,1'-isoquinolin]-2-ones as a novel class of antimalarial agents with multiple modes of action.


Asunto(s)
Antimaláricos , Plasmodium falciparum/efectos de los fármacos , Tetrahidroisoquinolinas/farmacología , Evaluación Preclínica de Medicamentos/métodos , Hemoglobinas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Plasmodium falciparum/metabolismo , Relación Estructura-Actividad , Tetrahidroisoquinolinas/química
12.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859024

RESUMEN

Apicomplexan parasites, through their motor machinery, produce the required propulsive force critical for host cell-entry. The conserved components of this so-called glideosome machinery are myosin A and myosin A Tail Interacting Protein (MTIP). MTIP tethers myosin A to the inner membrane complex of the parasite through 20 amino acid-long C-terminal end of myosin A that makes direct contacts with MTIP, allowing the invasion of Plasmodium falciparum in erythrocytes. Here, we discovered through screening a peptide library, a de-novo peptide ZA1 that binds the myosin A tail domain. We demonstrated that ZA1 bound strongly to myosin A tail and was able to disrupt the native myosin A tail MTIP complex both in vitro and in vivo. We then showed that a shortened peptide derived from ZA1, named ZA1S, was able to bind myosin A and block parasite invasion. Overall, our study identified a novel anti-malarial peptide that could be used in combination with other antimalarials for blocking the invasion of Plasmodium falciparum.


Asunto(s)
Antimaláricos/farmacología , Proteínas de la Membrana/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Péptidos/farmacología , Plasmodium falciparum/crecimiento & desarrollo , Secuencias de Aminoácidos , Antimaláricos/química , Sitios de Unión , Evaluación Preclínica de Medicamentos , Eritrocitos/parasitología , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas de la Membrana/química , Modelos Moleculares , Complejos Multiproteicos/efectos de los fármacos , Miosina Tipo IIA no Muscular/química , Biblioteca de Péptidos , Péptidos/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
13.
Mol Biochem Parasitol ; 238: 111292, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32505674

RESUMEN

Defining protein-protein interactions is fundamental to the understanding of gene function. Protein-fragment complementation assays have been used for the analysis of protein-protein interactions in various organisms. The split-dihydrofolate reductase (DHFR) protein-fragment complementation assay utilises two complementary fragments of the enzyme fused to a pair of potentially interacting proteins. If these proteins interact, the DHFR fragments associate, fold into their native structure, reconstitute their function and confer resistance to antifolate drugs. We show that murine DHFR fragments fused to interacting proteins reconstitute a functional enzyme and confer resistance to the antifolate drug WR99210 in Plasmodium falciparum. These data demonstrate that the split-DHFR method can be used to detect in vivo protein-protein interactions in the parasite. Additionally, we show that split-DHFR fragments can be used as selection markers, permitting simultaneous selection of two plasmids in the presence of a single antifolate drug. Taken together, these experiments show that split-DHFR represents a valuable tool for the characterisation of Plasmodium protein function and genetic manipulation of the parasite.


Asunto(s)
Plasmodium falciparum/genética , Mapeo de Interacción de Proteínas/métodos , Proteínas Protozoarias/genética , Tetrahidrofolato Deshidrogenasa/genética , Transfección/métodos , Antimaláricos/farmacología , Bioensayo , Eritrocitos/parasitología , Antagonistas del Ácido Fólico/farmacología , Expresión Génica , Genes Reporteros , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Unión Proteica , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Triazinas/farmacología , Proteína Fluorescente Roja
14.
Biosystems ; 196: 104175, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32593550

RESUMEN

Gentianine is one of the compounds found in the plant Swertiya chirayita that is known for its antimalarial activity. However, its exact molecular mechanism of action is yet to be understood. In our present study, we applied several computational approaches to filter out and determine possible targets of gentianine in Plasmodium falciparum 3D7. Protein-protein networks formed the basis of one of our strategies along with orthologous protein analysis to establish essentiality. Out of 6 essential proteins from unique pathways, haloacid dehalogenase like-hydrolase (PfHAD1), phosphoenolpyruvate carboxykinase (PfPEPCK) and fumarate hydratase (PfFH) were screened as drug targets through this approach. Through our other strategy we established the predicted IC50 (PIC50) value of gentianine with a set of molecular descriptors from 123 Pathogen Box anti-malarial compounds. Afterwards through 2D structural similarity, L-lactate dehydrogenase (PfLDH) was established as another possible target. In our work, we performed in silico docking and analysed the binding of gentianine to the proteins. All of the proteins were reported with favourable binding results and were considered for complex molecular dynamics simulation approach. Our research clears up the molecular mechanism of antimalarial activity of gentianine to some extent paving way for experimental validation of the same in future.


Asunto(s)
Alcaloides/metabolismo , Antimaláricos/metabolismo , Simulación por Computador , Sistemas de Liberación de Medicamentos/métodos , Plasmodium falciparum/metabolismo , Mapas de Interacción de Proteínas , Alcaloides/administración & dosificación , Antimaláricos/administración & dosificación , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/metabolismo , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/metabolismo , Simulación del Acoplamiento Molecular/métodos , Plantas Medicinales , Plasmodium falciparum/química , Plasmodium falciparum/efectos de los fármacos , Estructura Secundaria de Proteína
15.
Int J Parasitol ; 50(3): 235-252, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32135179

RESUMEN

With emerging resistance to frontline treatments, it is vital that new drugs are identified to target Plasmodium falciparum. One of the most critical processes during parasites asexual lifecycle is the invasion and subsequent egress of red blood cells (RBCs). Many unique parasite ligands, receptors and enzymes are employed during egress and invasion that are essential for parasite proliferation and survival, therefore making these processes druggable targets. To identify potential inhibitors of egress and invasion, we screened the Medicines for Malaria Venture Pathogen Box, a 400 compound library against neglected tropical diseases, including 125 with antimalarial activity. For this screen, we utilised transgenic parasites expressing a bioluminescent reporter, nanoluciferase (Nluc), to measure inhibition of parasite egress and invasion in the presence of the Pathogen Box compounds. At a concentration of 2 µM, we found 15 compounds that inhibited parasite egress by >40% and 24 invasion-specific compounds that inhibited invasion by >90%. We further characterised 11 of these inhibitors through cell-based assays and live cell microscopy, and found two compounds that inhibited merozoite maturation in schizonts, one compound that inhibited merozoite egress, one compound that directly inhibited parasite invasion and one compound that slowed down invasion and arrested ring formation. The remaining compounds were general growth inhibitors that acted during the egress and invasion phase of the cell cycle. We found the sulfonylpiperazine, MMV020291, to be the most invasion-specific inhibitor, blocking successful merozoite internalisation within human RBCs and having no substantial effect on other stages of the cell cycle. This has significant implications for the possible development of an invasion-specific inhibitor as an antimalarial in a combination based therapy, in addition to being a useful tool for studying the biology of the invading parasite.


Asunto(s)
Antimaláricos/farmacología , Evaluación Preclínica de Medicamentos , Plasmodium falciparum/efectos de los fármacos , Animales , Eritrocitos/parasitología , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Merozoítos/efectos de los fármacos , Piperazina , Piperazinas/farmacología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Esquizontes/efectos de los fármacos
16.
ACS Chem Biol ; 15(1): 171-178, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31573796

RESUMEN

Glycosylphosphatidylinositols (GPIs) are complex glycolipids present on the surfaces of Plasmodium parasites that may act as toxins during the progression of malaria. GPIs can activate the immune system during infection and induce the formation of anti-GPI antibodies that neutralize their activity. Therefore, an antitoxic vaccine based on GPI glycoconjugates may prevent malaria pathogenesis. To evaluate the role of three key modifications on Plasmodium GPI glycan in the activity of these glycolipids, we synthesized and investigated six structurally distinct GPI fragments from Plasmodium falciparum. The synthetic glycans were conjugated to the CRM197 carrier protein and were tested for immunogenicity and efficacy as antimalarial vaccine candidates in an experimental cerebral malaria model using C57BL/6JRj mice. Protection may be dependent on both the antibody and the cellular immune response to GPIs, and the elicited immune response depends on the orientation of the glycan, the number of mannoses in the structure, and the presence of the phosphoethanolamine and inositol units. This study provides insights into the epitopes in GPIs and contributes to the development of GPI-based antitoxin vaccine candidates against cerebral malaria.


Asunto(s)
Adyuvantes Inmunológicos/química , Antimaláricos/química , Proteínas Bacterianas/química , Glicosilfosfatidilinositoles/química , Malaria Falciparum/prevención & control , Vacunas/química , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/inmunología , Citocinas/metabolismo , Etanolaminas/metabolismo , Femenino , Humanos , Inositol/metabolismo , Malaria Falciparum/inmunología , Ratones Endogámicos C57BL , Modelos Animales , Plasmodium falciparum/metabolismo , Polisacáridos/química , Conformación Proteica , Bazo/metabolismo , Linfocitos T/metabolismo , Resultado del Tratamiento , Vacunas/inmunología
17.
J Biomed Opt ; 25(1): 1-11, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31849205

RESUMEN

Hemozoin, the heme detoxification end product in malaria parasites during their growth in the red blood cells (RBCs), serves as an important marker for diagnosis and treatment target of malaria disease. However, the current method for hemozoin-targeted drug screening mainly relies on in vitro ß-hematin inhibition assays, which may lead to false-positive events due to under-representation of the real hemozoin crystal. Quantitative in situ imaging of hemozoin is highly desired for high-throughput screening of antimalarial drugs and for elucidating the mechanisms of antimalarial drugs. We present transient absorption (TA) imaging as a high-speed single-cell analysis platform with chemical selectivity to hemozoin. We first demonstrated that TA microscopy is able to identify ß-hematin, the artificial form of hemozoin, from the RBCs. We further utilized time-resolved TA imaging to in situ discern hemozoin from malaria-infected RBCs with optimized imaging conditions. Finally, we quantitatively analyzed the hemozoin amount in RBCs at different infection stages by single-shot TA imaging. These results highlight the potential of TA imaging for efficient antimalarial drug screening and drug mechanism investigation.


Asunto(s)
Eritrocitos/metabolismo , Hemoproteínas/metabolismo , Microscopía/métodos , Animales , Antimaláricos/farmacología , Cristalización , Evaluación Preclínica de Medicamentos , Eritrocitos/parasitología , Hemoproteínas/análisis , Hemoproteínas/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Microscopía Electrónica de Rastreo , Fenómenos Ópticos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Análisis de la Célula Individual/métodos
18.
Malar J ; 18(1): 86, 2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30890151

RESUMEN

BACKGROUND: The malarial parasite Plasmodium falciparum is an auxotroph for purines, which are required for nucleic acid synthesis during the intra-erythrocytic developmental cycle (IDC) of the parasite. The capabilities of the parasite and extent to which it can use compensatory mechanisms to adapt to purine deprivation were studied by examining changes in its metabolism under sub-optimal concentrations of hypoxanthine, the primary precursor utilized by the parasite for purine-based nucleic acid synthesis. METHODS: The concentration of hypoxanthine that caused a moderate growth defect over the course of one IDC was determined. At this concentration of hypoxanthine (0.5 µM), transcriptomic and metabolomic data were collected during one IDC at multiple time points. These data were integrated with a metabolic network model of the parasite embedded in a red blood cell (RBC) to interpret the metabolic adaptation of P. falciparum to hypoxanthine deprivation. RESULTS: At a hypoxanthine concentration of 0.5 µM, vacuole-like structures in the cytosol of many P. falciparum parasites were observed after the 24-h midpoint of the IDC. Parasites grown under these conditions experienced a slowdown in the progression of the IDC. After 72 h of deprivation, the parasite growth could not be recovered despite supplementation with 90 µM hypoxanthine. Simulations of P. falciparum metabolism suggested that alterations in ubiquinone, isoprenoid, shikimate, and mitochondrial metabolism occurred before the appearance of these vacuole-like structures. Alterations were found in metabolic reactions associated with fatty acid synthesis, the pentose phosphate pathway, methionine metabolism, and coenzyme A synthesis in the latter half of the IDC. Furthermore, gene set enrichment analysis revealed that P. falciparum activated genes associated with rosette formation, Maurer's cleft and protein export under two different nutrient-deprivation conditions (hypoxanthine and isoleucine). CONCLUSIONS: The metabolic network analysis presented here suggests that P. falciparum invokes specific purine-recycling pathways to compensate for hypoxanthine deprivation and maintains a hypoxanthine pool for purine-based nucleic acid synthesis. However, this compensatory mechanism is not sufficient to maintain long-term viability of the parasite. Although P. falciparum can complete a full IDC in low hypoxanthine conditions, subsequent cycles are disrupted.


Asunto(s)
Adaptación Fisiológica , Hipoxantina/metabolismo , Plasmodium falciparum/fisiología , Animales , Perfilación de la Expresión Génica , Redes y Vías Metabólicas , Metabolómica , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Sobrevida , Factores de Tiempo
19.
Methods Mol Biol ; 1859: 225-239, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30421232

RESUMEN

Methods for assessing the mode of action of new antimalarial compounds identified in high throughput phenotypic screens are needed to triage and facilitate lead compound development and to anticipate potential resistance mechanisms that might emerge. Here we describe a mass spectrometry-based approach for detecting metabolic changes in asexual erythrocytic stages of Plasmodium falciparum induced by antimalarial compounds. Time-resolved or concentration-resolved measurements are used to discriminate between putative targets of the compound and nonspecific and/or downstream secondary metabolic effects. These protocols can also be coupled with 13C-stable-isotope tracing experiments under nonequilibrative (or nonstationary) conditions to measure metabolic dynamics following drug exposure. Time-resolved 13C-labeling studies greatly increase confidence in target assignment and provide a more comprehensive understanding of the metabolic perturbations induced by small molecule inhibitors. The protocol provides details on the experimental design, Plasmodium falciparum culture, sample preparation, analytical approaches, and data analysis used in either targeted (pathway focused) or untargeted (all detected metabolites) analysis of drug-induced metabolic perturbations.


Asunto(s)
Antimaláricos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Metabolómica/métodos , Plasmodium falciparum/metabolismo , Espectrometría de Masas en Tándem/métodos , Isótopos de Carbono/química , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Evaluación Preclínica de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos/métodos , Eritrocitos/parasitología , Humanos , Malaria Falciparum/sangre , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Metaboloma/efectos de los fármacos , Metabolómica/instrumentación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/aislamiento & purificación , Espectrometría de Masas en Tándem/instrumentación
20.
J Mol Graph Model ; 87: 144-164, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30544005

RESUMEN

Plasmodium falciparum heat shock protein 90 (PfHsp90) has been investigated as a potential target of antimalarial drug action using naturally occurring compounds. In this study, we performed in silico screening of 236 phytochemicals of Azadirachta indica, a plant known to possess antimalarial activity, and identified fourteen (14) potential non-carcinogenic, non-mutagenic, non-teratogenic and non-genotoxic phytochemicals. These phytochemicals were docked into the ATP-binding site of PfHsp90 using Autodock vina, and docked poses were rescored using PLANTS ChemPlp, X-Score version 1.2 and NNScore version 2.0. Consensus analysis of the scores using rank-by-rank and rank-by-number and receptor-ligand interaction assessment using LigPlot, led to the identification of margolone, margolonone, nimbinone, nimbione, nimosone and sugiol as best ranked potential interacting partners of PfHsp90. Molecular dynamic simulations of PfHsp90-ligand complexes for the six phytochemicals were performed using NAMD 2.9. The RMSD analysis of simulations trajectories, the ligand interaction analysis of receptor-ligand complex, and the free energy of binding with MMPBSA.py script and Bennett's acceptance ratio method (BAR) confirmed that these six phytochemicals may have potential to functionally interact with PfHsp90. However, though sharing several similar interacting residues with standard control binders yet the higher number of hydrogen bonds, higher level of sustained stability during molecular dynamics simulations and better free energy of binding suggest that margolonone, nimbinone and nimbione may have higher functional interaction potential with PfHsp90. Therefore, these phytochemicals may serve as potential leads in antimalarial drug design and development.


Asunto(s)
Antimaláricos/farmacología , Azadirachta/química , Proteínas HSP90 de Choque Térmico/química , Modelos Moleculares , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Antimaláricos/química , Dosificación Letal Mediana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Fitoquímicos/química , Extractos Vegetales/química , Plasmodium falciparum/metabolismo , Relación Estructura-Actividad Cuantitativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA