Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Physiol ; 177(1): 271-284, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29540590

RESUMEN

Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley (Hordeum vulgare). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue.


Asunto(s)
Fósforo/deficiencia , Fotosíntesis , Complejos de ATP Sintetasa/metabolismo , Adenosina Trifosfato/metabolismo , Clorofila A/metabolismo , Transporte de Electrón/efectos de la radiación , Fluorescencia , Hordeum/crecimiento & desarrollo , Hordeum/efectos de la radiación , Cinética , NADP/metabolismo , Oxidación-Reducción , Fósforo/metabolismo , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Plastoquinona/metabolismo
2.
Biochim Biophys Acta Bioenerg ; 1858(11): 873-883, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28734933

RESUMEN

The desert microalga Chlorella ohadii was reported to grow at extreme light intensities with minimal photoinhibition, tolerate frequent de/re-hydrations, yet minimally employs antenna-based non-photochemical quenching for photoprotection. Here we investigate the molecular mechanisms by measuring Photosystem II charge separation yield (chlorophyll variable fluorescence, Fv/Fm) and flash-induced O2 yield to measure the contributions from both linear (PSII-LEF) and cyclic (PSII-CEF) electron flow within PSII. Cells grow increasingly faster at higher light intensities (µE/m2/s) from low (20) to high (200) to extreme (2000) by escalating photoprotection via shifting from PSII-LEF to PSII-CEF. This shifts PSII charge separation from plastoquinone reduction (PSII-LEF) to plastoquinol oxidation (PSII-CEF), here postulated to enable proton gradient and ATP generation that powers photoprotection. Low light-grown cells have unusually small antennae (332 Chl/PSII), use mainly PSII-LEF (95%) and convert 40% of PSII charge separations into O2 (a high O2 quantum yield of 0.06mol/mol PSII/flash). High light-grown cells have smaller antenna and lower PSII-LEF (63%). Extreme light-grown cells have only 42 Chl/PSII (no LHCII antenna), minimal PSII-LEF (10%), and grow faster than any known phototroph (doubling time 1.3h). Adding a synthetic quinone in excess to supplement the PQ pool fully uncouples PSII-CEF from its natural regulation and produces maximum PSII-LEF. Upon dark adaptation PSII-LEF rapidly reverts to PSII-CEF, a transient protection mechanism to conserve water and minimize the cost of antenna biosynthesis. The capacity of the electron acceptor pool (plastoquinone pool), and the characteristic times for exchange of (PQH2)B with PQpool and reoxidation of (PQH2)pool were determined.


Asunto(s)
Chlorella/metabolismo , Electrones , Microalgas/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Adenosina Trifosfato/biosíntesis , Chlorella/crecimiento & desarrollo , Chlorella/efectos de la radiación , Clorofila/metabolismo , Transporte de Electrón , Cinética , Luz , Microalgas/crecimiento & desarrollo , Microalgas/efectos de la radiación , Oxidación-Reducción , Oxígeno/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo , Termodinámica , Tilacoides/metabolismo , Tilacoides/efectos de la radiación
3.
Mar Drugs ; 13(4): 2541-58, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25913708

RESUMEN

A fast and high-resolution UPLC-MSE analysis was used to identify phytoplankton pigments in an ethanol extract of Porphyridium purpureum (Pp) devoid of phycobiliproteins. In a first step, 22 standard pigments were analyzed by UPLC-MSE to build a database including retention time and accurate masses of parent and fragment ions. Using this database, seven pigments or derivatives previously reported in Pp were unequivocally identified: ß,ß-carotene, chlorophyll a, zeaxanthin, chlorophyllide a, pheophorbide a, pheophytin a, and cryptoxanthin. Minor amounts of Divinyl chlorophyll a, a chemotaxonomic pigment marker for prochlorophytes, were also unequivocally identified using the database. Additional analysis of ionization and fragmentation patterns indicated the presence of ions that could correspond to hydroxylated derivatives of chlorophyll a and pheophytin a, produced during the ethanolic extraction, as well as previously described galactosyldiacylglycerols, the thylakoid coenzyme plastoquinone, and gracilamide B, a molecule previously reported in the red seaweed Gracillaria asiatica. These data point to UPLC-MSE as an efficient technique to identify phytoplankton pigments for which standards are available, and demonstrate its major interest as a complementary method for the structural elucidation of ionizable marine molecules.


Asunto(s)
Fitoplancton/metabolismo , Pigmentos Biológicos/biosíntesis , Porphyridium/metabolismo , Biomarcadores/metabolismo , Cromatografía Líquida de Alta Presión , Ciclopropanos/química , Ciclopropanos/aislamiento & purificación , Ciclopropanos/metabolismo , Bases de Datos de Compuestos Químicos , Descubrimiento de Drogas/métodos , Galactolípidos/biosíntesis , Galactolípidos/química , Galactolípidos/aislamiento & purificación , Hidroxilación , Metabolómica/métodos , Microalgas/crecimiento & desarrollo , Microalgas/aislamiento & purificación , Microalgas/metabolismo , Estructura Molecular , Peso Molecular , Fotobiorreactores , Fitoplancton/crecimiento & desarrollo , Fitoplancton/aislamiento & purificación , Pigmentos Biológicos/química , Pigmentos Biológicos/aislamiento & purificación , Extractos Vegetales/química , Plastoquinona/química , Plastoquinona/aislamiento & purificación , Plastoquinona/metabolismo , Porphyridium/crecimiento & desarrollo , Porphyridium/aislamiento & purificación , Programas Informáticos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
4.
Plant Physiol ; 164(2): 805-18, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24367022

RESUMEN

Oxygenic photosynthesis evolved with cyanobacteria, the ancestors of plant chloroplasts. The highly oxidizing chemistry of water splitting required concomitant evolution of efficient photoprotection mechanisms to safeguard the photosynthetic machinery. The role of flavodiiron proteins (FDPs), originally called A-type flavoproteins or Flvs, in this context has only recently been appreciated. Cyanobacterial FDPs constitute a specific protein group that evolved to protect oxygenic photosynthesis. There are four FDPs in Synechocystis sp. PCC 6803 (Flv1 to Flv4). Two of them, Flv2 and Flv4, are encoded by an operon together with a Sll0218 protein. Their expression, tightly regulated by CO2 levels, is also influenced by changes in light intensity. Here we describe the overexpression of the flv4-2 operon in Synechocystis sp. PCC 6803 and demonstrate that it results in improved photochemistry of PSII. The flv4-2/OE mutant is more resistant to photoinhibition of PSII and exhibits a more oxidized state of the plastoquinone pool and reduced production of singlet oxygen compared with control strains. Results of biophysical measurements indicate that the flv4-2 operon functions in an alternative electron transfer pathway from PSII, and thus alleviates PSII excitation pressure by channeling up to 30% of PSII-originated electrons. Furthermore, intact phycobilisomes are required for stable expression of the flv4-2 operon genes and for the Flv2/Flv4 heterodimer-mediated electron transfer mechanism. The latter operates in photoprotection in a complementary way with the orange carotenoid protein-related nonphotochemical quenching. Expression of the flv4-2 operon and exchange of the D1 forms in PSII centers upon light stress, on the contrary, are mutually exclusive photoprotection strategies among cyanobacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/metabolismo , Ficobilisomas/metabolismo , Synechocystis/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A , Immunoblotting , Cinética , Mutación/genética , Operón/genética , Oxidación-Reducción , Oxígeno/metabolismo , Fenotipo , Plastoquinona/metabolismo , Oxígeno Singlete/metabolismo , Espectrometría de Fluorescencia , Synechocystis/genética , Synechocystis/crecimiento & desarrollo
5.
Planta ; 226(4): 1067-73, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17569077

RESUMEN

Plastoquinone plays critical roles in photosynthesis, chlororespiration and carotenoid biosynthesis. The previously isolated pds2 mutant from Arabidopsis was deficient in tocopherol and plastoquinone accumulation, and the biochemical phenotype of this mutant could not be reversed by externally applied homogentisate, suggesting a later step in tocopherol and/or plastoquinone biosynthesis had been disrupted. Recently, the protein encoded by At3g11950 (AtHST) was shown to condense homogentisate with solanesyl diphosphate (SDP), the substrate for plastoquinone synthesis, but not phytyl diphosphate (PDP), the substrate for tocopherol biosynthesis. We have sequenced the AtHST allele in the pds2 mutant background and identified an in-frame 6 bp (2 aa) deletion in the gene. The pds2 mutation could be functionally complemented by constitutive expression of AtHST, demonstrating that the molecular basis for the pds2 mutation is this 6 bp-lesion in the AtHST gene. Confocal microscopy of EGFP tagged AtHST suggested that AtHST is localized to the chloroplast envelope, supporting the hypothesis that plastoquinone synthesis occurs in the plastid.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/metabolismo , Plastoquinona/metabolismo , Eliminación de Secuencia , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN Complementario , Prueba de Complementación Genética , Datos de Secuencia Molecular
6.
Plant Cell Physiol ; 45(12): 1882-8, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15653808

RESUMEN

Two solanesyl diphosphate synthases, designated SPS1 and SPS2, which are responsible for the synthesis of the isoprenoid side chain of either plastoquinone or ubiquinone in Arabidopsis thaliana, were identified. Heterologous expression of either SPS1 or SPS2 allowed the generation of UQ-9 in a decaprenyl diphosphate synthase-defective strain of fission yeast and also in wild-type Escherichia coli. SPS1-GFP was found to localize in the ER while SPS2-GFP localized in the plastid of tobacco BY-2 cells. These two different subcellular localizations are thought to be the reflection of their roles in solanesyl diphosphate synthesis in two different parts: presumably SPS1 and SPS2 for the side chains of ubiquinone and plastoquinone, respectively.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/aislamiento & purificación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , ADN Complementario/análisis , ADN Complementario/genética , Retículo Endoplásmico/metabolismo , Escherichia/metabolismo , Datos de Secuencia Molecular , Plastidios/metabolismo , Plastoquinona/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Terpenos/metabolismo , Nicotiana/metabolismo , Ubiquinona/metabolismo , Levaduras/metabolismo
7.
J Biol Chem ; 276(43): 39512-21, 2001 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-11470786

RESUMEN

Interruption of the phylloquinone (PhQ) biosynthetic pathway by interposon mutagenesis of the menA and menB genes in Synechocystis sp. PCC 6803 results in plastoquinone-9 (PQ-9) occupying the A(1) site and functioning in electron transfer from A(0) to the FeS clusters in photosystem (PS) I (Johnson, T. W., Shen, G., Zybailov, B., Kolling, D., Reategui, R., Beauparlant, S., Vassiliev, I. R., Bryant, D. A., Jones, A. D., Golbeck, J. H., and Chitnis, P. R. (2000) J. Biol. Chem. 275, 8523-8530. We report here the isolation of menB26, a strain of the menB mutant that grows in high light by virtue of a higher PS I to PS II ratio. PhQ can be reincorporated into the A(1) site of the menB26 mutant strain by supplementing the growth medium with authentic PhQ. The reincorporation of PhQ also occurs in cells that have been treated with protein synthesis inhibitors, consistent with a displacement of PQ-9 from the A(1) site by mass action. The doubling time of the menB26 mutant cells, but not the menA mutant cells, approaches the wild type when the growth medium is supplemented with naphthoquinone (NQ) derivatives such as 2-CO(2)H-1,4-NQ and 2-CH(3)-1,4-NQ. Since PhQ replaces PQ-9 in the supplemented menB26 mutant cells, but not in the menA mutant cells, the phytyl tail accompanies the incorporation of these quinones into the A(1) site. Studies with menB26 mutant cells and perdeuterated 2-CH(3)-1,4-NQ shows that phytylation occurs at position 3 of the NQ ring because the deuterated 2-methyl group remains intact. Therefore, the specificity of the phytyltransferase enzyme is selective with respect to the group present at ring positions 2 and 3. Supplementing the growth medium of menB26 mutant cells with 1,4-NQ also leads to its incorporation into the A(1) site, but typically without either the phytyl tail or the methyl group. These findings open the possibility of biologically incorporating novel quinones into the A(1) site by supplementing the growth medium of menB26 mutant cells.


Asunto(s)
Cianobacterias/metabolismo , Naftoquinonas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/biosíntesis , Plastoquinona/metabolismo , Vitamina K 1/metabolismo , Transferasas Alquil y Aril/genética , Clorofila/metabolismo , Cianobacterias/genética , Cianobacterias/efectos de la radiación , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Genes Bacterianos , Luz , Complejos de Proteína Captadores de Luz , Mutación , Naftoquinonas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Complejo de Proteína del Fotosistema I , Vitamina K 3/química , Vitamina K 3/metabolismo
8.
J Biol Chem ; 275(34): 26121-7, 2000 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-10866998

RESUMEN

We have investigated the effects of the light-induced thylakoid transmembrane potential on the turnover of the b(6)f complex in cells of the unicellular green alga Chlamydomonas reinhardtii. The reduction of the potential by either decreasing the light intensity or by adding increasing concentrations of the ionophore carbonylcyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) revealed a marked inhibition of the cytochrome b(6) oxidation rate (10-fold) without substantial modifications of cytochrome f oxidation kinetics. Partial recovery of this inhibition could be obtained in the presence of ionophores provided that the membrane potential was re-established by illumination with a train of actinic flashes fired at a frequency higher than its decay. Measurements of isotopic effects on the kinetics of cytochrome b(6) oxidation revealed a synergy between the effects of ionophores and the H(2)O-D(2)O exchange. We propose therefore, that protonation events influence the kinetics of cytochrome b(6) oxidation at the Qi site and that these reactions are strongly influenced by the light-dependent generation of a transmembrane potential.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Grupo Citocromo b/metabolismo , Plastoquinona/metabolismo , Animales , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Chlamydomonas reinhardtii/efectos de los fármacos , Chlorophyta , Grupo Citocromo b/antagonistas & inhibidores , Complejo de Citocromo b6f , Deuterio , Electroquímica , Cinética , Luz , Potenciales de la Membrana/efectos de los fármacos , Oxidación-Reducción , Protones , Desacopladores/farmacología , Agua
9.
Plant Physiol ; 117(1): 129-39, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9576782

RESUMEN

The light-saturated rate of photosynthetic O2 evolution in Chlamydomonas reinhardtii declined by approximately 75% on a per-cell basis after 4 d of P starvation or 1 d of S starvation. Quantitation of the partial reactions of photosynthetic electron transport demonstrated that the light-saturated rate of photosystem (PS) I activity was unaffected by P or S limitation, whereas light-saturated PSII activity was reduced by more than 50%. This decline in PSII activity correlated with a decline in both the maximal quantum efficiency of PSII and the accumulation of the secondary quinone electron acceptor of PSII nonreducing centers (PSII centers capable of performing a charge separation but unable to reduce the plastoquinone pool). In addition to a decline in the light-saturated rate of O2 evolution, there was reduced efficiency of excitation energy transfer to the reaction centers of PSII (because of dissipation of absorbed light energy as heat and because of a transition to state 2). These findings establish a common suite of alterations in photosynthetic electron transport that results in decreased linear electron flow when C. reinhardtii is limited for either P or S. It was interesting that the decline in the maximum quantum efficiency of PSII and the accumulation of the secondary quinone electron acceptor of PSII nonreducing centers were regulated specifically during S-limited growth by the SacI gene product, which was previously shown to be critical for the acclimation of C. reinhardtii to S limitation (J.P. Davies, F.H. Yildiz, and A.R. Grossman [1996] EMBO J 15: 2150-2159).


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Medios de Cultivo/metabolismo , Proteínas de la Membrana , Proteínas de Transporte de Membrana , Fotosíntesis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Chlamydomonas reinhardtii/fisiología , Transporte de Electrón , Luz , Fósforo/deficiencia , Fósforo/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Plastoquinona/metabolismo , Azufre/deficiencia , Azufre/metabolismo
10.
J Biol Chem ; 268(2): 1494-9, 1993 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-8419349

RESUMEN

The localization of ubiquinone (UQ) and plastoquinone (PQ) biosynthesis in subfractions isolated from spinach leaves has been studied. UQ-9 and UQ-10 were found mainly in mitochondria, whereas PQ was enriched in chloroplasts, but also found in Golgi membranes. alpha-Unsaturated polyprenol-11 was also present at a low concentration in chloroplasts. Autoradiography revealed the presence of nonaprenyl-4-hydroxybenzoate (NPHB) and nonaprenyl-2-methylquinol (NPMQ) transferase activities involved in quinone biosynthesis in all subfractions, but the specific activities involved in quinone biosynthesis in the total microsomal fraction were 20 times higher than those in mitochondria and chloroplasts. The isolated Golgi vesicles were particularly enriched in both activities. When the incubation medium containing total microsomes or Golgi membranes was supplemented with NADH, NADPH, S-adenosylmethionine, and an ATP-generating system, NPHB and NPMQ were transferred to UQ-9 and PQ, respectively. trans-Prenyltransferase, which synthesizes the side chain of UQ and PQ, was present in the total microsomal fraction. With farnesyl-PP as substrate, no product was formed, but with geranyl-PP, solanesyl-PP was synthesized and transferred to 4-hydroxybenzoate present in the total microsomal fraction. The results show that these membranes from spinach contain farnesyl-PP synthetase. It is concluded that the plant leaf Golgi membranes contain the enzymes for both UQ and PQ biosynthesis and that a specific transport and targeting system is required for selective transfer of UQ to the mitochondria and of PQ to the chloroplast.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Plantas/metabolismo , Plastoquinona/metabolismo , Ubiquinona/biosíntesis , Fraccionamiento Celular , Cloroplastos/metabolismo , Citosol/metabolismo , Dimetilaliltranstransferasa/metabolismo , Ácido Mevalónico/metabolismo , Microsomas/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , S-Adenosilmetionina/metabolismo , Fracciones Subcelulares/metabolismo , Transferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA