Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Ann Bot ; 133(4): 547-558, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38180460

RESUMEN

BACKGROUND AND AIMS: The softening of ripening fruit involves partial depolymerization of cell-wall pectin by three types of reaction: enzymic hydrolysis, enzymic elimination (lyase-catalysed) and non-enzymic oxidative scission. Two known lyase activities are pectate lyase and rhamnogalacturonan lyase (RGL), potentially causing mid-chain cleavage of homogalacturonan and rhamnogalacturonan-I (RG-I) domains of pectin respectively. However, the important biological question of whether RGL exhibits action in vivo had not been tested. METHODS: We developed a method for specifically and sensitively detecting in-vivo RGL products, based on Driselase digestion of cell walls and detection of a characteristic unsaturated 'fingerprint' product (tetrasaccharide) of RGL action. KEY RESULTS: In model experiments, potato RG-I that had been partially cleaved in vitro by commercial RGL was digested by Driselase, releasing an unsaturated tetrasaccharide ('ΔUA-Rha-GalA-Rha'), taken as diagnostic of RGL action. This highly acidic fingerprint compound was separated from monosaccharides (galacturonate, galactose, rhamnose, etc.) by electrophoresis at pH 2, then separated from ΔUA-GalA (the fingerprint of pectate lyase action) by thin-layer chromatography. The 'ΔUA-Rha-GalA-Rha' was confirmed as 4-deoxy-ß-l-threo-hex-4-enopyranuronosyl-(1→2)-l-rhamnosyl-(1→4)-d-galacturonosyl-(1→2)-l-rhamnose by mass spectrometry and acid hydrolysis. Driselase digestion of cell walls from diverse ripe fruits [date, sea buckthorn, cranberry, yew (arils), mango, plum, blackberry, apple, pear and strawberry] yielded the same fingerprint compound, demonstrating that RGL had been acting in vivo in these fruits prior to harvest. The 'fingerprint' : (galacturonate + rhamnose) ratio in digests from ripe dates was approximately 1 : 72 (mol/mol), indicating that ~1.4 % of the backbone Rha→GalA bonds in endogenous RG-I had been cleaved by in-vivo RGL action. CONCLUSIONS: The results provide the first demonstration that RGL, previously known from studies of fruit gene expression, proteomic studies and in-vitro enzyme activity, exhibits enzyme action in the walls of soft fruits and may thus be proposed to contribute to fruit softening.


Asunto(s)
Pared Celular , Frutas , Pectinas , Polisacárido Liasas , Polisacárido Liasas/metabolismo , Frutas/enzimología , Pared Celular/metabolismo , Pectinas/metabolismo
3.
J Proteomics ; 293: 105063, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38151157

RESUMEN

The brown seaweed Laminaria digitata, a novel feedstuff for weaned piglets, has potentially beneficial prebiotic properties. However, its recalcitrant cell wall challenges digestion in monogastrics. Alginate lyase is a promising supplement to mitigate this issue. This study's aim was to investigate the impact of incorporating 10% dietary Laminaria digitata, supplemented with alginate lyase, on the hepatic proteome and metabolome of weaned piglets. These diets introduced minor variations to the metabolome and caused significant shifts in the proteome. Dietary seaweed provided a rich source of n-3 PUFAs that could signal hepatic fatty acid oxidation (FABP, ACADSB and ALDH1B1). This may have affected the oxidative stability of the tissue, requiring an elevated abundance of GST for regulation. The presence of reactive oxygen species likely inflicted protein damage, triggering increased proteolytic activity (LAPTM4B and PSMD4). Alginate lyase supplementation augmented the number of differentially abundant proteins, which included GBE1 and LDHC, contributing to maintain circulating glucose levels by mobilizing glycogen stores and branched-chain amino acids. The enzymatic supplementation with alginate lyase amplified the effects of the seaweed-only diet. An additional filter was employed to test the effect of missing values on the proteomics analysis, which is discussed from a technical perspective. SIGNIFICANCE: Brown seaweeds such as Laminaria digitata have prebiotic and immune-modulatory components, such as laminarin, that can improve weaned piglet health. However, they have recalcitrant cell wall polysaccharides, such as alginate, that can elicit antinutritional effects on the monogastric digestive system. The aim of this study was to evaluate the effect of a high level of dietary L. digitata and alginate lyase supplementation on the hepatic metabolism of weaned piglets, using high throughput Omics approaches.


Asunto(s)
Algas Comestibles , Laminaria , Polisacárido Liasas , Proteoma , Algas Marinas , Animales , Porcinos , Proteómica , Dieta , Suplementos Dietéticos , Algas Marinas/química , Hígado
4.
Plant Physiol Biochem ; 206: 108294, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38159547

RESUMEN

Plant rhamnogalacturonan lyases (RGLyases) cleave the backbone of rhamnogalacturonan I (RGI), the "hairy" pectin and polymer of the disaccharide rhamnose (Rha)-galacturonic acid (GalA) with arabinan, galactan or arabinogalactan side chains. It has been suggested that RGLyases could participate in remodeling cell walls during fruit softening, but clear evidence has not been reported. To investigate the role of RGLyases in strawberry softening, a genome-wide analysis of RGLyase genes in the genus Fragaria was performed. Seventeen genes encoding RGLyases with functional domains were identified in Fragaria × ananassa. FaRGLyase1 was the most expressed in the ripe receptacle of cv. Chandler. Transgenic strawberry plants expressing an RNAi sequence of FaRGLyase1 were obtained. Three transgenic lines yielded ripe fruits firmer than controls without other fruit quality parameters being significantly affected. The highest increase in firmness achieved was close to 32%. Cell walls were isolated from ripe fruits of two selected lines. The amount of water-soluble and chelated pectins was higher in transgenic lines than in the control. A carbohydrate microarray study showed a higher abundance of RGI epitopes in pectin fractions and in the cellulose-enriched fraction obtained from transgenic lines. Sixty-seven genes were differentially expressed in transgenic ripe fruits when compared with controls. These genes were involved in various physiological processes, including cell wall remodeling, ion homeostasis, lipid metabolism, protein degradation, stress response, and defense. The transcriptomic changes observed in FaRGLyase1 plants suggest that senescence was delayed in transgenic fruits.


Asunto(s)
Fragaria , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Ramnogalacturonanos/metabolismo , Pectinas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Appl Environ Microbiol ; 89(10): e0118523, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37791757

RESUMEN

Humans consume alginate in the form of seaweed, food hydrocolloids, and encapsulations, making the digestion of this mannuronic acid (M) and guluronic acid (G) polymer of key interest for human health. To increase knowledge on alginate degradation in the gut, a gene catalog from human feces was mined for potential alginate lyases (ALs). The predicted ALs were present in nine species of the Bacteroidetes phylum, of which two required supplementation of an endo-acting AL, expected to mimic cross-feeding in the gut. However, only a new isolate grew on alginate. Whole-genome sequencing of this alginate-utilizing isolate suggested that it is a new Bacteroides ovatus strain harboring a polysaccharide utilization locus (PUL) containing three ALs of families: PL6, PL17, and PL38. The BoPL6 degraded polyG to oligosaccharides of DP 1-3, and BoPL17 released 4,5-unsaturated monouronate from polyM. BoPL38 degraded both alginates, polyM, polyG, and polyMG, in endo-mode; hence, it was assumed to deliver oligosaccharide substrates for BoPL6 and BoPL17, corresponding well with synergistic action on alginate. BoPL17 and BoPL38 crystal structures, determined at 1.61 and 2.11 Å, respectively, showed (α/α)6-barrel + anti-parallel ß-sheet and (α/α)7-barrel folds, distinctive for these PL families. BoPL17 had a more open active site than the two homologous structures. BoPL38 was very similar to the structure of an uncharacterized PL38, albeit with a different triad of residues possibly interacting with substrate in the presumed active site tunnel. Altogether, the study provides unique functional and structural insights into alginate-degrading lyases of a PUL in a human gut bacterium.IMPORTANCEHuman ingestion of sustainable biopolymers calls for insight into their utilization in our gut. Seaweed is one such resource with alginate, a major cell wall component, used as a food hydrocolloid and for encapsulation of pharmaceuticals and probiotics. Knowledge is sparse on the molecular basis for alginate utilization in the gut. We identified a new Bacteroides ovatus strain from human feces that grew on alginate and encoded three alginate lyases in a gene cluster. BoPL6 and BoPL17 show complementary specificity toward guluronate (G) and mannuronate (M) residues, releasing unsaturated oligosaccharides and monouronic acids. BoPL38 produces oligosaccharides degraded by BoPL6 and BoPL17 from both alginates, G-, M-, and MG-substrates. Enzymatic and structural characterization discloses the mode of action and synergistic degradation of alginate by these alginate lyases. Other bacteria were cross-feeding on alginate oligosaccharides produced by an endo-acting alginate lyase. Hence, there is an interdependent community in our guts that can utilize alginate.


Asunto(s)
Alginatos , Bacterias , Humanos , Alginatos/metabolismo , Bacterias/metabolismo , Oligosacáridos/metabolismo , Polisacárido Liasas/metabolismo , Especificidad por Sustrato
6.
Carbohydr Polym ; 314: 120954, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37173048

RESUMEN

Pectin is one of the main components of bast fiber including ramie fiber, and must be removed before use. Enzymatic degumming is the preferred process as it is an environment-friendly, simple and controllable process for ramie degumming. However, an important problem limiting wide application of this process is the high cost due to the low efficiency of enzymatic degumming. In this study, pectin samples were extracted from raw ramie fiber and degummed ramie fiber, respectively, and their structures were characterized and compared to allow tailoring of an enzyme cocktail for degrading the pectin. It was elucidated that pectin from ramie fiber is composed of low esterified homogalacturonan (HG) and low branched rhamnogalacturonan I (RG-I), and the ratio of HG/RG-I is 1.72:1. Based on the pectin structure, potential enzymes to be used for enzymatic degumming of ramie fiber were proposed and an enzyme cocktail was customized. Degumming experiments confirmed that the customized enzyme cocktail can effectively remove pectin from ramie fiber. To our knowledge, this is the first time the structural characteristics of pectin in ramie fiber have been clarified, and it also provides an example of tailoring a specific enzyme system to achieve high-efficiency degumming for biomass containing pectin.


Asunto(s)
Boehmeria , Boehmeria/química , Polisacárido Liasas/química , Pectinas/química
7.
Int J Biol Macromol ; 231: 123137, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36639075

RESUMEN

Pectins, complex polysaccharides and major components of the plant primary cell wall, can be degraded by pectate lyases (PLs). PLs cleave glycosidic bonds of homogalacturonans (HG), the main pectic domain, by ß-elimination, releasing unsaturated oligogalacturonides (OGs). To understand the catalytic mechanism and structure/function of these enzymes, we characterized VdPelB from Verticillium dahliae. We first solved the crystal structure of VdPelB at 1.2 Å resolution showing that it is a right-handed parallel ß-helix structure. Molecular dynamics (MD) simulations further highlighted the dynamics of the enzyme in complex with substrates that vary in their degree of methylesterification, identifying amino acids involved in substrate binding and cleavage of non-methylesterified pectins. We then biochemically characterized wild type and mutated forms of VdPelB. Pectate lyase VdPelB was most active on non-methylesterified pectins, at pH 8.0 in presence of Ca2+ ions. The VdPelB-G125R mutant was most active at pH 9.0 and showed higher relative activity compared to native enzyme. The OGs released by VdPelB differed to that of previously characterized PLs, showing its peculiar specificity in relation to its structure. OGs released from Verticillium-partially tolerant and sensitive flax cultivars differed which could facilitate the identification VdPelB-mediated elicitors of defence responses.


Asunto(s)
Simulación de Dinámica Molecular , Polisacárido Liasas , Polisacárido Liasas/química , Glicósidos , Pectinas/química , Especificidad por Sustrato
8.
Int J Biol Macromol ; 234: 123457, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36716843

RESUMEN

The discovery of environmentally friendly enzymes that can convert inexpensive and abundant citrus peel pectin into high value-added product is a potential avenue for the citrus peel application. In this study, a novel PL10-family pectate lyase (pelA) was characterized from marine bacterium Echinicola pacifica. PelA was a Ca2+ dependent pectate lyase whose activity was highest at pH 8 and 40 °C. It was capable of degrading polygalacturonic acid (PGA) and citrus peel pectin (CPP), but not apple peel pectin. Notably, PelA hydrolyzed PGA to high molecular weight polysaccharide (average molecular weight 111.4 kDa). Moreover, PelA was also able to degrade CPP from nine distinct citrus species into polysaccharides (average molecular weight ranging from 84.7 to 539.2 kDa) that showed antimicrobial activity against Staphylococcus epidermidis (88.8 %), Bacillus subtilis (99.8 %), Staphylococcus aureus (92.1 %), Escherichia coli (100.0 %) and Klebsiella pneumoniae (86.4 %). Considering the high market value of pectin in the food industry, PelA's capacity to convert citrus pectin into high molecular weight polysaccharides lays a foundation for its applications.


Asunto(s)
Antiinfecciosos , Citrus , Pectinas/metabolismo , Peso Molecular , Citrus/metabolismo , Polisacárido Liasas/química
9.
Appl Biochem Biotechnol ; 194(12): 5627-5643, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35802235

RESUMEN

Pectinolytic enzymes have diverse industrial applications. Among these, pectate lyases act on the internal α-1,4-linkage of the pectate backbone, playing a critical role in pectin degradation. While most pectate lyases characterized thus far are of bacterial origin, fungi can also be excellent sources of pectinolytic enzymes. In this study, we performed biochemical characterization of the pectate lyase AnPL9 belonging to the polysaccharide lyase family 9 (PL9) from the filamentous fungus Aspergillus nidulans. Recombinant AnPL9 was produced using a Pichia pastoris expression system and purified. AnPL9 exhibited high activity on homogalacturonan (HG), pectin from citrus peel, pectin from apple, and the HG region in rhamnogalacturonan-I. Although digalacturonic acid and trigalacturonic acid were not degraded by AnPL9, tetragalacturonic acid was converted to 4,5-unsaturated digalacturonic acid and digalacturonic acid. These results indicate that AnPL9 degrades HG oligosaccharides with a degree of polymerization > 4. Furthermore, AnPL9 was stable within a neutral-to-alkaline pH range (pH 6.0-11.0). Our findings suggest that AnPL9 is a candidate pectate lyase for biotechnological applications in the food, paper, and textile industries. This is the first report on a fungal pectate lyase belonging to the PL9 family.


Asunto(s)
Aspergillus nidulans , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Polisacárido Liasas/química , Pectinas/metabolismo
10.
Lett Appl Microbiol ; 75(4): 1055-1062, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35771175

RESUMEN

A pectin lyase gene pnlzj5b from Aspergillus niger ZJ5 was identified and overexpressed successfully in Pichia pastoris. Recombinant PNLZJ5B exhibited high activity towards citrus pectin (150 U ml-1 ). Through further codon optimization, the expression efficiency of PNLZJ5B in P. pastoris increased to 3·5-fold (532/150 U ml-1 ). PNLZJ5B was purified by ultrafiltration, anion exchange and gel chromatography. It showed optimal activity and good stability at 58°C and pH 4·5. PNLZJ5B activity improved with increasing degrees of methyl esterification of pectin. The Km and Vmax values were 0·81 mg ml-1 and 372·8 µmol min-1 mg-1 , respectively. In addition, PNLZJ5B effectively decreased the viscosity of apple juice. Compared with commercial pectin lyase, PNLZJ5B obtained a higher juice volume. These favourable enzymatic properties of PNLZJ5B show potential utility in juice-processing applications and other food-related fields.


Asunto(s)
Aspergillus niger , Pichia , Aspergillus niger/genética , Concentración de Iones de Hidrógeno , Pectinas/metabolismo , Pichia/genética , Pichia/metabolismo , Polisacárido Liasas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
BMC Vet Res ; 18(1): 153, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477456

RESUMEN

BACKGROUND: The Laminaria digitata is an abundant macroalga and a sustainable feedstock for poultry nutrition. L. digitata is a good source of essential amino acids, carbohydrates and vitamins, including A, D, E, and K, as well as triacylglycerols and minerals, in particular iron and calcium. However, the few studies available in the literature with broilers document the application of this macroalga as a dietary supplement rather than a feed ingredient. No study has addressed up until now the effects of a high-level incorporation (> 2% in the diet) of L. digitata on plasma biochemical markers and hepatic lipid composition, as well as minerals and pigments profile in the liver of broilers. Our experimental design included one hundred and twenty Ross 308 male birds contained in 40 wired-floor cages and distributed to the following diets at 22 days of age (n = 10) for 15 days: 1) a corn-soybean basal diet (Control); 2) the basal diet plus 15% of L. digitata (LA); 3) the basal diet plus 15% of L. digitata with 0.005% of Rovabio® Excel AP (LAR); and 4) the basal diet plus 15% of L. digitata with 0.01% of the recombinant CAZyme, alginate lyase (LAE). RESULTS: L. digitata compromised birds' growth performance by causing a reduction in final body weight. It was found an increase in hepatic n-3 and n-6 fatty acids, in particular C18:2n-6, C18:3n-6, C20:4n-6, C20:5n-3, C22:5n-3 and C22:6n-3 with the addition of the macroalga, with or without feed enzymes, to the broiler diets. Also, the beneficial C18:3n-3 fatty acid was increased by combining L. digitata and commercial Rovabio® Excel AP compared to the control diet. The sum of SFA, MUFA and the n-6/n-3 PUFA ratio were decreased by L. digitata, regardless the addition of exogenous enzymes. ß-carotene was enhanced by L. digitata, individually or combined with CAZymes, being also responsible for a positive increase in total pigments. Macrominerals, in particular phosphorous and sulphur, were increased in the liver of broilers fed L. digitata individually relative to the control. For microminerals, copper, iron and the correspondent sum were consistently elevated in the liver of broilers fed L. digitata, individually or combined with exogenous CAZymes. The powerful discriminant analysis tool based on the hepatic characterization revealed a good separation between the control group and L. digitata diets but failed to discriminate the addition of feed enzymes. CONCLUSIONS: Overall, this study highlights the value of L. digitata as a feed ingredient for the poultry industry. Moreover, we can conclude that the effect of L. digitata overpowers the effect of feed enzymes, both the Rovabio® Excel AP and the alginate lyase. Having in mind the negative effects observed on birds' performance, our main recommendation at this stage is to restraint L. digitata incorporation level in forthcoming nutritional studies.


Asunto(s)
Laminaria , Animales , Pollos , Dieta/veterinaria , Ácidos Grasos/metabolismo , Femenino , Hierro , Laminaria/metabolismo , Hígado/metabolismo , Masculino , Minerales , Polisacárido Liasas
12.
Mar Drugs ; 20(3)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35323458

RESUMEN

Alginate oligosaccharides (AOS) have many biological activities and significant applications in prebiotics, nutritional supplements, and plant growth development. Alginate lyases have unique advantages in the preparation of AOS. However, only a limited number of alginate lyases have been so far reported to have potentials in the preparation of AOS with specific degrees of polymerization. Here, an alginate-degrading strain Pseudoalteromonasarctica M9 was isolated from Sargassum, and five alginate lyases were predicted in its genome. These putative alginate lyases were expressed and their degradation products towards sodium alginate were analyzed. Among them, AlyM2 mainly generated trisaccharides, which accounted for 79.9% in the products. AlyM2 is a PL6 lyase with low sequence identity (≤28.3%) to the characterized alginate lyases and may adopt a distinct catalytic mechanism from the other PL6 alginate lyases based on sequence alignment. AlyM2 is a bifunctional endotype lyase, exhibiting the highest activity at 30 °C, pH 8.0, and 0.5 M NaCl. AlyM2 predominantly produces trisaccharides from homopolymeric M block (PM), homopolymeric G block (PG), or sodium alginate, with a trisaccharide production of 588.4 mg/g from sodium alginate, indicating its promising potential in preparing trisaccharides from these polysaccharides.


Asunto(s)
Alginatos/química , Proteínas Bacterianas , Polisacárido Liasas , Pseudoalteromonas/enzimología , Sargassum/microbiología , Trisacáridos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Polisacárido Liasas/química , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/aislamiento & purificación , ARN Ribosómico 16S
13.
Plant Physiol ; 189(2): 1037-1049, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35238391

RESUMEN

The regulatory mechanisms that link WRKY gene expression to fruit ripening are largely unknown. Using transgenic approaches, we showed that a WRKY gene from wild strawberry (Fragaria vesca), FvWRKY48, may be involved in fruit softening and ripening. We showed that FvWRKY48 is localized to the nucleus and that degradation of the pectin cell wall polymer homogalacturonan, which is present in the middle lamella and tricellular junction zones of the fruit, was greater in FvWRKY48-OE (overexpressing) fruits than in empty vector (EV)-transformed fruits and less substantial in FvWRKY48-RNAi (RNA interference) fruits. Transcriptomic analysis indicated that the expression of pectate lyase A (FvPLA) was significantly downregulated in the FvWRKY48-RNAi receptacle. We determined that FvWRKY48 bound to the FvPLA promoter via a W-box element through yeast one-hybrid, electrophoretic mobility shift, and chromatin immunoprecipitation quantitative polymerase chain reaction experiments, and ß-glucosidase activity assays suggested that this binding promotes pectate lyase activity. In addition, softening and pectin degradation were more intense in FvPLA-OE fruit than in EV fruit, and the middle lamella and tricellular junction zones were denser in FvPLA-RNAi fruit than in EV fruit. We speculated that FvWRKY48 maybe increase the expression of FvPLA, resulting in pectin degradation and fruit softening.


Asunto(s)
Fragaria , Pared Celular/genética , Pared Celular/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Pectinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Polisacárido Liasas
14.
Int J Biol Macromol ; 204: 532-539, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35151709

RESUMEN

Pectate lyase (ErPL2) from Echinicola rosea JL3085 showed maximal activity at 45 °C and pH 9.0 with 0.6 mM CaCl2. The Km and Vmax values of ErPL2 for polygalacturonic sodium were 2.098 mmol/L and 0.955 mmol/s, respectively. ErPL2 endolytically degraded pectic substances into oligosaccharides with degree of polymerization (DP) 1-5. To improve the thermostability and pH operation range, recombinant ErPL2 was immobilized onto mesoporous titanium oxide particles (MTOPs). MTOPs have abundant hydroxyl groups on the surface, which is a non-toxicity and good biocompatibility carrier. The residual enzyme activity of immobilized ErPL2 at 40 °C increased remarkably from 11% to 91% compared with free enzyme. The operable pH range was extended from 8-9 to 9-11. Surprisingly, the catalytic efficiency of immobilized ErPL2 was about 19 times higher than free enzyme. To our knowledge this is the first attempt of pectate lyase immobilized on MTOPs and it provides a new option for improving the catalytic performance.


Asunto(s)
Pectinas , Polisacárido Liasas , Oligosacáridos/metabolismo , Pectinas/química , Polisacárido Liasas/química
15.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36613981

RESUMEN

Alkaline pectate lyases have biotechnological applications in plant fiber processing, such as ramie degumming. Previously, we characterized an alkaline pectate lyase from Bacillus clausii S10, named BacPelA, which showed potential for enzymatic ramie degumming because of its high cleavage activity toward methylated pectins in alkaline conditions. However, BacPelA displayed poor thermo-alkaline stability. Here, we report the 1.78 Å resolution crystal structure of BacPelA in apo form. The enzyme has the characteristic right-handed ß-helix fold of members of the polysaccharide lyase 1 family and shows overall structural similarity to them, but it displays some differences in the details of the secondary structure and Ca2+-binding site. On the basis of the structure, 10 sites located in flexible regions and showing high B-factor and positive ΔTm values were selected for mutation, aiming to improve the thermo-alkaline stability of the enzyme. Following site-directed saturation mutagenesis and screening, mutants A238C, R150G, and R216H showed an increase in the T5015 value at pH 10.0 of 3.0 °C, 6.5 °C, and 7.0 °C, respectively, compared with the wild-type enzyme, interestingly accompanied by a 24.5%, 46.6%, and 61.9% increase in activity. The combined mutant R150G/R216H/A238C showed an 8.5 °C increase in the T5015 value at pH 10.0, and an 86.1% increase in the specific activity at 60 °C, with approximately doubled catalytic efficiency, compared with the wild-type enzyme. Moreover, this mutant retained 86.2% activity after incubation in ramie degumming conditions (4 h, 60 °C, pH 10.0), compared with only 3.4% for wild-type BacPelA. The combined mutant increased the weight loss of ramie fibers in degumming by 30.2% compared with wild-type BacPelA. This work provides a thermo-alkaline stable, highly active pectate lyase with great potential for application in the textile industry, and also illustrates an effective strategy for rational design and improvement of pectate lyases.


Asunto(s)
Boehmeria , Boehmeria/química , Polisacárido Liasas/genética , Polisacárido Liasas/química , Pectinas/química , Biotecnología , Concentración de Iones de Hidrógeno
16.
J Biol Chem ; 298(1): 101446, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826421

RESUMEN

The catabolism of pectin from plant cell walls plays a crucial role in the virulence of the phytopathogen Dickeya dadantii. In particular, the timely expression of pel genes encoding major pectate lyases is essential to circumvent the plant defense systems and induce massive pectinolytic activity during the maceration phase. Previous studies identified the role of a positive feedback loop specific to the pectin-degradation pathway, whereas the precise signals controlling the dynamics of pectate lyase expression were unclear. Here, we show that the latter is controlled by a metabolic switch involving both glucose and pectin. We measured the HPLC concentration profiles of the key metabolites related to these two sources of carbon, cAMP and 2-keto-3-deoxygluconate, and developed a dynamic and quantitative model of the process integrating the associated regulators, cAMP receptor protein and KdgR. The model describes the regulatory events occurring at the promoters of two major pel genes, pelE and pelD. It highlights that their activity is controlled by a mechanism of carbon catabolite repression, which directly controls the virulence of D. dadantii. The model also shows that quantitative differences in the binding properties of common regulators at these two promoters resulted in a qualitatively different role of pelD and pelE in the metabolic switch, and also likely in conditions of infection, justifying their evolutionary conservation as separate genes in this species.


Asunto(s)
Represión Catabólica , Dickeya , Pectinas , Proteínas Bacterianas/metabolismo , Dickeya/metabolismo , Digestión , Enterobacteriaceae/metabolismo , Regulación Bacteriana de la Expresión Génica , Pectinas/metabolismo , Polisacárido Liasas/química
17.
Carbohydr Polym ; 277: 118813, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893230

RESUMEN

Citrus pectins were studied by enzymatic fingerprinting using a simultaneous enzyme treatment with endo-polygalacturonase (endo-PG) from Kluyveromyces fragilis and pectin lyase (PL) from Aspergillus niger to reveal the methyl-ester distribution patterns over the pectin backbone. Using HILIC-MS combined with HPAEC enabled the separation and identification of the diagnostic oligomers released. Structural information on the pectins was provided by using novel descriptive parameters such as degree of blockiness of methyl-esterified oligomers by PG (DBPGme) and degree of blockiness of methyl-esterified oligomers by PL (DBPLme). This approach enabled us to clearly differentiate citrus pectins with various methyl-esterification patterns. The simultaneous use of PG and PL showed additional information, which is not revealed in digests using PG or PL alone. This approach can be valuable to differentiate pectins having the same DM and to get specific structural information on pectins and therefore to be able to better predict their physical and biochemical functionalities.


Asunto(s)
Pectinas/metabolismo , Poligalacturonasa/metabolismo , Polisacárido Liasas/metabolismo , Aspergillus niger/enzimología , Kluyveromyces/enzimología , Pectinas/análisis
18.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576171

RESUMEN

Hydrogen sulfide (H2S) plays several physiological roles in plants. Despite the evidence, the role of H2S on cell wall disassembly and its implications on fleshy fruit firmness remains unknown. In this work, the effect of H2S treatment on the shelf-life, cell wall polymers and cell wall modifying-related gene expression of Chilean strawberry (Fragaria chiloensis) fruit was tested during postharvest storage. The treatment with H2S prolonged the shelf-life of fruit by an effect of optimal dose. Fruit treated with 0.2 mM H2S maintained significantly higher fruit firmness than non-treated fruit, reducing its decay and tripling its shelf-life. Additionally, H2S treatment delays pectin degradation throughout the storage period and significantly downregulated the expression of genes encoding for pectinases, such as polygalacturonase, pectate lyase, and expansin. This evidence suggests that H2S as a gasotransmitter prolongs the post-harvest shelf-life of the fruit and prevents its fast softening rate by a downregulation of the expression of key pectinase genes, which leads to a decreased pectin degradation.


Asunto(s)
Fragaria/metabolismo , Frutas/metabolismo , Pectinas/metabolismo , Pared Celular/metabolismo , Gasotransmisores/metabolismo , Regulación de la Expresión Génica de las Plantas , Sulfuro de Hidrógeno/metabolismo , Polisacárido Liasas/metabolismo
19.
Ann Bot ; 128(5): 511-525, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34111288

RESUMEN

BACKGROUND AND AIMS: The programmed softening occurring during fruit development requires scission of cell wall polysaccharides, especially pectin. Proposed mechanisms include the action of wall enzymes or hydroxyl radicals. Enzyme activities found in fruit extracts include pectate lyase (PL) and endo-polygalacturonase (EPG), which, in vitro, cleave de-esterified homogalacturonan in mid-chain by ß-elimination and hydrolysis, respectively. However, the important biological question of whether PL exhibits action in vivo had not been tested. METHODS: We developed a method for specifically and sensitively detecting in-vivo PL products, based on Driselase digestion of cell wall polysaccharides and detection of the characteristic unsaturated product of PL action. KEY RESULTS: In model in-vitro experiments, pectic homogalacturonan that had been partially cleaved by commercial PL was digested to completion with Driselase, releasing an unsaturated disaccharide ('ΔUA-GalA'), taken as diagnostic of PL action. ΔUA-GalA was separated from saturated oligogalacturonides (EPG products) by electrophoresis, then subjected to thin-layer chromatography (TLC), resolving ΔUA-GalA from higher homologues. The ΔUA-GalA was confirmed as 4-deoxy-ß-l-threo-hex-4-enopyranuronosyl-(1→4)-d-galacturonic acid by NMR spectroscopy. Driselase digestion of cell walls from ripe fruits of date (Phoenix dactylifera), pear (Pyrus communis), rowan (Sorbus aucuparia) and apple (Malus pumila) yielded ΔUA-GalA, demonstrating that PL had been acting in vivo in these fruits prior to harvest. Date-derived ΔUA-GalA was verified by negative-mode mass spectrometry, including collision-induced dissociation (CID) fragmentation. The ΔUA-GalA:GalA ratio from ripe dates was roughly 1:20 (mol mol-1), indicating that approx. 5 % of the bonds in endogenous homogalacturonan had been cleaved by in-vivo PL action. CONCLUSIONS: The results provide the first demonstration that PL, previously known from studies of fruit gene expression, proteomic studies and in-vitro enzyme activity, exhibits enzyme action in the walls of soft fruits and may thus be proposed to contribute to fruit softening.


Asunto(s)
Frutas , Phoeniceae , Pared Celular , Pectinas , Polisacárido Liasas , Proteómica
20.
Carbohydr Polym ; 264: 118047, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33910749

RESUMEN

Unsaturated guluronate oligosaccharide (GOS) was prepared from alginate-derived homopolymeric blocks of guluronic acid by alginate lyase-mediated depolymerization. In this study, a GOS-based water-in-oil-in-water (W1/O/W2) nanoemulsion was prepared, and different influencing factors were investigated. First, linseed oil was selected as the optimal carrier oil. Then, other optimal conditions of the GOS nanoemulsion were determined based on response surface methodology (RSM). Under the optimal conditions, the obtained GOS nanoemulsion showed a spherical structure with an average particle size of 273.93 ±â€¯8.91 nm, and its centrifugal stability was 91.37 ±â€¯0.45 %. Moreover, the GOS nanoemulsion could achieve the aim of sustained release in vitro and be stably stored at 4°C for at least 5 days. This work prepared a novel GOS-based W1/O/W2 nanoemulsion that may effectively address the storage difficulties of unsaturated GOS and provides a valuable contribution to the application of GOS in the food and medicine fields.


Asunto(s)
Ácidos Hexurónicos/química , Nanoestructuras/química , Oligosacáridos/química , Alginatos/química , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Estabilidad de Medicamentos , Emulsiones/química , Humanos , Aceite de Linaza/química , Oxidación-Reducción , Tamaño de la Partícula , Polisacárido Liasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA