Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 714
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 227, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381223

RESUMEN

The extracellular heteropolysaccharide xanthan, synthesized by bacteria of the genus Xanthomonas, is widely used as a thickening and stabilizing agent across the food, cosmetic, and pharmaceutical sectors. Expanding the scope of its application, current efforts target the use of xanthan to develop innovative functional materials and products, such as edible films, eco-friendly oil surfactants, and biocompatible composites for tissue engineering. Xanthan-derived oligosaccharides are useful as nutritional supplements and plant defense elicitors. Development and processing of such new functional materials and products often necessitate tuning of xanthan properties through targeted structural modification. This task can be effectively carried out with the help of xanthan-specific enzymes. However, the complex molecular structure and intricate conformational behavior of xanthan create problems with its enzymatic hydrolysis or modification. This review summarizes and analyzes data concerning xanthan-degrading enzymes originating from microorganisms and microbial consortia, with a particular focus on the dependence of enzymatic activity on the structure and conformation of xanthan. Through a comparative study of xanthan-degrading pathways found within various bacterial classes, different microbial enzyme systems for xanthan utilization have been identified. The characterization of these new enzymes opens new perspectives for modifying xanthan structure and developing innovative xanthan-based applications. KEY POINTS: • The structure and conformation of xanthan affect enzymatic degradation. • Microorganisms use diverse multienzyme systems for xanthan degradation. • Xanthan-specific enzymes can be used to develop xanthan variants for novel applications.


Asunto(s)
Suplementos Dietéticos , Consorcios Microbianos , Polisacáridos Bacterianos , Hidrólisis , Mutagénesis Sitio-Dirigida
2.
Int J Biol Macromol ; 262(Pt 1): 129776, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281532

RESUMEN

Kinnow mandarin is an important citrus fruit that undergoes various postharvest qualitative losses. Therefore, the present study aimed to investigate the effect of polysaccharide-based xanthan gum (XG) coatings and lemongrass essential oil (LG) on the nutritive quality of Kinnow mandarins stored at 5-7 °C, 90-95 % RH for 75 days. The results revealed that in comparison to control the coatings maintained the fruit titratable acidity (TA), soluble solid content (SSC), ascorbic acid (AsA) content, total flavonoid content (TFC), and juice content, along with reduced weight loss and spoilage incidence. The coated fruits also exhibited higher sensory quality, total antioxidant activity (TAA), and activities of enzymes; catalase (CAT), peroxidase (POD), and phenylalanine ammonia-lyase (PAL). At the end of storage, the fruits coated with XG 1.0 % + LG 1.0 % exhibited maximum TA (0.69 %), AsA content (203.5 mg L-1), and TFC (0.21 mg g-1) with minimum weight loss (7.57 %) and spoilage (3.01 %) and SSC (11.87 %). The scanning electron microscopic (SEM) images of the coated fruits also exhibited smooth surfaces with closed stomata pores. Overall, XG 1.0 % + LG 1.0 % proved as a potential postharvest treatment for maintaining the nutritive quality of Kinnow under low-temperature storage.


Asunto(s)
Antioxidantes , Frutas , Aceites de Plantas , Polisacáridos Bacterianos , Terpenos , Humanos , Antioxidantes/farmacología , Frutas/química , Conservación de Alimentos/métodos , Temperatura , Ácido Ascórbico/análisis , Flavonoides/farmacología , Pérdida de Peso
3.
Food Res Int ; 177: 113836, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225113

RESUMEN

An acidic beverage was formulated with xanthan gum (XG), pectin (P) and brewer spent grain (BSG) peptides with antioxidant and antihypertensive properties. The impact of hydrocolloids levels on peptide bioaccessibility was studied. Peptides were obtained from BSG using Purazyme and Flavourzyme enzymes. BSG peptides were fractionated by ultrafiltration (UF) and four fractions were obtained: F1 (>10 kDa), F2 (10-5 kDa), F3 (1-5 kDa), and F4 (<1 kDa). F3 showed the highest protein purity, ferulic acid content, proportion of amphipathic peptides, and bioactive properties (ABTS+ radical scavenging and ACE-I inhibitory activity). The identified peptides from F3 by tandem mass spectrometry were 138. In silico analysis showed that 26 identified peptides had ABTS+ inhibitory activity, while 59 ones presented good antihypertensive properties. The effect of XG and P levels on bioaccessibility of F3 peptides in the formulated beverages was studied by a central composite experimental design. It was observed that F3 peptides interacted with hydrocolloids by electrostatic forces at pH of formulated beverages. The addition of hydrocolloids to formulation modulated the release of the antioxidant peptides and protected the degradation of ACE-I inhibitory peptides from F3 during simulated gastrointestinal digestion. Finally, the level of hydrocolloids that produced intermediate viscosities in the formulated beverages improved the bioaccessibility of the F3 peptides.


Asunto(s)
Antihipertensivos , Antioxidantes , Benzotiazoles , Polisacáridos Bacterianos , Ácidos Sulfónicos , Antihipertensivos/química , Antioxidantes/análisis , Hidrólisis , Inhibidores de la Enzima Convertidora de Angiotensina/química , Pectinas/análisis , Hidrolisados de Proteína/química , Péptidos/química , Grano Comestible/química , Coloides/análisis
4.
Food Funct ; 15(4): 1938-1947, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38269604

RESUMEN

This study evaluates the functional characteristics of the exopolysaccharide (EPS) extracts produced by various strains of Lactiplantibacillus pentosus (LPG1, 119, 13B4, and Lp13) and Lactiplantibacillus plantarum (Lp15) isolated from table olives. None of the EPS crude extracts showed cytotoxicity when administered to THP-1 human macrophage cells at dosages ranging from 6.25 to 50 µg mL-1. Many exhibited anti-inflammatory properties (reduction of pro-inflammatory cytokines TNF-α and IL-6 production) and antioxidant activity (reduction of ROS%) when macrophages were stimulated with Escherichia coli lipopolysaccharide. Notably, the EPS extract produced by the L. pentosus LPG1 strain had the best results corroborated by western blot immune analysis for differential expression of COX-2, Nrf-2, and HO-1 proteins, with the most significant antioxidant and anti-inflammatory response observed at a dosage of 50 µg mL-1. Chemical analysis revealed that the EPS extract produced by this strain contains a heteropolymer composed of mannose (35.45%), glucose (32.99%), arabinose (17.93%), xylose (7.48%), galactose (4.03%), rhamnose (1.34%), and fucose (0.77%). Finally, we conducted response surface methodology to model the EPS extract production by L. pentosus LPG1 considering pH (3.48-8.52), temperature (16.59-33.41 °C) and salt concentration (0.03-8.77% NaCl) as independent variables. The model identified linear effects of salt and pH and quadratic effects of salt as significant terms. The maximum EPS extract production (566 mg L-1) in a synthetic culture medium (MRS) was achieved at pH 7.5, salt 7.0%, and a temperature of 20 °C. These findings suggest the potential for novel applications for the EPS produced by L. pentosus LPG1 as nutraceutical candidates for use in human diets.


Asunto(s)
Olea , Polisacáridos Bacterianos , Humanos , Polisacáridos Bacterianos/química , Suplementos Dietéticos , Medios de Cultivo , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios
5.
Int J Biol Macromol ; 257(Pt 2): 128701, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072348

RESUMEN

Trichomoniasis is a common sexually transmitted infection that poses significant complications for women. Challenges in treatment include adverse effects and resistance to standard antimicrobial agents. Given this context, a sesame seed oil nanoemulsion (SONE) was developed and showed anti-Trichomonas vaginalis activity. To facilitate the local application of SONE, a polysaccharide film was developed using xanthan gum (XG) and κ-carrageenan gum (CG). A blend of XG and CG (at 2 %, ratio 1:3) plasticized with glycerol produced a more promising film (XCF) than using the gums individually. The film containing SONE (SONE-XCF) was successfully obtained by replacing the aqueous solvent with SONE via solvent evaporation technique. The hydrophilic SONE-XCF exhibited homogeneity and suitable mechanical properties for vaginal application. Furthermore, SONE-XCF demonstrated mucoadhesive properties and high absorption capacity for excessive vaginal fluids produced in vaginitis. It also had a disintegration time of over 8 h, indicating long retention at the intended site of action. Hemolysis and chorioallantoic membrane tests confirmed the safety of the film. Therefore, SONE-XCF is a biocompatible film with a natural composition and inherent activity against T. vaginalis, possessing exceptional characteristics that make it appropriate for vaginal application, offering an interesting alternative for trichomoniasis treatment.


Asunto(s)
Nanocompuestos , Sesamum , Tricomoniasis , Femenino , Humanos , Carragenina , Prednisona , Polisacáridos Bacterianos , Solventes , Preparaciones Farmacéuticas , Aceites de Plantas/farmacología
6.
Int J Biol Macromol ; 256(Pt 2): 128551, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043659

RESUMEN

The subtle balance between the interactions of polysaccharide molecules and the interactions of polysaccharide molecules with oil molecules is significantly important for developing polysaccharide-based polyunsaturated oleogels. Here, hydroxylpropyl methyl cellulose and xanthan gum were used to structure edible oleogels via emulsion-template methodology, while the effects of drying methods (hot-air drying (AD) and vacuum-freeze drying (FD)) and oil types (walnut, flaxseed and Moringa seed oil) on the structure, oil binding capacity (OBC), rheological properties, thermal behaviors and stability of oleogels were specially investigated. Compared with AD oleogels, FD oleogels exhibited significantly better OBC, enhanced gelation strength (G' value) and better capacity to holding oil after high temperature processing, which was attributed to the possibly increased oil-polysaccharide interactions. However, the weakened polysaccharide-polysaccharide interactions in FD oleogels failed in providing stronger physical interface or enough rigidity to restrict the migration of oil molecules. Polyunsaturated triacylglycerols in vegetable oils deeply participated in the construction of the network of AD oleogels through weak intermolecular non-covalent interactions, which in turn greatly changed the crystallization and melting behaviors of vegetables oils. In brief, this research may provide useful information for the development of polysaccharide-based polyunsaturated oil oleogels.


Asunto(s)
Metilcelulosa , Polisacáridos Bacterianos , Metilcelulosa/química , Aceites de Plantas , Compuestos Orgánicos
7.
Sci Rep ; 13(1): 21871, 2023 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072846

RESUMEN

Bacterial exopolysaccharides are homopolymeric or heteropolymeric polysaccharides with large molecular weights (10-1000 kDa). Exopolysaccharides' functional uses and potential have revolutionized the industrial and medicinal industries. Hence, the aim of the present study was to optimize the production of bacterial exopolysaccharide and apply it as a capping agent for selenium nanoparticles synthesis. Exopolysaccharide (EPS) producing Lactic acid bacteria (LAB) were isolated from dairy products then biochemically characterized and assessed for their potential antimicrobial effect. The most potent EPS producer was identified as Lactiplantibacillus plantarum strain A2 with accession number OP218384 using 16S rRNA sequencing. Overall, FTIR data of the extracted EPS revealed similarity with amylopectin spectrum. 1H NMR spectrum revealed an α-anomeric configuration of the glycosidic linkage pattern in the polysaccharides while the 13C NMR spectrum can also be separated into two main portions, the anomeric carbons region (δ 98-102 ppm) and the non-anomeric carbons region (δ 60-81 ppm). Antimicrobial activity of the produced EPS showed maximum activity against Staphylococcus aureus, MRSA, Enterobacter aerogenes, Klebsiella pneumoniae and Candida albicans respectively. The EPS capsule layer surrounding the bacterial cells was detected by TEM study. Optimization of EPS production was evaluated using Taguchi design, trial 23 reported the highest biomass yield and EPS output (6.5 and 27.12 g/L respectively) with 2.4 and 3.3 folds increase (from the basal media) respectively. The optimized exopolysaccharide was used as a capping and stabilizing agent for selenium nanoparticles (EPS-SeNPs) synthesis. Zeta potential, size and PDI of the synthesized nanoparticles were - 19.7 mV, 45-65 nm and 0.446 respectively with strong bactericidal and fungicidal effect against the tested pathogens. Complete microbial growth eradication was recorded after 6, 8 and 10 h against Staphylococcus aureus, Candida albicans and Klebsiella pneumoniae respectively. EPS-SeNPs showed a potent antioxidant effect reached 97.4% and anticancer effect against A549 lung cancer cell line (IC50 reached 5.324 µg/mL). EPS-SeNPs inhibited cancerous cell growth at S phase. Moreover, molecular studies revealed the anti-apoptotic activity of Bcl2's was inhibited and Bax was activated. The present investigation successfully synthesized selenium nanoparticles through bacterial EPS with significantly high antimicrobial and anticancer activity.


Asunto(s)
Antiinfecciosos , Neoplasias Pulmonares , Nanopartículas , Selenio , Humanos , Selenio/farmacología , Selenio/química , ARN Ribosómico 16S/genética , Polisacáridos Bacterianos/química , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Nanopartículas/química , Staphylococcus aureus/genética , Candida albicans , Bacterias/genética
8.
Int J Pharm ; 645: 123435, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37741560

RESUMEN

A recommended first-line acute bacterial rhinosinusitis (ABR) treatment regimen includes a high dose of orally administered amoxicillin, despite its frequent systemic adverse reactions coupled with poor oral bioavailability. Therefore, to overcome these issues, nasal administration of amoxicillin might become a potential approach for treating ABR locally. The present study aimed to develop a suitable carrier system for improved local nasal delivery of amoxicillin employing the combination of albumin nanoparticles and gellan gum, an ionic-sensitive polymer, under the Quality by Design methodology framework. The application of albumin nanocarrier for local nasal antibiotic therapy means a novel approach by hindering the nasal absorption of the drug through embedding into an in situ gelling matrix, further prolonging the drug release in the nasal cavity. The developed formulations were characterized, including mucoadhesive properties, in vitro drug release and antibacterial activities. Based on the results, 0.3 % w/v gellan gum concentration was selected as the optimal in situ gelling matrix. Essentially, each formulation adequately inhibited the growth of five common nasal pathogens in ABR. In conclusion, the preparation of albumin-based nanoparticles integrated with in situ ionic-sensitive polymer provides promising ability as nanocarrier systems for delivering amoxicillin intranasally for local antibiotic therapy.


Asunto(s)
Amoxicilina , Nanopartículas , Albúmina Sérica Bovina , Administración Intranasal , Mucosa Nasal , Antibacterianos , Polímeros , Geles , Sistemas de Liberación de Medicamentos , Polisacáridos Bacterianos
9.
Planta Med ; 89(15): 1483-1492, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37647915

RESUMEN

Immulina is a commercially available extract of Arthrospira platensis enriched with bacterial lipoproteins that acts as a potent Toll-like receptor 2 agonist. However, the immunostimulatory effect of Immulina is not well understood in vivo. Here, to devise an Immulina formulation suitable for in vivo oral gavage dosing, Immulina nanosuspension was prepared and freeze-dried to yield lyophilized nano-Immulina, which had an average particle size of around 300 nm and fully retained the bioactivity as a Toll-like receptor 2 agonist. Compared to the regular Immulina powder, lyophilized nano-Immulina notably accelerated the dissolution in aqueous media. Immulina nanosuspension was found to stimulate the production of proinflammatory cytokines in murine bone marrow-derived dendritic cells and macrophages. The immune response to Immulina was investigated in healthy mice by longitudinally monitoring the phagocytic activity of circulating neutrophils as a surrogate marker. Following daily oral ingestion of Immulina nanosuspension (10 mg/mouse/day), the phagocytic activity of circulating neutrophils was significantly elevated, suggesting an important mechanism for Immulina to enhance innate immunity.


Asunto(s)
Nanopartículas , Receptor Toll-Like 2 , Ratones , Animales , Polisacáridos Bacterianos , Macrófagos , Adyuvantes Inmunológicos/farmacología , Tamaño de la Partícula , Solubilidad
10.
Int J Biol Macromol ; 243: 125092, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37247706

RESUMEN

Scientists from across the world are being inspired by recent development in polysaccharides and their use in medical administration. Due to their extraordinary physical, chemical, and biological characteristics, polysaccharides are excellent materials for use in medicine. Acidic polysaccharides, which include Pectin, Xanthan gum, Carrageenan, Alginate, and Glycosaminoglycan, are natural polymers with carboxyl groups that are being researched for their potential as drug delivery systems. Most publications do not discuss how the different polysaccharides interact structurally in terms of drug delivery, which limits the scope of their use. The purpose of this review is to inform readers about the structural activity correlations between acidic polysaccharides, their different modification process and effects of combination of various acidic polysaccharides which have been used in drug delivery systems and expanding their potential applications, and bringing new perspectives to the fore.


Asunto(s)
Polisacáridos Bacterianos , Polisacáridos , Polisacáridos/química , Polisacáridos Bacterianos/química , Sistemas de Liberación de Medicamentos , Alginatos/química , Carragenina , Pectinas , Polímeros/química
11.
Food Chem ; 409: 135289, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36586260

RESUMEN

Different xanthan gum (XG) concentrations on the rheological/texture properties of Pickering emulsion (PE) gel stabilized by tea protein/xanthan gum (TP/XG) were studied to achieve an ink feasible for 3D printing. Afterwards, the effects of 3D printing and digestion process on the viability of probiotics were studied when encapsulated in the PE gel. Results indicated that gel strength, stability, storage modulus (G') and loss modulus (G″) increased as XG concentration increased. Nozzle diameter and printing temperature of 45 and 55℃ had no significant effect on probiotic's viability, but printing temperature of 65℃ reduced viable probiotics from 8.07 to 6.59 log CFU/g. No significant change of probiotics viability in 3D printed samples was observed during 11-day storage at 4℃. PE gel encapsulated probiotic's viability was significantly improved under heat treatment and simulated gastrointestinal environment. This study gives insights on the production of 3D printed foods using PE gel incorporating probiotics.


Asunto(s)
Polisacáridos Bacterianos , Impresión Tridimensional , Emulsiones , , Reología
12.
Food Chem ; 403: 134320, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36162267

RESUMEN

A novel film composed of Polygonatum cyrtonema extracts (PCE), xanthan gum (XG), flaxseed gum (FG) and carboxymethyl cellulose (CMC) was prepared (XFCP). Addition of PCE has decreased the light transmittance, while enhanced the UV blocking performance, antioxidant activity, tensile strength and elongation at break of XFCP due to polysaccharides, polyphenols, and flavonoid in PCE. Structural analyses by FTIR and XRD indicated the hydrogen-bonding interaction between PCE, XG, FG and CMC. It was found that compared with the control sample, XFCP2.5% with the lowest WVTR was able to prolong the shelf life of mango. The overall quality of mango was also improved in terms of lower decay rate, weight loss rate, total soluble solid, and polyphenol oxidase, higher titratable acidity, Vc, and superoxide dismutase than control mango upon 8 days of storage. This effectively expanded the application of PCE into food packaging in addition to merely as Chinese traditional medicine herbs.


Asunto(s)
Lino , Mangifera , Polygonatum , Carboximetilcelulosa de Sodio/química , Antioxidantes/química , Polisacáridos Bacterianos/química , Embalaje de Alimentos , Extractos Vegetales
13.
World J Microbiol Biotechnol ; 39(2): 49, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542187

RESUMEN

Microbial exopolysaccharides (EPSs) are mostly produced by bacteria and fungi and have potential use in the production of biomedical products such as nutraceuticals and in tissue engineering applications. The present study investigated the in vitro biological activities and in vivo wound healing effects of EPSs produced from a Sclerotium-forming fungus (Sclerotium glucanicum DSM 2159) and a yeast (Rhodosporidium babjevae), denoted as scleroglucan (Scl) and EPS-R, respectively. EPS yields of 0.9 ± 0.07 g/L and 1.11 ± 0.4 g/L were obtained from S. glucanicum and R. babjevae, respectively. The physicochemical properties of the EPSs were characterized using infrared spectroscopy and scanning electron microscopy. Further investigations of the biological properties showed that both EPSs were cytocompatible toward the human fibroblast cell line and demonstrated  hemocompatibility. Favorable wound healing capacities of the EPSs (10 mg/mL) were also established via in vivo tests. The present study therefore showed that the EPSs produced by S. glucanicum and R. babjevae have the potential use as biocompatible components for the promotion of dermal wound healing.


Asunto(s)
Ascomicetos , Cicatrización de Heridas , Humanos , Bacterias/metabolismo , Ascomicetos/metabolismo , Suplementos Dietéticos , Línea Celular , Polisacáridos Bacterianos/farmacología , Polisacáridos Bacterianos/metabolismo
14.
Carbohydr Polym ; 297: 120014, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36184137

RESUMEN

Ocular drug delivery is a significantly challenging task due to the presence of various anatomical and physiological barriers in the eye. Naturally available polysaccharides, when used as drug vehicles provide increased retention time, bioavailability, and penetration due to their unique mucoadhesive and charge-possessing nature. This review discusses the polysaccharide-based drug delivery system for the eye. Polysaccharides like alginic acid, cellulose derivatives, chitosan, pectin, xanthan gum, gellan gum, and hyaluronic acid are reviewed in this report. Additionally, emphasis is given to some of the recently investigated polymers such as sugarcane bagasse cellulose, a polysaccharide extracted from the seeds of Manilkara zapota, and Tremella fuciformis polysaccharide as drug vehicles for effective ocular drug delivery. This review also provides insight on clinical status and FDA-approved polysaccharides for ophthalmic delivery of therapeutics.


Asunto(s)
Quitosano , Saccharum , Ácido Algínico , Celulosa , Sistemas de Liberación de Medicamentos , Excipientes , Ácido Hialurónico , Pectinas , Polímeros , Polisacáridos , Polisacáridos Bacterianos
15.
Appl Microbiol Biotechnol ; 106(21): 7173-7185, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36156161

RESUMEN

A synergistic approach using cultivation methods, chemical, and bioinformatic analyses was applied to explore the potential of Pseudoalteromonas sp. S8-8 in the production of extracellular polymeric substances (EPSs) and the possible physiological traits related to heavy metal and/or antibiotic resistance. The effects of different parameters (carbon source, carbon source concentration, temperature, pH and NaCl supplement) were tested to ensure the optimization of growth conditions for EPS production by the strain S8-8. The highest yield of EPS was obtained during growth in culture medium supplemented with glucose (final concentration 2%) and NaCl (final concentration 3%), at 15 °C and pH 7. The EPS was mainly composed of carbohydrates (35%), followed by proteins and uronic acids (2.5 and 2.77%, respectively) and showed a monosaccharidic composition of glucose: mannose: galactosamine: galactose in the relative molar proportions of 1:0.7:0.5:0.4, as showed by the HPAE-PAD analysis. The detection of specific molecular groups (sulfates and uronic acid content) supported the interesting properties of EPSs, i.e. the emulsifying and cryoprotective action, heavy metal chelation, with interesting implication in bioremediation and biomedical fields. The analysis of the genome allowed to identify a cluster of genes involved in cellulose biosynthesis, and two additional gene clusters putatively involved in EPS biosynthesis. KEY POINTS: • A cold-adapted Pseudoalteromonas strain was investigated for EPS production. • The EPS showed emulsifying, cryoprotective, and heavy metal chelation functions. • Three gene clusters putatively involved in EPS biosynthesis were evidenced by genomic insights.


Asunto(s)
Metales Pesados , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Cloruro de Sodio/metabolismo , Polisacáridos Bacterianos/metabolismo , Galactosa/metabolismo , Manosa/metabolismo , Regiones Antárticas , Ácidos Urónicos/metabolismo , Metales Pesados/metabolismo , Sulfatos/metabolismo , Glucosa/metabolismo , Carbono/metabolismo , Galactosamina , Celulosa/metabolismo
16.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012520

RESUMEN

Nowadays, antibiotic resistance is a major public health problem. Among staphylococci, infections caused by Staphylococcus epidermidis (S. epidermidis) are frequent and difficult to eradicate. This is due to its ability to form biofilm. Among the antibiotic substances, nanosilver is of particular interest. Based on this information, we decided to investigate the effect of nanosilver on the viability, biofilm formation and gene expression of the icaADBC operon and the icaR gene for biofilm and non-biofilm S. epidermidis strains. As we observed, the viability of all the tested strains decreased with the use of nanosilver at a concentration of 5 µg/mL. The ability to form biofilm also decreased with the use of nanosilver at a concentration of 3 µg/mL. Genetic expression of the icaADBC operon and the icaR gene varied depending on the ability of the strain to form biofilm. Low concentrations of nanosilver may cause increased biofilm production, however no such effect was observed with high concentrations. This confirms that the use of nanoparticles at an appropriately high dose in any future therapy is of utmost importance. Data from our publication confirm the antibacterial and antibiotic properties of nanosilver. This effect was observed phenotypically and also by levels of gene expression.


Asunto(s)
Nanopartículas del Metal , Infecciones Estafilocócicas , Antibacterianos/metabolismo , Antibacterianos/farmacología , Biopelículas , Expresión Génica , Humanos , Complejo Hierro-Dextran , Polisacáridos Bacterianos/metabolismo , Plata/metabolismo , Plata/farmacología , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis
17.
Chin J Nat Med ; 20(8): 633-640, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36031235

RESUMEN

The ribose and phosphorus contents in Haemophilus influenzae type b (Hib) capsular polysaccharide (CPS) are two important chemical indexes for the development and quality control of Hib conjugate vaccine. A quantitative 1H- and 31P-NMR method using a single internal standard was developed for simultaneous determination of ribose and phosphorus contents in Hib CPS. Hexamethylphosphoramide (HMPA) was successfully utilized as an internal standard in quantitative 1H-NMR method for ribose content determination. The ribose and phosphorus contents were found to be affected by the concentration of polysaccharide solution. Thus, 15-20 mg·L-1 was the optimal concentration range of Hib CPS in D2O solution for determination of ribose and phosphorus contents by this method. The ribose and phosphorus contents obtained by the quantitative NMR were consistent with those obtained by traditional chemical methods. In conclusion, this quantitative 1H- and 31P-NMR method using a single internal standard shows good specificity, accuracy and precision, providing a valuable approach for the quality control of Hib glycoconjugate vaccines.


Asunto(s)
Vacunas contra Haemophilus , Haemophilus influenzae tipo b , Fósforo , Polisacáridos Bacterianos , Ribosa
18.
Int J Biol Macromol ; 216: 510-519, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35803409

RESUMEN

The substituents and backbones are two main factors affecting immune activities of polysaccharides. In the present study, we firstly evaluated the immunostimulating effects of phosphorylated, sulfated, H-phosphonated and nitrated derivatives of low-molecular-weight polymannuronate (LPM) and polyguluronate (LPG) on splenocytes and peritoneal macrophages in vitro. The results showed that the phosphate group was the best substituent to enhance the immune activities, and LPG phosphate (LPGP) had much better activity than LPM phosphate (LPMP). Further studies showed that LPGP not only promoted the proliferation of mouse splenocytes in the presence of either LPS or Con A, but also acted as an excellent peritoneal macrophage activator to enhance the cell phagocytosis, energy metabolism, cytokines release and activities of intracellular enzymes. The studies in RAW264.7 cells revealed that LPGP activated the TBK1-IκBα-NF-κB and the TBK1-IRF3 pathway. Moreover, LPGP rescued the immune response in the Cyclophosphamide-treated mice in vivo. In conclusion, LPGP is a potential alginate-based biological response modifier (BRM).


Asunto(s)
Adyuvantes Inmunológicos , Bazo , Adyuvantes Inmunológicos/metabolismo , Adyuvantes Inmunológicos/farmacología , Animales , Inmunidad , Macrófagos , Ratones , FN-kappa B/metabolismo , Fosfatos/farmacología , Polisacáridos Bacterianos/farmacología
19.
Artículo en Inglés | MEDLINE | ID: mdl-35858510

RESUMEN

Capsular polysaccharides of Streptococcus pneumoniae contain a characteristic mix of monosaccharides in their structure resulting in immunologically distinct serotypes. Pneumococcal capsular polysaccharides include sugars such as hexoses, uronic acids, hexosamines, methyl pentoses, other functional groups are attached to the sugars are N and O-acetyl groups, nitrogen and phosphorus. Most of these components can be quantified using different colorimetric methods. However, available methods for quantifying nitrogen and phosphorus are not sensitive enough and laborious. We report a highly sensitive high-performance anion-exchange chromatography-conductivity detector (HPAEC-CD) method for quantifying nitrogen and phosphorus present in pneumococcal capsular polysaccharides. The method is reliable, robust and reproducible with no interference. The LOQ for nitrogen and phosphorus of 3.125 and 62.5 ng/mL, respectively, is highly critical for estimating low levels of total nitrogen and total phosphorus. We have implemented this method to quantify total nitrogen in Typhoid Vi polysaccharide and phosphorus in Haemophilus influenzae type-b polysaccharide. This method has greater application for quantification of nitrogen and phosphorus present in low concentrations in polysaccharide vaccines/biologicals.


Asunto(s)
Nitrógeno , Fósforo , Aniones , Cromatografía , Monosacáridos , Polisacáridos/análisis , Polisacáridos Bacterianos
20.
Food Res Int ; 156: 111351, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650980

RESUMEN

In this study, nanoparticles (NPs) prepared with xanthan gum and lysozyme were established as a powerful delivery system for two Se-containing peptides: TSeMMM (STP) and SeMDPGQQ (SHP). NPs-STP and NPs-SHP had relatively small particle sizes (145 nm and 148 nm) and negative zeta potentials (-47 mV and -49 mV). The encapsulation efficiency of NPs-STP and NPs-SHP was determined to be 34.35% and 41.35%, respectively. The stability and antioxidant activity of Se-containing peptides were greatly enhanced due to encapsulation. NPs-STP and NPs-SHP exhibited controlled release of Se-containing peptides under in vitro gastrointestinal conditions. NPs-STP and NPs-SHP showed low toxicity and entered Caco-2 cells through clathrin-mediated endocytosis, contributing to a significant increase in the apparent permeability coefficient of STP (2.19 × 10-6 cm/s) and SHP (2.21 × 10-6 cm/s). Thus, NPs-STP and NPs-SHP are considered promising delivery systems for Se-containing peptides and have good potential applications in the food and pharmaceutical industries.


Asunto(s)
Nanopartículas , Selenio , Células CACO-2 , Humanos , Muramidasa , Péptidos , Polisacáridos Bacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA