Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.346
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593141

RESUMEN

Local Field Potential (LFP), despite its name, often reflects remote activity. Depending on the orientation and synchrony of their sources, both oscillations and more complex waves may passively spread in brain tissue over long distances and be falsely interpreted as local activity at such distant recording sites. Here we show that the whisker-evoked potentials in the thalamic nuclei are of local origin up to around 6 ms post stimulus, but the later (7-15 ms) wave is overshadowed by a negative component reaching from cortex. This component can be analytically removed and local thalamic LFP can be recovered reliably using Current Source Density analysis. We used model-based kernel CSD (kCSD) method which allowed us to study the contribution of local and distant currents to LFP from rat thalamic nuclei and barrel cortex recorded with multiple, non-linear and non-regular multichannel probes. Importantly, we verified that concurrent recordings from the cortex are not essential for reliable thalamic CSD estimation. The proposed framework can be used to analyze LFP from other brain areas and has consequences for general LFP interpretation and analysis.


Asunto(s)
Potenciales Evocados Somatosensoriales , Tálamo , Ratas , Animales , Tálamo/fisiología , Potenciales Evocados , Núcleos Talámicos , Corteza Cerebral , Corteza Somatosensorial/fisiología
2.
J Acoust Soc Am ; 155(3): 1813-1824, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38445988

RESUMEN

This study assessed whether the effects of contralateral acoustic stimulation (CAS) are consistent with eliciting the medial olivocochlear (MOC) reflex for measurements sensitive to outer hair cell (otoacoustic emissions, OAEs), auditory-nerve (AN; compound action potential, CAP), and brainstem/cortical (envelope-following response, EFR) function. The effects of CAS were evaluated for simultaneous measurement of OAEs, CAPs, and EFRs in participants with normal hearing. Clicks were presented at 40 or 98 Hz in three ipsilateral noise conditions (no noise, 45 dB SPL, and 55 dB SPL). For the no noise condition, CAS suppressed or enhanced EFR amplitudes for 40- and 98-Hz clicks, respectively, while CAS had no significant effect on CAP amplitudes. A follow-up experiment using slower rates (4.4-22.2 Hz) assessed whether this insignificant CAS effect on CAPs was from ipsilateral MOC stimulation or AN adaptation; however, CAS effects remained insignificant despite favorable signal-to-noise ratios. CAS-related enhancements of EFR and CAP amplitudes in ipsilateral noise were not observed, contrary to the anti-masking effect of the MOC reflex. EFR and OAE suppression from CAS were not significantly correlated. Thus, the effects of CAS on EFRs may not be solely mediated by the MOC reflex and may be partially mediated by higher auditory centers.


Asunto(s)
Potenciales Evocados , Emisiones Otoacústicas Espontáneas , Humanos , Potenciales de Acción , Estimulación Acústica , Reflejo
3.
Cogn Affect Behav Neurosci ; 24(3): 527-551, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38351398

RESUMEN

Over the past two decades, scientific interest in understanding the relationship between mindfulness and cognition has accelerated. However, despite considerable investigative efforts, pervasive methodological inconsistencies within the literature preclude a thorough understanding of whether or how mindfulness influences core cognitive functions. The purpose of the current study is to provide an initial "proof-of-concept" demonstration of a new research strategy and methodological approach designed to address previous limitations. Specifically, we implemented a novel fully within-subject state induction protocol to elucidate the neurobehavioral influence of discrete mindfulness states-focused attention (FA) and open monitoring (OM), compared against an active control-on well-established behavioral and ERP indices of executive attention and error monitoring assessed during the Eriksen flanker task. Bayesian mixed modeling was used to test preregistered hypotheses pertaining to FA and OM effects on flanker interference, the stimulus-locked P3, and the response-locked ERN and Pe. Results yielded strong but unexpected evidence that OM selectively produced a more cautious and intentional response style, characterized by higher accuracy, slower RTs, and reduced P3 amplitude. Follow-up exploratory analyses revealed that trait mindfulness moderated the influence of OM, such that individuals with greater trait mindfulness responded more cautiously and exhibited higher trial accuracy and smaller P3s. Neither FA nor OM modulated the ERN or Pe. Taken together, our findings support the promise of our approach, demonstrating that theoretically distinct mindfulness states are functionally dissociable among mindfulness-naive participants and that interactive variability associated with different operational facets of mindfulness (i.e., state vs. trait) can be modeled directly.


Asunto(s)
Atención , Electroencefalografía , Potenciales Evocados , Función Ejecutiva , Atención Plena , Humanos , Atención Plena/métodos , Atención/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Función Ejecutiva/fisiología , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Cognición/fisiología , Tiempo de Reacción/fisiología , Teorema de Bayes , Adolescente , Encéfalo/fisiología , Pruebas Neuropsicológicas , Desempeño Psicomotor/fisiología
4.
Hear Res ; 444: 108972, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359485

RESUMEN

Auditory semantic novelty - a new meaningful sound in the context of a predictable acoustical environment - can probe neural circuits involved in language processing. Aberrant novelty detection is a feature of many neuropsychiatric disorders. This large-scale human intracranial electrophysiology study examined the spatial distribution of gamma and alpha power and auditory evoked potentials (AEP) associated with responses to unexpected words during performance of semantic categorization tasks. Participants were neurosurgical patients undergoing monitoring for medically intractable epilepsy. Each task included repeatedly presented monosyllabic words from different talkers ("common") and ten words presented only once ("novel"). Targets were words belonging to a specific semantic category. Novelty effects were defined as differences between neural responses to novel and common words. Novelty increased task difficulty and was associated with augmented gamma, suppressed alpha power, and AEP differences broadly distributed across the cortex. Gamma novelty effect had the highest prevalence in planum temporale, posterior superior temporal gyrus (STG) and pars triangularis of the inferior frontal gyrus; alpha in anterolateral Heschl's gyrus (HG), anterior STG and middle anterior cingulate cortex; AEP in posteromedial HG, lower bank of the superior temporal sulcus, and planum polare. Gamma novelty effect had a higher prevalence in dorsal than ventral auditory-related areas. Novelty effects were more pronounced in the left hemisphere. Better novel target detection was associated with reduced gamma novelty effect within auditory cortex and enhanced gamma effect within prefrontal and sensorimotor cortex. Alpha and AEP novelty effects were generally more prevalent in better performing participants. Multiple areas, including auditory cortex on the superior temporal plane, featured AEP novelty effect within the time frame of P3a and N400 scalp-recorded novelty-related potentials. This work provides a detailed account of auditory novelty in a paradigm that directly examined brain regions associated with semantic processing. Future studies may aid in the development of objective measures to assess the integrity of semantic novelty processing in clinical populations.


Asunto(s)
Corteza Auditiva , Electroencefalografía , Humanos , Masculino , Femenino , Semántica , Estimulación Acústica , Potenciales Evocados , Corteza Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Imagen por Resonancia Magnética , Mapeo Encefálico
5.
Artículo en Inglés | MEDLINE | ID: mdl-38198273

RESUMEN

Social interaction enables the smooth progression of our daily lives. Mounting evidence from recent hyperscanning neuroimaging studies indicates that key components of social behavior can be evaluated using inter-brain oscillations and connectivity. However, mapping out inter-brain networks and developing neurocognitive theories that explain how humans co-create and share information during social interaction remains challenging. In this study, we developed a jigsaw puzzle-solving game with hyperscanning electroencephalography (EEG) signals recorded to investigate inter-brain activities during social interactions involving cooperation and competition. Participants were recruited and paired into dyads to participate in the multiplayer jigsaw puzzle game with 32-channel EEG signals recorded. The corresponding event-related potentials (ERPs), brain oscillations, and inter-brain functional connectivity were analyzed. The results showed different ERP morphologies of P3 patterns in competitive and cooperative contexts, and brain oscillations in the low-frequency band may be an indicator of social cognitive activities. Furthermore, increased inter-brain functional connectivity in the delta, theta, alpha, and beta frequency bands was observed in the competition mode compared to the cooperation mode. By presenting comparable and valid hyperscanning EEG results alongside those of previous studies using traditional paradigms, this study demonstrates the potential of utilizing hyperscanning techniques in real-life game-playing scenarios to quantitatively assess social cognitive interactions involving cooperation and competition. Our approach offers a promising platform with potential applications in the flexible assessment of psychiatric disorders related to social functioning.


Asunto(s)
Encéfalo , Electroencefalografía , Humanos , Electroencefalografía/métodos , Potenciales Evocados , Tálamo , Cognición , Mapeo Encefálico/métodos
6.
Neurotherapeutics ; 21(1): e00295, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38237402

RESUMEN

Essential tremor DBS targeting the ventral intermediate nucleus (Vim) of the thalamus and its input, the dentato-rubro-thalamic tract (DRTt), has proven to be an effective treatment strategy. We examined thalamo-cortical evoked potentials (TCEPs) and cortical dynamics during stimulation of the DRTt. We recorded TCEPs in primary motor cortex during clinical and supra-clinical stimulation of the DRTt in ten essential tremor patients. Stimulation was varied over pulse amplitude (2-10 â€‹mA) and pulse width (30-250 â€‹µs) to allow for strength-duration testing. Testing at clinical levels (3 â€‹mA, 60 â€‹µs) for stimulation frequencies of 1-160 â€‹Hz was performed and phase amplitude coupling (PAC) of beta phase and gamma power was calculated. Primary motor cortex TCEPs displayed two responses: early and all-or-none (<20 â€‹ms) or delayed and charge-dependent (>50 â€‹ms). Strength-duration curve approximation indicates that the chronaxie of the neural elements related to the TCEPs is <200 â€‹µs. At the range of clinical stimulation (amplitude 2-5 â€‹mA, pulse width 30-60 â€‹µs), TCEPs were not noted over primary motor cortex. Decreased pathophysiological phase-amplitude coupling was seen above 70 â€‹Hz stimulation without changes in power spectra and below the threshold of TCEPs. Our findings demonstrate that DRTt stimulation within normal clinical bounds does not excite fibers directly connected with primary motor cortex but that supra-clinical stimulation can excite a direct axonal tract. Both clinical efficacy and phase-amplitude coupling were frequency-dependent, favoring a synaptic filtering model as a possible mechanism of action.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Humanos , Temblor Esencial/terapia , Vías Nerviosas , Tálamo , Potenciales Evocados
7.
Int J Psychophysiol ; 197: 112300, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215946

RESUMEN

It is widely accepted that familiarity can support associative memory when the to-be-remember items are unitized into a new representation. However, there has been relatively little attention devoted to investigating the effects of different unitization manipulations on associative memory. The present study aimed to address this gap by examining the effects of varying levels of unitization through three tasks: Concept definition, interactive imagery, and sentence frame tasks. The behavioral results revealed that associative memory was significantly enhanced in the interactive imagery task compared to the sentence frame task. However, no significant differences were found between the sentence frame and concept definition tasks, or between the concept definition and interactive imagery tasks. In terms of the neural correlates, the event-related potential (ERP) results revealed that the sentence frame task only elicited a significant recollection-related LPC old/new effect, while the concept definition task only elicited a significant familiarity-related FN400 old/new effect. However, the interactive representation task elicited both of these distinct effects. These findings suggest that both the concept definition and interactive imagery tasks can enhance familiarity for supporting associative memory, but their beneficial effects on associative memory or LPC old/new effects may be different.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Humanos , Potenciales Evocados/fisiología , Reconocimiento en Psicología/fisiología , Recuerdo Mental/fisiología
8.
Cortex ; 172: 114-124, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295554

RESUMEN

Event-related potentials (ERPs) acquired during task-free passive listening can be used to study how sensitivity to common pattern repetitions and rare deviations changes over time. These changes are purported to represent the formation and accumulation of precision in internal models that anticipate future states based on probabilistic and/or statistical learning. This study features an unexpected finding; a strong order-dependence in the speed with which deviant responses are elicited that anchors to first learning. Participants heard four repetitions of a sequence in which an equal number of short (30 msec) and long (60 msec) pure tones were arranged into four blocks in which one was common (the standard, p = .875) and the other rare (the deviant, p = .125) with probabilities alternating across blocks. Some participants always heard the sequences commencing with the 30 msec deviant block, and others always with the 60 msec deviant block first. A deviance-detection component known as mismatch negativity (MMN) was extracted from responses and the point in time at which MMN reached maximum amplitude was used as the dependent variable. The results show that if participants heard sequences commencing with the 60 msec deviant block first, the MMN to the 60 msec and 30 msec deviant peaked at an equivalent latency. However, if participants heard sequences commencing with the 30 msec deviant first, the MMN peaked earlier to the 60 msec deviant. Furthermore, while the 30 msec MMN latency did not differ as a function of sequence composition, the 60 msec MMN latency did and was earlier when the sequences began with a 30 msec deviant first. By examining MMN latency effects as a function of age and hearing level it was apparent that the differentiation in 30 msec and 60 msec MMN latency expands with older age and raised hearing threshold due to prolongation of the time taken for the 30 msec MMN to peak. The observations are discussed with reference to how the initial sound composition may tune the auditory system to be more sensitive to different cues (i.e., offset responses vs perceived loudness). The order-effect demonstrates a remarkably powerful anchoring to first learning that might reflect initial tuning to the most valuable discriminating feature within a given listening environment, an effect that defies explanation based on statistical information alone.


Asunto(s)
Electroencefalografía , Potenciales Evocados Auditivos , Humanos , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica/métodos , Electroencefalografía/métodos , Tiempo de Reacción/fisiología , Potenciales Evocados/fisiología
9.
Behav Sleep Med ; 22(1): 100-114, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36994479

RESUMEN

BACKGROUND: Despite numerous studies on auditory event-related potentials (ERPs) in insomnia disorder (ID), the results are inconsistent across different ERP components (e.g. N1, P2, P3, and N350), types of auditory stimuli (e.g. standard and deviant), and stages of sleep (e.g. wakefulness, NREM sleep, and REM sleep). In light of this variability, we conducted a systematic meta-analysis of previous auditory ERP studies in ID to provide a quantitative review of the existing literature. METHODS: Relevant literatures were searched on the Embase, PubMed/MEDLINE, PsycINFO and Cochrane Library. A total of 12 studies comprising 497 participants were finally included in this meta-analysis. The study protocol was registered with PROSPERO under the registration number CRD42022308348. RESULTS: We found that patients with ID have significantly decreased N1 (Hedges' g = 0.34, 95%CI [0.04, 0.65]) and P3 (Hedges'g = -1.21, 95%CI [-2.37, -0.06]) amplitudes during wakefulness. In addition, decreases in P2 (Hedges'g = -0.57, 95%CI [-0.96, -0.17]) amplitude during wakefulness and N350 (Hedges' g = 0.73, 95%CI [0.36, 1.09]) amplitude during NREM. CONCLUSIONS: This meta-analysis represents the first systematic investigation of ERP features across different stages of sleep in individuals with ID. Our results suggest that in patients with insomnia, the absence or deficiency of arousal inhibition during the nighttime sleep initiation or maintenance process may interfere with the normal process of sleep.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica/métodos , Electroencefalografía , Potenciales Evocados/fisiología
10.
Exp Brain Res ; 242(1): 47-57, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37947851

RESUMEN

Omitted stimulus potentials (OSPs) occur when a sensory stimulus is unexpectedly omitted. They are thought to reflect predictions about upcoming sensory events. The present study examined how OSPs differ across the sensory modalities of predicted stimuli. Twenty-nine university students were asked to press a mouse button at a regular interval of 1-2 s, which was immediately followed by either a visual or auditory stimulus in different blocks. The stimuli were sometimes omitted (p = 0.2), to which event-related potentials (ERPs) were recorded. The results showed that stimulus omissions in both modalities elicited ERP waveforms consisting of three components, oN1, oN2, and oP3. The peak latencies of these components were shorter in the auditory modality than in the visual modality. The amplitudes of OSPs were larger when participants were told that the omission indicated their poor performance (i.e., they pressed a button at an irregular interval) than when it was irrelevant to their performance. These findings suggest that OSPs occur from around 100 ms in a modality-specific manner and increase in amplitude depending on the task relevance of stimulus omissions.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Humanos , Estimulación Acústica , Potenciales Evocados Auditivos , Estimulación Luminosa/métodos , Tiempo de Reacción
11.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37991276

RESUMEN

Despite the prevalence of visuomotor transformations in our motor skills, their mechanisms remain incompletely understood, especially when imagery actions are considered such as mentally picking up a cup or pressing a button. Here, we used a stimulus-response task to directly compare the visuomotor transformation underlying overt and imagined button presses. Electroencephalographic activity was recorded while participants responded to highlights of the target button while ignoring the second, non-target button. Movement-related potentials (MRPs) and event-related desynchronization occurred for both overt movements and motor imagery (MI), with responses present even for non-target stimuli. Consistent with the activity accumulation model where visual stimuli are evaluated and transformed into the eventual motor response, the timing of MRPs matched the response time on individual trials. Activity-accumulation patterns were observed for MI, as well. Yet, unlike overt movements, MI-related MRPs were not lateralized, which appears to be a neural marker for the distinction between generating a mental image and transforming it into an overt action. Top-down response strategies governing this hemispheric specificity should be accounted for in future research on MI, including basic studies and medical practice.


Asunto(s)
Corteza Motora , Desempeño Psicomotor , Humanos , Desempeño Psicomotor/fisiología , Corteza Motora/fisiología , Imaginación/fisiología , Potenciales Evocados/fisiología , Electroencefalografía/métodos , Movimiento/fisiología , Potenciales Evocados Motores/fisiología
12.
Int J Psychophysiol ; 196: 112292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154607

RESUMEN

Prediction is fundamental in music listening. Two types of expectations have been proposed: schematic expectations, which arise from knowledge of tonal regularities (e.g., harmony and key) acquired through long-term plasticity and learning, and dynamic expectations, which arise from short-term regularity representations (e.g., rhythmic patterns and melodic contours) extracted from ongoing musical contexts. Although both expectations are indispensable in music listening, how they interact with each other in music prediction remains unclear. The present study examined the relationship between schematic and dynamic expectations in music processing using event-related potentials (ERPs). At the ending note of the melodies, the schematic expectation was violated by presenting a note with music-syntactic irregular (i.e., outof- key note), while the dynamic expectation was violated by presenting a contour deviant based on online statistical learning of melodic patterns. Schematic and dynamic expectations were manipulated to predict the same note. ERPs were recorded for the music-syntactic irregularity and the contour deviant, which occurred independently or simultaneously. The results showed that the music-syntactic irregularity elicited an early right anterior negativity (ERAN), reflecting the prediction error in the schematic expectation, while the contour deviant elicited a mismatch negativity (MMN), reflecting the prediction error in the dynamic expectation. Both components occurred within a similar latency range. Moreover, the ERP amplitude was multiplicatively increased when the irregularity and deviance occurred simultaneously. These findings suggest that schematic and dynamic expectations function concurrently in an interactive manner when both expectations predict the same note.


Asunto(s)
Música , Humanos , Motivación , Potenciales Evocados/fisiología , Aprendizaje , Percepción , Percepción Auditiva/fisiología , Estimulación Acústica/métodos , Potenciales Evocados Auditivos/fisiología , Electroencefalografía/métodos
13.
J Neural Eng ; 21(1)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38113535

RESUMEN

Objective. BCI (Brain-Computer Interfaces) operate in three modes:online,offline, andpseudo-online. Inonlinemode, real-time EEG data is constantly analyzed. Inofflinemode, the signal is acquired and processed afterwards. Thepseudo-onlinemode processes collected data as if they were received in real-time. The main difference is that theofflinemode often analyzes the whole data, while theonlineandpseudo-onlinemodes only analyze data in short time windows.Offlineprocessing tends to be more accurate, whileonlineanalysis is better for therapeutic applications.Pseudo-onlineimplementation approximatesonlineprocessing without real-time constraints. Many BCI studies beingofflineintroduce biases compared to real-life scenarios, impacting classification algorithm performance.Approach. The objective of this research paper is therefore to extend the current MOABB framework, operating inofflinemode, so as to allow a comparison of different algorithms in apseudo-onlinesetting with the use of a technology based on overlapping sliding windows. To do this will require the introduction of a idle state event in the dataset that takes into account all different possibilities that are not task thinking. To validate the performance of the algorithms we will use the normalized Matthews correlation coefficient and the information transfer rate.Main results. We analyzed the state-of-the-art algorithms of the last 15 years over several motor imagery and steady state visually evoked potential multi-subjects datasets, showing the differences between the two approaches from a statistical point of view.Significance. The ability to analyze the performance of different algorithms inofflineandpseudo-onlinemodes will allow the BCI community to obtain more accurate and comprehensive reports regarding the performance of classification algorithms.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Electroencefalografía/métodos , Potenciales Evocados , Algoritmos , Imágenes en Psicoterapia
14.
J Neurosci ; 44(7)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38129133

RESUMEN

Neuroimaging studies suggest cross-sensory visual influences in human auditory cortices (ACs). Whether these influences reflect active visual processing in human ACs, which drives neuronal firing and concurrent broadband high-frequency activity (BHFA; >70 Hz), or whether they merely modulate sound processing is still debatable. Here, we presented auditory, visual, and audiovisual stimuli to 16 participants (7 women, 9 men) with stereo-EEG depth electrodes implanted near ACs for presurgical monitoring. Anatomically normalized group analyses were facilitated by inverse modeling of intracranial source currents. Analyses of intracranial event-related potentials (iERPs) suggested cross-sensory responses to visual stimuli in ACs, which lagged the earliest auditory responses by several tens of milliseconds. Visual stimuli also modulated the phase of intrinsic low-frequency oscillations and triggered 15-30 Hz event-related desynchronization in ACs. However, BHFA, a putative correlate of neuronal firing, was not significantly increased in ACs after visual stimuli, not even when they coincided with auditory stimuli. Intracranial recordings demonstrate cross-sensory modulations, but no indication of active visual processing in human ACs.


Asunto(s)
Corteza Auditiva , Masculino , Humanos , Femenino , Corteza Auditiva/fisiología , Estimulación Acústica/métodos , Potenciales Evocados/fisiología , Electroencefalografía/métodos , Percepción Visual/fisiología , Percepción Auditiva/fisiología , Estimulación Luminosa
15.
J Cogn Neurosci ; 36(1): 187-199, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37902587

RESUMEN

The oddball protocol has been used to study the neural and perceptual consequences of implicit predictions in the human brain. The protocol involves presenting a sequence of identical repeated events that are eventually broken by a novel "oddball" presentation. Oddball presentations have been linked to increased neural responding and to an exaggeration of perceived duration relative to repeated events. Because the number of repeated events in such protocols is circumscribed, as more repeats are encountered, the conditional probability of a further repeat decreases-whereas the conditional probability of an oddball increases. These facts have not been appreciated in many analyses of oddballs; repeats and oddballs have rather been treated as binary event categories. Here, we show that the human brain is sensitive to conditional event probabilities in an active, visual oddball paradigm. P300 responses (a relatively late component of visually evoked potentials measured with EEG) tended to be greater for less likely oddballs and repeats. By contrast, P1 responses (an earlier component) increased for repeats as a goal-relevant target presentation neared, but this effect occurred even when repeat probabilities were held constant, and oddball P1 responses were invariant. We also found that later, more likely oddballs seemed to last longer, and this effect was largely independent of the number of preceding repeats. These findings speak against a repetition suppression account of the temporal oddball effect. Overall, our data highlight an impact of event probability on later, rather than earlier, electroencephalographic measures previously related to predictive processes-and the importance of considering conditional probabilities in sequential presentation paradigms.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Humanos , Estimulación Acústica/métodos , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Probabilidad , Encéfalo/fisiología
16.
Sensors (Basel) ; 23(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38067961

RESUMEN

Within the broader context of improving interactions between artificial intelligence and humans, the question has arisen regarding whether auditory and rhythmic support could increase attention for visual stimuli that do not stand out clearly from an information stream. To this end, we designed an experiment inspired by pip-and-pop but more appropriate for eliciting attention and P3a-event-related potentials (ERPs). In this study, the aim was to distinguish between targets and distractors based on the subject's electroencephalography (EEG) data. We achieved this objective by employing different machine learning (ML) methods for both individual-subject (IS) and cross-subject (CS) models. Finally, we investigated which EEG channels and time points were used by the model to make its predictions using saliency maps. We were able to successfully perform the aforementioned classification task for both the IS and CS scenarios, reaching classification accuracies up to 76%. In accordance with the literature, the model primarily used the parietal-occipital electrodes between 200 ms and 300 ms after the stimulus to make its prediction. The findings from this research contribute to the development of more effective P300-based brain-computer interfaces. Furthermore, they validate the EEG data collected in our experiment.


Asunto(s)
Inteligencia Artificial , Electroencefalografía , Humanos , Estimulación Acústica , Atención , Potenciales Relacionados con Evento P300 , Potenciales Evocados
17.
Artículo en Inglés | MEDLINE | ID: mdl-38083543

RESUMEN

Mirror visual feedback (MVF) intervention is an adjunctive approach for motor recovery after stroke. It has been hypothesized that MVF can increase visual perception, motor imagery, and attention of/to the hands. However, neuroimaging evidence for this hypothesis is still lacking. In this study, we used a hand mental rotation task and event-related potential (ERP) analysis to explore the effect of MVF intervention on visual perception, motor preparation, and motor imagery of hands. We recruited 46 patients and randomly divided them into a mirror visual feedback group (MG) and a conventional intervention group (CG). By comparing ERP amplitude between the two groups and between before and after the intervention, we found that the N200 component, which was considered to be related to motor preparation, was significantly less negative in the affected hemisphere than that in the unaffected counterpart. After intervention, the N200 amplitude became more negative, reflecting a recovery of motor preparation. Specifically, MG showed a significant effect on the N200 for the hand pictures at large orientations, while the CG showed an effect mainly for the upright hand stimuli. The results suggested an improvement of preparation for motor imagery of complex and precise hand movements after MVF intervention.Clinical Relevance- This study might be helpful for understanding the neural mechanisms of MVF which can help stroke patients regain upper extremity function.


Asunto(s)
Retroalimentación Sensorial , Accidente Cerebrovascular , Humanos , Potenciales Evocados , Mano , Accidente Cerebrovascular/terapia , Extremidad Superior
18.
Soc Cogn Affect Neurosci ; 18(1)2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37952232

RESUMEN

Subject's own name (SON) is widely used in both daily life and the clinic. Event-related potential (ERP)-based studies have previously detected several ERP components related to SON processing; however, as most of these studies used SON as a deviant stimulus, it was not possible to determine whether these components were SON-specific. To identify SON-specific ERP components, we adopted a passive listening task with EEG data recording involving 25 subjects. The auditory stimuli were a SON, a friend's name (FN), an unfamiliar name (UN) selected from other subjects' names and seven different unfamiliar names (DUNs). The experimental settings included Equal-probabilistic, Frequent-SON, Frequent-FN and Frequent-UN conditions. The results showed that SON consistently evoked a frontocentral SON-related negativity (SRN) within 210-350 ms under all conditions, which was not detected with the other names. Meanwhile, a late positive potential evoked by SON was found to be affected by stimulus probability, showing no significant difference between the SON and the other names in the Frequent-SON condition, or between the SON and a FN in the Frequent-UN condition. Taken together, our findings indicated that the SRN was a SON-specific ERP component, suggesting that distinct neural mechanism underly the processing of a SON.


Asunto(s)
Electroencefalografía , Nombres , Humanos , Electroencefalografía/métodos , Estimulación Acústica/métodos , Potenciales Evocados/fisiología , Probabilidad
19.
PLoS One ; 18(11): e0284836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37948467

RESUMEN

Detection of repeating patterns within continuous sound streams is crucial for efficient auditory perception. Previous studies demonstrated a remarkable sensitivity of the human auditory system to periodic repetitions in unfamiliar, meaningless sounds. Automatic repetition detection was reflected in different EEG markers, including sustained activity, neural synchronisation, and event-related responses to pattern occurrences. The current study investigated how listeners' attention and the temporal regularity of a sound modulate repetition perception, and how this influence is reflected in different EEG markers that were previously suggested to subserve dissociable functions. We reanalysed data of a previous study in which listeners were presented with sequences of unfamiliar artificial sounds that either contained repetitions of a certain sound segment or not. Repeating patterns occurred either regularly or with a temporal jitter within the sequences, and participants' attention was directed either towards the pattern repetitions or away from the auditory stimulation. Across both regular and jittered sequences during both attention and in-attention, pattern repetitions led to increased sustained activity throughout the sequence, evoked a characteristic positivity-negativity complex in the event-related potential, and enhanced inter-trial phase coherence of low-frequency oscillatory activity time-locked to repeating pattern onsets. While regularity only had a minor (if any) influence, attention significantly strengthened pattern repetition perception, which was consistently reflected in all three EEG markers. These findings suggest that the detection of pattern repetitions within continuous sounds relies on a flexible mechanism that is robust against in-attention and temporal irregularity, both of which typically occur in naturalistic listening situations. Yet, attention to the auditory input can enhance processing of repeating patterns and improve repetition detection.


Asunto(s)
Percepción Auditiva , Sonido , Humanos , Percepción Auditiva/fisiología , Estimulación Acústica , Potenciales Evocados , Acústica , Potenciales Evocados Auditivos/fisiología , Electroencefalografía
20.
Arq Neuropsiquiatr ; 81(11): 961-969, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38035581

RESUMEN

BACKGROUND: Research has shown that a fundamental frequency of 40 Hz in continuous neural oscillation is indicative of normal brain activity; in Alzheimer disease (AD) patients, these oscillations either disappear or are significantly interrupted. Research has also indicated that the degenerative impacts of AD in mice were mitigated by the synchronization of 40-Hz acousto-optic stimulation (AOS). OBJECTIVE: To examine the impact of employing a 40-Hz AOS intervention on the induction of a substantial 40-Hz frequency entrainment and improvement in working memory performance among a sample of young individuals in good health. We conduct an analysis of event-related potentials (ERPs) derived from electroencephalogram (EEG) data following the presentation of AOS. METHODS: We recruited 20 healthy volunteers (median age: 25 years; 8 female subjects). Following the administration of various stimuli, including no stimuli, 40-Hz AOS, pink noise, and 40Hz acoustic stimuli (AS), the participants were required to complete a working memory task. A total of 62 electrodes were used to record EEG data, which was subsequently analyzed to investigate the impact of AOS on the activity of working memory. We also aimed to determine if AOS lead to a more pronounced 40-Hz frequency entrainment. RESULTS: Following the administration of AOS, a notable enhancement in the 40-Hz power of pertinent cerebral areas was observed, accompanied by a substantial improvement in the performance of the subjects on working memory tests subsequent to the stimulation. CONCLUSION: The findings unequivocally establish the efficacy of using AOS to enhance the 40-Hz power and working memory.


ANTECEDENTES: A pesquisa mostrou que uma frequência fundamental de 40 Hz em oscilação neural contínua é indicativa de atividade cerebral normal. Em pacientes com doença de Alzheimer (DA), essas oscilações desaparecem ou são significativamente interrompidas. A pesquisa também indicou que os impactos degenerativos da DA em camundongos foram mitigados pela sincronização da estimulação acústico-óptica (EAO) de 40 Hz. OBJETIVO: Examinar o impacto do emprego de uma intervenção EAO de 40 Hz na indução de um arrastamento substancial de frequência de 40 Hz e na melhoria do desempenho da memória de trabalho entre uma amostra de jovens com boa saúde. Conduzimos uma análise de potenciais relacionados a eventos (PREs) derivados de dados de eletroencefalograma (EEG) após a apresentação de EAO. MéTODOS: Recrutamos 20 voluntários saudáveis (idade média: 25 anos; 8 mulheres). Após a administração de vários estímulos, incluindo nenhum estímulo, EAO de 40 Hz, ruído rosa e estímulos acústicos (EA) de 40 Hz, os participantes foram obrigados a completar uma tarefa de memória de trabalho. Um total de 62 eletrodos foram utilizados para registrar dados de EEG, que foram posteriormente analisados. para investigar o impacto do AOS na atividade da memória de trabalho. Também pretendemos determinar se o AOS leva a um arrastamento de frequência de 40 Hz mais pronunciado. RESULTADOS: Após a administração de AOS, foi observado um aumento notável na potência de 40 Hz de áreas cerebrais pertinentes, acompanhado por uma melhoria substancial no desempenho dos sujeitos em testes de memória de trabalho subsequentes à estimulação.Conclusão Os resultados estabelecem inequivocamente a eficácia do uso do AOS para melhorar a potência de 40 Hz e a memória de trabalho.


Asunto(s)
Enfermedad de Alzheimer , Electroencefalografía , Humanos , Femenino , Animales , Ratones , Adulto , Encéfalo , Potenciales Evocados , Memoria a Corto Plazo/fisiología , Estimulación Acústica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA