Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619110

RESUMEN

The organization of sensory maps in the cerebral cortex depends on experience, which drives homeostatic and long-term synaptic plasticity of cortico-cortical circuits. In the mouse primary somatosensory cortex (S1) afferents from the higher-order, posterior medial thalamic nucleus (POm) gate synaptic plasticity in layer (L) 2/3 pyramidal neurons via disinhibition and the production of dendritic plateau potentials. Here we address whether these thalamocortically mediated responses play a role in whisker map plasticity in S1. We find that trimming all but two whiskers causes a partial fusion of the representations of the two spared whiskers, concomitantly with an increase in the occurrence of POm-driven N-methyl-D-aspartate receptor-dependent plateau potentials. Blocking the plateau potentials restores the archetypical organization of the sensory map. Our results reveal a mechanism for experience-dependent cortical map plasticity in which higher-order thalamocortically mediated plateau potentials facilitate the fusion of normally segregated cortical representations.


Asunto(s)
Potenciales de Acción/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Red Nerviosa/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Vibrisas/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Mapeo Encefálico/métodos , Maleato de Dizocilpina/farmacología , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/anatomía & histología , Plasticidad Neuronal/efectos de los fármacos , Imagen Óptica , Técnicas de Placa-Clamp , Picrotoxina/farmacología , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Somatosensorial/anatomía & histología , Tálamo/anatomía & histología , Vibrisas/lesiones
2.
Chem Senses ; 44(8): 583-592, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31420672

RESUMEN

Published evidence suggests that inherent rhythmically active or "bursting" primary olfactory receptor neurons (bORNs) in crustaceans have the previously undescribed functional property of encoding olfactory information by having their rhythmicity entrained by the odor stimulus. In order to determine whether such bORN-based encoding is a fundamental feature of olfaction that extends beyond crustaceans, we patch-clamped bORN-like ORNs in mice, characterized their dynamic properties, and show they align with the dynamic properties of lobster bORNs. We then characterized bORN-like activity by imaging the olfactory epithelium of OMP-GCaMP6f mice. Next, we showed rhythmic activity is not dependent upon the endogenous OR by patching ORNs in OR/GFP mice. Lastly, we showed the properties of bORN-like ORNs characterized in mice generalize to rats. Our findings suggest encoding odor time should be viewed as a fundamental feature of olfaction with the potential to be used to navigate odor plumes in animals as diverse as crustaceans and mammals.


Asunto(s)
Calcio/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Odorantes/análisis , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Animales , Calcio/análisis , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Imagen Molecular , Nephropidae , Mucosa Olfatoria/citología , Mucosa Olfatoria/fisiología , Neuronas Receptoras Olfatorias/citología , Técnicas de Placa-Clamp , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley
3.
Neuroscience ; 406: 626-636, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30825581

RESUMEN

The medial prefrontal cortex (mPFC) has been implicated in novelty detection and attention. We studied the effect of mPFC electrical stimulation on whisker responses recorded in the ventroposterior medial thalamic nucleus (VPM), the posterior thalamic nucleus (POm) and the primary somatosensory (S1) cortex in urethane anesthetized rats. Field potentials and unit recordings were performed in the VPM or POm thalamic nuclei, in S1 cortex, and in the Zona Incerta (ZI). Somatosensory evoked potentials were elicited by whisker deflections. Current pulses were delivered by bipolar stimulating electrodes aimed at the prelimbic (PL) or infralimbic (IL) areas of mPFC. PL train stimulation (50 Hz, 500 ms) induced a facilitation of whisker responses in the VPM nucleus that lasted minutes and a short inhibition in the POm nucleus. IL stimulation induced a facilitation of whisker responses in both VPM and POm nuclei. Facilitation was due to corticofugal projections because it was reduced after S1 cortical inactivation with lidocaine, and by activation of NMDA glutamatergic receptors because it was blocked by APV. Paired stimulation of mPFC and whiskers revealed an inhibitory effect at short intervals (<100 ms), which was mediated by ZI inhibitory neurons since PL stimulation induced response facilitation in the majority of ZI neurons (42%) and muscimol injection into ZI nucleus reduced inhibitory effects, suggesting that the mPFC may inhibit the POm neurons by activation of GABAergic ZI neurons. In conclusion, the mPFC may control the flow of somatosensory information through the thalamus by activation of S1 and ZI neurons.


Asunto(s)
Estimulación Física , Corteza Prefrontal/fisiopatología , Corteza Somatosensorial/fisiopatología , Tálamo/fisiopatología , Vibrisas/fisiología , Animales , Estimulación Eléctrica/métodos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Masculino , Muscimol/farmacología , Corteza Prefrontal/efectos de los fármacos , Ratas Sprague-Dawley , Corteza Somatosensorial/efectos de los fármacos , Núcleos Talámicos/efectos de los fármacos , Núcleos Talámicos/fisiopatología , Tálamo/efectos de los fármacos , Vibrisas/efectos de los fármacos , Zona Incerta/efectos de los fármacos , Zona Incerta/fisiopatología
4.
Cereb Cortex ; 27(6): 3172-3185, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27261525

RESUMEN

The non-competitive N-methyl d-aspartate glutamate receptor (NMDAR) antagonist ketamine elicits a brain state resembling high-risk states for developing psychosis and early stages of schizophrenia characterized by sensory and cognitive deficits and aberrant ongoing gamma (30-80 Hz) oscillations in cortical and subcortical structures, including the thalamus. The underlying mechanisms are unknown. The goal of the present study was to determine whether a ketamine-induced psychotic-relevant state disturbs the functional state of the corticothalamic (CT) pathway. Multisite field recordings were performed in the somatosensory CT system of the sedated rat. Baseline activity was challenged by activation of vibrissa-related prethalamic inputs. The sensory-evoked thalamic response was characterized by a short-latency (∼4 ms) prethalamic-mediated negative sharp potential and a longer latency (∼10 ms) CT-mediated negative potential. Following a single subcutaneous injection of ketamine (2.5 mg/kg), spontaneously occurring and sensory-evoked thalamic gamma oscillations increased and decreased in power, respectively. The power of the sensory-related gamma oscillations was positively correlated with both the amplitude and the area under the curve of the corresponding CT potential but not with the prethalamic potential. The present results show that the layer VI CT pathway significantly contributes in thalamic gamma oscillations, and they support the hypothesis that reduced NMDAR activation disturbs the functional state of CT and corticocortical networks.


Asunto(s)
Vías Aferentes/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Tálamo/efectos de los fármacos , Vías Aferentes/fisiología , Anestésicos Locales/farmacología , Animales , Estimulación Eléctrica , Masculino , Ratas , Ratas Wistar , Análisis Espectral , Tetrodotoxina/farmacología , Vibrisas/inervación
5.
Sci Rep ; 5: 17325, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26612326

RESUMEN

The whisker system of rodents is an excellent model to study peripherally evoked neural activity in the brain. Discrete neural modules represent each whisker in the somatosensory cortex ("barrels"), thalamus ("barreloids"), and brain stem ("barrelettes"). Stimulation of a single whisker evokes neural activity sequentially in its corresponding barrelette, barreloid, and barrel. Conventional optical imaging of functional activation in the brain is limited to surface structures such as the cerebral cortex. To access subcortical structures and image sensory-evoked neural activity, we designed a needle-based optical system using gradient-index (GRIN) rod lens. We performed voltage-sensitive dye imaging (VSDi) with GRIN rod lens to visualize neural activity evoked in the thalamic barreloids by deflection of whiskers in vivo. We stimulated several whiskers together to determine the sensitivity of our approach in differentiating between different barreloid responses. We also carried out stimulation of different whiskers at different times. Finally, we used muscimol in the barrel cortex to silence the corticothalamic inputs while imaging in the thalamus. Our results show that it is possible to obtain functional maps of the sensory periphery in deep brain structures such as the thalamic barreloids. Our approach can be broadly applicable to functional imaging of other core brain structures.


Asunto(s)
Tronco Encefálico/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Vibrisas/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Colorantes , Estimulación Eléctrica , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Femenino , Agonistas de Receptores de GABA-A/farmacología , Inyecciones Intraventriculares , Masculino , Ratones , Muscimol/farmacología , Corteza Somatosensorial/efectos de los fármacos , Técnicas Estereotáxicas
6.
J Pain ; 16(7): 595-605, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25866256

RESUMEN

UNLABELLED: Although nonnoxious, high-frequency electrical stimulation applied segmentally (ie, conventional transcutaneous electrical nerve stimulation [TENS]) has been proposed to modulate pain, the mechanisms underlying analgesia remain poorly understood. To further elucidate how TENS modulates pain, we examined evoked responses to noxious thermal stimuli after the induction of sensitization using capsaicin in healthy volunteers. We hypothesized that sensitization caused by capsaicin application would unmask TENS analgesia, which could not be detected in the absence of sensitization. Forty-nine healthy subjects took part in a series of experiments. The experiments comprised the application of topical capsaicin (.075%) on the left hand in the C6 dermatome, varying the location of TENS (segmental, left C6 dermatome, vs extrasegmental, right shoulder), and assessing rating of perception (numeric rating scale: 0-10) and evoked potentials to noxious contact heat stimuli. The extrasegmental site was included as a control condition because previous studies indicate no analgesic effect to remote conventional TENS. Conventional TENS had no significant effect on rating or sensory evoked potentials in subjects untreated with capsaicin. However, segmental TENS applied in conjunction with capsaicin significantly reduced sensation to noxious thermal stimuli following a 60-minute period of sensitization. PERSPECTIVE: The study indicates that sensitization with capsaicin unmasks the analgesic effect of conventional TENS on perception of noxious contact heat stimuli. Our findings indicate that TENS may be interacting segmentally to modulate distinct aspects of sensitization, which in turn results in analgesia to thermal stimulation.


Asunto(s)
Capsaicina/farmacología , Hiperalgesia/terapia , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Fármacos del Sistema Sensorial/farmacología , Estimulación Eléctrica Transcutánea del Nervio , Adulto , Fenómenos Biofísicos , Estimulación Eléctrica/efectos adversos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Potenciales Evocados Somatosensoriales/fisiología , Femenino , Calor/efectos adversos , Humanos , Hiperalgesia/etiología , Masculino , Persona de Mediana Edad , Dolor/etiología , Dolor/fisiopatología , Dimensión del Dolor , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Factores de Tiempo , Adulto Joven
7.
J Neurosci ; 35(4): 1481-92, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25632125

RESUMEN

Prevailing literature supports the idea that common general anesthetics (GAs) cause long-term cognitive changes and neurodegeneration in the developing mammalian brain, especially in the thalamus. However, the possible role of GAs in modifying ion channels that control neuronal excitability has not been taken into consideration. Here we show that rats exposed to GAs at postnatal day 7 display a lasting reduction in inhibitory synaptic transmission, an increase in excitatory synaptic transmission, and concomitant increase in the amplitude of T-type calcium currents (T-currents) in neurons of the nucleus reticularis thalami (nRT). Collectively, this plasticity of ionic currents leads to increased action potential firing in vitro and increased strength of pharmacologically induced spike and wave discharges in vivo. Selective blockade of T-currents reversed neuronal hyperexcitability in vitro and in vivo. We conclude that drugs that regulate thalamic excitability may improve the safety of GAs used during early brain development.


Asunto(s)
Anestesia General , Corteza Cerebral , Vías Nerviosas/fisiología , Tálamo , 4-Butirolactona/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Benzamidas/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Epilepsia/inducido químicamente , Epilepsia/fisiopatología , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Potenciales Evocados Somatosensoriales/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Vías Nerviosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Piperidinas/farmacología , Ratas , Ratas Sprague-Dawley , Tálamo/citología , Tálamo/efectos de los fármacos , Tálamo/crecimiento & desarrollo
9.
J Neurosci ; 34(37): 12353-67, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25209276

RESUMEN

Neocortical population activity varies between deactivated and activated states marked by the presence and absence of slow oscillations, respectively. Neocortex activation occurs during waking and vigilance and is readily induced in anesthetized animals by stimulating the brainstem reticular formation, basal forebrain, or thalamus. Neuromodulators are thought to be responsible for these changes in cortical activity, but their selective cortical effects (i.e., without actions in other brain areas) on neocortical population activity in vivo are not well defined. We found that selective cholinergic and noradrenergic stimulation of the barrel cortex produces well differentiated activated states in rats. Cholinergic cortical stimulation activates the cortex by abolishing synchronous slow oscillations and shifting firing to a tonic mode, which increases in rate at high doses. This shift causes the sensory thalamus itself to become activated. In contrast, noradrenergic cortical stimulation activates the cortex by abolishing synchronous slow oscillations but suppresses overall cortical firing rate, which deactivates the thalamus. Cortical activation produced by either of these neuromodulators leads to suppressed sensory responses and more focused receptive fields. High-frequency sensory stimuli are best relayed to barrel cortex during cortical cholinergic activation because this also activates the thalamus. Cortical neuromodulation sets different cortical and thalamic states that may serve to control sensory information processing according to behavioral contingencies.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas Adrenérgicas/fisiología , Neuronas Colinérgicas/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Neocórtex/fisiología , Neurotransmisores/administración & dosificación , Tálamo/fisiología , Potenciales de Acción/efectos de los fármacos , Neuronas Adrenérgicas/efectos de los fármacos , Animales , Neuronas Colinérgicas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Masculino , Neocórtex/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Tálamo/efectos de los fármacos
10.
Neurotoxicology ; 45: 22-30, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25196089

RESUMEN

Chlorpyrifos (CPF) is an organophosphorus cholinesterase inhibitor widely used as an insecticide. Neuro and genotoxicity of this agent were evaluated following daily subcutaneous injections at 0.1, 1 and 10mg/kg or its vehicle to laboratory rats during one week, at the end of which somatosensory evoked potentials (SEP) and power spectrum of the electroencephalogram (EEGp) were recorded under urethane anesthesia. In another group of conscious animals, auditory startle reflex (ASR) was evaluated followed, after euthanasia, with measurements of plasma B-esterases, and genotoxicity with the alkaline comet assay (ACA) at the same CPF doses. The results indicated a CPF dose related inhibition of B-esterases. Enhanced inhibition of the ASR by a subthreshold pre-pulse was observed at all doses and ACA showed a significant higher DNA damage than vehicle controls in animals exposed to 10mg/kg CPF. A trend to higher frequencies of EEGp and an increase in amplitude of the first negative wave of the SEP were found at all doses. The first positive wave of the SEP decreased at the CPF dose of 10mg/kg. In summary, a shift to higher EEG frequencies and alterations of somatosensory and auditory input to the central nervous system were sensitive manifestations of CPF toxicity, associated with depression of B-esterases. The changes in electrical activity of the cerebral cortex and DNA damage observed at doses that do not elicit overt toxicity may be useful in the detection of CPF exposure before clinical signs appear.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Cloropirifos/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Daño del ADN/efectos de los fármacos , Reflejo de Sobresalto/efectos de los fármacos , Acetilcolinesterasa/sangre , Estimulación Acústica , Animales , Temperatura Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Butirilcolinesterasa/sangre , Carboxilesterasa/sangre , Relación Dosis-Respuesta a Droga , Electroencefalografía , Esterasas/sangre , Esterasas/efectos de los fármacos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Masculino , Pruebas de Mutagenicidad , Inhibición Prepulso/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ratas Wistar
11.
J Neurotrauma ; 30(6): 441-52, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23517137

RESUMEN

Riluzole, a sodium/glutamate antagonist has shown promise as a neuroprotective agent. It is licensed for amyotrophic lateral sclerosis and is in clinical trial development for spinal cord injury (SCI). This study investigated the therapeutic time-window and pharmacokinetics of riluzole in a rodent model of cervical SCI. Rats were treated with riluzole (8 mg/kg) at 1 hour (P1) and 3 hours (P3) after injury or with vehicle. Afterward, P1 and P3 groups received riluzole (6 (mg/kg) every 12 hours for 7 days. Both P1 and P3 animals had significant improvements in locomotor recovery as measured by open field locomotion (BBB score, BBB subscore). Von Frey stimuli did not reveal an increase in at level or below level mechanical allodynia. Sensory-evoked potential recordings and quantification of axonal cytoskeleton demonstrated a riluzole-mediated improvement in axonal integrity and function. Histopathological and retrograde tracing studies demonstrated that delayed administration leads to tissue preservation and reduces apoptosis and inflammation. High performance liquid chromatography (HPLC) was undertaken to examine the pharmacokinetics of riluzole. Riluzole penetrates the spinal cord in 15 min, and SCI slowed elimination of riluzole from the spinal cord, resulting in a longer half-life and higher drug concentration in spinal cord and plasma. Initiation of riluzole treatment 1 and 3 hours post-SCI led to functional, histological, and molecular benefits. While extrapolation of post-injury time windows from rat to man is challenging, evidence from SCI-related biomarker studies would suggest that the post-injury time window is likely to be at least 12 hours in man.


Asunto(s)
Modelos Animales de Enfermedad , Fármacos Neuroprotectores/administración & dosificación , Riluzol/administración & dosificación , Traumatismos de la Médula Espinal/prevención & control , Traumatismos de la Médula Espinal/fisiopatología , Animales , Vértebras Cervicales , Evaluación Preclínica de Medicamentos/métodos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Potenciales Evocados Somatosensoriales/fisiología , Femenino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Wistar , Traumatismos de la Médula Espinal/patología , Factores de Tiempo
12.
Brain Connect ; 2(6): 291-302, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23153273

RESUMEN

General anesthesia consists of amnesia, hypnosis, analgesia, and areflexia. Of these, the mechanism of hypnosis, or loss of consciousness, has been the most elusive, yet a fascinating problem. How anesthetic agents suppress human consciousness has been investigated with neuroimaging for two decades. Anesthetics substantially reduce the global cerebral metabolic rate and blood flow with a degree of regional heterogeneity characteristic to the anesthetic agent. The thalamus appears to be a common site of modulation by several anesthetics, but this may be secondary to cortical effects. Stimulus-dependent brain activation is preserved in primary sensory areas, suggesting that unconsciousness cannot be explained by cortical deafferentation or a diminution of cortical sensory reactivity. The effect of general anesthetics in functional and effective connectivity is varied depending on the agent, dose, and network studied. At an anesthetic depth characterized by the subjects' unresponsiveness, a partial, but not complete, reduction in connectivity is generally observed. Functional connectivity of the frontoparietal association cortex is often reduced, but a causal role of this change for the loss of consciousness remains uncertain. Functional connectivity of the nonspecific (intralaminar) thalamic nuclei is preferentially reduced by propofol. Higher-order thalamocortical connectivity is also reduced with certain anesthetics. The changes in functional connectivity during anesthesia induction and emergence do not mirror each other; the recovery from anesthesia may involve increases in functional connectivity above the normal wakeful baseline. Anesthetic loss of consciousness is not a block of corticofugal information transfer, but a disruption of higher-order cortical information integration. The prime candidates for functional networks of the forebrain that play a critical role in maintaining the state of consciousness are those based on the posterior parietal-cingulate-precuneus region and the nonspecific thalamus.


Asunto(s)
Anestésicos Generales/farmacología , Encéfalo/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Metabolismo Basal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Neuroimagen Funcional/métodos , Humanos , Vías Nerviosas/efectos de los fármacos , Tálamo/efectos de los fármacos
13.
J Dent Res ; 91(12): 1196-201, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23018817

RESUMEN

For objective neurophysiological evaluation of the function of the trigeminal system, magnetoencephalography- based TSEF (trigeminal somatosensory-evoked field) assessment would be valuable in providing spatial and temporal profiles of cortical responses. However, this necessitates knowledge of how TSEF varies with trigeminal nerve dysfunctions. We introduced a conduction block of the trigeminal nerve using local anesthesia (lidocaine) to temporally mimic nerve dysfunctions, and monitored TSEF changes. Following an electrical stimulation of the lower lip, a magnetic response with peak latency of approximately 20 ms was identified in all participants. Dipole for the peak was estimated on the post-central gyrus in the participant's own magnetic resonance image. After normalization to Montreal Neurological Institute (MNI) space and inter-participant data integration, the summary equivalent current dipole localization among participants remained in the post-central gyrus, suggesting validity of the use of MNI space. Partial anesthesia of the lower lip led to a loss of the waveform characteristics of TSEF for electrical stimulation to the trigeminal nerve. We verified that the 20-ms latency cortical response of TSEF components localized at the primary sensory cortex can serve as a robust neurofunctional marker of experimental trigeminal nerve dysfunction.


Asunto(s)
Mapeo Encefálico/métodos , Potenciales Evocados Somatosensoriales/fisiología , Nervio Mandibular/fisiología , Bloqueo Nervioso , Corteza Somatosensorial/fisiología , Adulto , Anestesia Dental/métodos , Anestesia Local/métodos , Anestésicos Locales/farmacología , Estimulación Eléctrica , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Femenino , Humanos , Lidocaína/farmacología , Labio/inervación , Magnetoencefalografía , Masculino , Nervio Mandibular/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Valores de Referencia
14.
Eur J Neurosci ; 36(10): 3407-19, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22928838

RESUMEN

Sensory and cognitive deficits are common in schizophrenia. They are associated with abnormal brain rhythms, including disturbances in γ frequency (30-80 Hz) oscillations (GFO) in cortex-related networks. However, the underlying anatomofunctional mechanisms remain elusive. Clinical and experimental evidence suggests that these deficits result from a hyporegulation of glutamate N-methyl-D-aspartate receptors. Here we modeled these deficits in rats with ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist and a translational psychotomimetic substance at subanesthetic doses. We tested the hypothesis that ketamine-induced sensory deficits involve an impairment of the ability of the thalamocortical (TC) system to discriminate the relevant information from the baseline activity. Furthermore, we wanted to assess whether ketamine disrupts synaptic plasticity in TC systems. We conducted multisite network recordings in the rat somatosensory TC system, natural stimulation of the vibrissae and high-frequency electrical stimulation (HFS) of the thalamus. A single systemic injection of ketamine increased the amount of baseline GFO, reduced the amplitude of the sensory-evoked TC response and decreased the power of the sensory-evoked GFO. Furthermore, cortical application of ketamine elicited local and distant increases in baseline GFO. The ketamine effects were transient. Unexpectedly, HFS of the TC pathway had opposite actions. In conclusion, ketamine and thalamic HFS have opposite effects on the ability of the somatosensory TC system to discriminate the sensory-evoked response from the baseline GFO during information processing. Investigating the link between the state and function of the TC system may conceptually be a key strategy to design innovative therapies against neuropsychiatric disorders.


Asunto(s)
Corteza Cerebral/fisiología , Estimulación Encefálica Profunda , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Tálamo/fisiología , Vías Aferentes/efectos de los fármacos , Vías Aferentes/fisiología , Animales , Ondas Encefálicas/efectos de los fármacos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Tacto , Vibrisas/inervación
15.
Proc Natl Acad Sci U S A ; 107(49): 21170-5, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21078987

RESUMEN

The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between θ- and γ-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase-power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness.


Asunto(s)
Corteza Cerebral/fisiología , Estado de Conciencia/efectos de los fármacos , Electroencefalografía/métodos , Propofol/farmacología , Anestesia/métodos , Corteza Cerebral/efectos de los fármacos , Fenómenos Electrofisiológicos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Humanos , Tálamo/efectos de los fármacos , Tálamo/fisiología
16.
Pain ; 151(2): 384-393, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20732744

RESUMEN

The conscious perception of somatosensory stimuli is thought to be located in the contralateral cerebral cortex. However, recent human brain imaging investigations in the spinal system report bilateral primary somatosensory cortex (SI) activations during unilateral noxious stimuli and that this ipsilateral spinal representation may be independent of transcallosal connections. In the trigeminal system, there is primate evidence for an ipsilateral somatosensory pathway through the thalamus to the face SI. However, the organization of the trigeminal nociceptive pathway in the human is not clear. The aim of this study was to determine whether noxious stimuli applied to the face are transmitted to the cerebral cortex by bilateral pathways. We used functional magnetic resonance imaging (fMRI) to compare ipsilateral and contralateral activation of the thalamus, SI and secondary somatosensory cortex (SII) during muscle and cutaneous orofacial pain and innocuous facial stimulation in healthy human subjects. We found that both muscle and cutaneous noxious stimuli, from injections of hypertonic saline into the right masseter or overlying skin, evoked bilateral increases in signal intensity in the region encompassing the ventral posterior thalamus as well as the face region of SI and SII. In contrast, innocuous unilateral brushing of the lower lip evoked a strict contralateral ventroposterior thalamic activation, but bilateral activation of SI and SII. These data indicate that, in contrast to innocuous inputs from the face, noxious information ascends bilaterally to the face SI through the ventroposterior thalamus in humans.


Asunto(s)
Lateralidad Funcional/fisiología , Boca/inervación , Músculo Esquelético/inervación , Dolor/patología , Tálamo/fisiopatología , Nervio Trigémino/fisiopatología , Adulto , Mapeo Encefálico , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oxígeno , Dolor/inducido químicamente , Dimensión del Dolor/métodos , Umbral del Dolor/efectos de los fármacos , Solución Salina Hipertónica/efectos adversos , Corteza Somatosensorial/irrigación sanguínea , Corteza Somatosensorial/fisiopatología , Tálamo/irrigación sanguínea , Adulto Joven
17.
Neuroimage ; 51(4): 1367-77, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20350606

RESUMEN

To date, the majority of neurovascular coupling studies focused on the thalamic afferents' activity in layer IV and the corresponding large spiking activity as responsible for functional hyperemia. This paper highlights the role of the secondary and late cortico-cortical transmission in neurovascular coupling. Simultaneous scalp electroencephalography (EEG) and diffuse optical imaging (DOI) measurements were obtained during multiple conditions of event-related electrical forepaw stimulation in 33 male Sprague-Dawley rats divided into 6 groups depending on the maintaining anesthetic - alpha-chloralose, pentobarbital, ketamine-xylazine, fentanyl-droperidol, isoflurane, or propofol. The somatosensory evoked potentials (SEP) were decomposed into four components and the question of which best predicts the hemodynamic responses was investigated. Results of the linear regression analysis show that the hemodynamic response is best correlated with the secondary and late cortico-cortical transmissions and not with the initial thalamic input activity in layer IV. Baseline cerebral blood flow (CBF) interacts with neural activity and influences the evoked hemodynamic responses. Finally, neurovascular coupling appears to be the same across all anesthetics used.


Asunto(s)
Anestésicos/farmacología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/inervación , Neuronas/fisiología , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Circulación Cerebrovascular/efectos de los fármacos , Estimulación Eléctrica , Electroencefalografía , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Miembro Anterior/fisiología , Hemoglobinas/metabolismo , Hipercapnia/fisiopatología , Procesamiento de Imagen Asistido por Computador , Masculino , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Tálamo/efectos de los fármacos , Tálamo/fisiología
18.
Neurosci Res ; 64(4): 391-6, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19393696

RESUMEN

In humans, peripheral somatosensory information converges upon dorsal horn neurons in the spinal cord, which can be recorded from the dorsal epidural space as spinal cord potentials (SCPs) following segmental dorsal root stimulation (SS) employing epidural catheter electrodes. Antidromic action potentials and descending inhibition from the dorsolateral funiculus may contribute to SCPs following dorsal column stimulation (DCS). Effects of thiamylal (2.5-7.5 mg/kg, i.v.) on SCPs evoked by independent DCS or SS were compared with those evoked by simultaneous DCS and SS (DCS/SS). DCS- and SS-evoked SCPs recorded from the lumbar enlargement consisted of a sharp negative (N) followed by a slow positive (P) potential. Thiamylal induced dose-dependent increases in amplitude and duration of both N and P potentials evoked by DCS and SS, whether the responses were summed or evoked simultaneously. In awake subjects, N and P potentials produced by simultaneous DCS/SS were significantly smaller than the sum of independent responses. Thiamylal anesthesia antagonized this inhibition; responses to simultaneous DCS/SS were larger than the sum of independent responses. These results suggest that in wakefulness DCS inhibits dorsal horn neuron activity in the lumbar spinal cord, while thiamylal antagonizes DCS-induced inhibition in dose-dependent fashion.


Asunto(s)
Vías Aferentes/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Tiamilal/farmacología , Potenciales de Acción/fisiología , Adolescente , Vías Aferentes/fisiología , Anestésicos Intravenosos/farmacología , Niño , Relación Dosis-Respuesta a Droga , Terapia por Estimulación Eléctrica/métodos , Electrodos , Electrofisiología/instrumentación , Electrofisiología/métodos , Espacio Epidural/fisiología , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Potenciales Evocados Somatosensoriales/fisiología , Femenino , Humanos , Vértebras Lumbares , Masculino , Inhibición Neural/fisiología , Dolor/tratamiento farmacológico , Dolor/fisiopatología , Células del Asta Posterior/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Raíces Nerviosas Espinales/fisiología , Vigilia/fisiología
19.
Cell Mol Neurobiol ; 29(6-7): 827-35, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19259807

RESUMEN

A traumatic brain injury or a focal brain lesion is followed by acute excitotoxicity caused by the presence of abnormally high glutamate (Glu) levels in the cerebrospinal and interstitial fluids. It has recently been demonstrated that this excess Glu in the brain can be eliminated into the blood following the intravenous administration of oxaloacetate (OxAc), which, by scavenging the blood Glu, induces an enhanced and neuroprotective brain-to-blood Glu efflux. In this study, we subjected rats to a photothrombotic lesion and treated them after the illumination with a single 30-min-long administration of OxAc (1.2 mg/100 g, i.v.). Following induction of the lesion, we measured the infarct size and the amplitudes of the somatosensory evoked potentials (SEPs) as recorded from the skull surface. The photothrombotic lesion resulted in appreciably decreased amplitudes of the evoked potentials, but OxAc administration significantly attenuated this reduction, and also the infarct size assessed histologically. We suggest that the neuroprotective effects of OxAc are due to its blood Glu-scavenging activity, which, by increasing the brain-to-blood Glu efflux, reduces the excess Glu responsible for the anatomical and functional correlates of the ischemia, as evaluated by electrophysiological evoked potential (EP) measurements.


Asunto(s)
Infarto Cerebral/tratamiento farmacológico , Potenciales Evocados Somatosensoriales/fisiología , Ácido Oxaloacético/uso terapéutico , Corteza Somatosensorial/patología , Corteza Somatosensorial/fisiopatología , Animales , Infarto Cerebral/inducido químicamente , Infarto Cerebral/patología , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Fluoresceínas , Masculino , Compuestos Orgánicos , Ratas , Rosa Bengala/toxicidad , Corteza Somatosensorial/irrigación sanguínea
20.
Neuroimage ; 39(1): 248-60, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17904868

RESUMEN

Functional magnetic resonance imaging (fMRI) in anesthetized-animals is critical in studying the mechanisms of fMRI and investigating animal models of various diseases. Medetomidine was recently introduced for independent anesthesia for longitudinal (survival) fMRI studies in rats. Since stimulation-induced fMRI signal is anesthesia-dependent and its characteristics in rats under medetomidine are not fully elucidated, the blood oxygenation level dependent (BOLD) fMRI response to electrical forepaw stimulation under medetomidine was systematically investigated at 9.4 T. Robust activations in contralateral primary somatosensory cortex (SI) and thalamus were observed and peaked at the stimulus frequency of 9 Hz. The response in SI saturates at the stimulus strength of 4 mA while that in thalamus monotonically increases. In addition to fMRI data acquired with the forepaw stimulation, data were also acquired during the resting-state to investigate the synchronization of low frequency fluctuations (LFF) in the BOLD signal (<0.08 Hz) in different brain regions. LFF during resting-state have been observed to be synchronized between functionally related brain regions in human subjects while its origin is not fully understood. LFF have not been extensively studied or widely reported in anesthetized-animals. In our data, synchronized LFF of BOLD signals are found in clustered, bilaterally symmetric regions, including SI and caudate-putamen and the magnitude of the LFF is approximately 1.5%, comparable to the stimulation-induced BOLD signals. Similar to resting-state data reported in human subjects, LFF in rats under medetomidine likely reflect functional connectivity of these brain regions.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Imagen por Resonancia Magnética/métodos , Medetomidina/farmacología , Descanso/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Analgésicos no Narcóticos/farmacología , Animales , Encéfalo/efectos de los fármacos , Mapeo Encefálico/métodos , Estimulación Eléctrica/métodos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/efectos de los fármacos , Tálamo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA