Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Brain ; 143(1): 161-174, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800012

RESUMEN

Inborn errors of CACNA1A-encoded P/Q-type calcium channels impair synaptic transmission, producing early and lifelong neurological deficits, including childhood absence epilepsy, ataxia and dystonia. Whether these impairments owe their pathologies to defective channel function during the critical period for thalamic network stabilization in immature brain remains unclear. Here we show that mice with tamoxifen-induced adult-onset ablation of P/Q channel alpha subunit (iKOp/q) display identical patterns of dysfunction, replicating the inborn loss-of-function phenotypes and, therefore demonstrate that these neurological defects do not rely upon developmental abnormality. Unexpectedly, unlike the inborn model, the adult-onset pattern of excitability changes believed to be pathogenic within the thalamic network is non-canonical. Specifically, adult ablation of P/Q channels does not promote Cacna1g-mediated burst firing or T-type calcium current (IT) in the thalamocortical relay neurons; however, burst firing in thalamocortical relay neurons remains essential as iKOp/q mice generated on a Cacna1g deleted background show substantially diminished seizure generation. Moreover, in thalamic reticular nucleus neurons, burst firing is impaired accompanied by attenuated IT. Interestingly, inborn deletion of thalamic reticular nucleus-enriched, human childhood absence epilepsy-linked gene Cacna1h in iKOp/q mice reduces thalamic reticular nucleus burst firing and promotes rather than reduces seizure, indicating an epileptogenic role for loss-of-function Cacna1h gene variants reported in human childhood absence epilepsy cases. Together, our results demonstrate that P/Q channels remain critical for maintaining normal thalamocortical oscillations and motor control in the adult brain, and suggest that the developmental plasticity of membrane currents regulating pathological rhythmicity is both degenerate and age-dependent.


Asunto(s)
Ataxia/genética , Canales de Calcio Tipo N/genética , Corteza Cerebral/metabolismo , Epilepsia Tipo Ausencia/genética , Neuronas/metabolismo , Tálamo/metabolismo , Potenciales de Acción , Factores de Edad , Animales , Ataxia/metabolismo , Ataxia/fisiopatología , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/metabolismo , Epilepsia Tipo Ausencia/fisiopatología , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Inhibidores/genética , Potenciales de la Membrana/genética , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Núcleos Talámicos/citología , Tálamo/fisiopatología
2.
Nat Neurosci ; 22(2): 205-217, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30664766

RESUMEN

Nuclear receptor corepressor 1 (NCOR1) and NCOR2 (also known as SMRT) regulate gene expression by activating histone deacetylase 3 through their deacetylase activation domain (DAD). We show that mice with DAD knock-in mutations have memory deficits, reduced anxiety levels, and reduced social interactions. Mice with NCOR1 and NORC2 depletion specifically in GABAergic neurons (NS-V mice) recapitulated the memory deficits and had reduced GABAA receptor subunit α2 (GABRA2) expression in lateral hypothalamus GABAergic (LHGABA) neurons. This was associated with LHGABA neuron hyperexcitability and impaired hippocampal long-term potentiation, through a monosynaptic LHGABA to CA3GABA projection. Optogenetic activation of this projection caused memory deficits, whereas targeted manipulation of LHGABA or CA3GABA neuron activity reversed memory deficits in NS-V mice. We describe de novo variants in NCOR1, NCOR2 or HDAC3 in patients with intellectual disability or neurodevelopmental disorders. These findings identify a hypothalamus-hippocampus projection that may link endocrine signals with synaptic plasticity through NCOR-mediated regulation of GABA signaling.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Neuronas GABAérgicas/metabolismo , Hipotálamo/metabolismo , Trastornos de la Memoria/genética , Memoria/fisiología , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/genética , Animales , Bases de Datos Factuales , Potenciales Postsinápticos Excitadores/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
3.
eNeuro ; 4(4)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28819639

RESUMEN

Glutamate theories of schizophrenia suggest that the disease is associated with a loss of NMDA receptors, specifically on GABAergic parvalbumin-expressing interneurons (PVIs), leading to changes in the excitation-inhibition balance in the prefrontal cortex (PFC). Oxidative stress contributes to the loss of PVI and the development of schizophrenia. Here, we investigated whether the glutathione precursor N-acetyl cysteine (NAC) can prevent changes in synaptic transmission at pyramidal cells and PVIs that result from developmental NMDAR blockade and how these changes are related to mitochondrial dysfunction in the PFCs of mice. Perinatal treatment with ketamine induced persistent changes in the reduced glutathione/oxidized glutathione (glutathione disulfide) ratio in the medial PFC, indicating long-lasting increases in oxidative stress. Perinatal ketamine treatment also reduced parvalbumin expression, and it induced a decline in mitochondrial membrane potential, as well as elevations in mitochondrial superoxide levels. At the level of synaptic function ketamine reduced inhibition onto layer 2/3 pyramidal cells and increased excitatory drive onto PVI, indicating long-lasting disruptions in the excitation-inhibition balance. These changes were accompanied by layer-specific alterations in NMDAR function in PVIs. All of these changes were mitigated by coadministration of NAC. In addition, NAC given only during late adolescence was also able to restore normal mitochondria function and inhibition at pyramidal cells. These results show that ketamine-induced alterations in PFC physiology correlate with cell type-specific changes in mitochondria function. The ability of NAC to prevent or restore these changes supports the usefulness of antioxidant supplementation in the treatment of schizophrenia.


Asunto(s)
Acetilcisteína/farmacología , Antioxidantes/uso terapéutico , Mitocondrias/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/complicaciones , Sinapsis/efectos de los fármacos , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Parvalbúminas/metabolismo , Esquizofrenia/genética , Superóxidos/metabolismo
4.
Neuroscience ; 358: 146-157, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28673721

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZD7288 (10µM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons.


Asunto(s)
Potenciales Postsinápticos Excitadores/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Células Receptoras Sensoriales/fisiología , Sustancia Gelatinosa/citología , Adyuvantes Inmunológicos/farmacología , Animales , Colforsina/farmacología , Potenciales Postsinápticos Excitadores/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(7): 1684-1689, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28143929

RESUMEN

Experience-driven synaptic plasticity is believed to underlie adaptive behavior by rearranging the way neuronal circuits process information. We have previously discovered that O-GlcNAc transferase (OGT), an enzyme that modifies protein function by attaching ß-N-acetylglucosamine (GlcNAc) to serine and threonine residues of intracellular proteins (O-GlcNAc), regulates food intake by modulating excitatory synaptic function in neurons in the hypothalamus. However, how OGT regulates excitatory synapse function is largely unknown. Here we demonstrate that OGT is enriched in the postsynaptic density of excitatory synapses. In the postsynaptic density, O-GlcNAcylation on multiple proteins increased upon neuronal stimulation. Knockout of the OGT gene decreased the synaptic expression of the AMPA receptor GluA2 and GluA3 subunits, but not the GluA1 subunit. The number of opposed excitatory presynaptic terminals was sharply reduced upon postsynaptic knockout of OGT. There were also fewer and less mature dendritic spines on OGT knockout neurons. These data identify OGT as a molecular mechanism that regulates synapse maturity.


Asunto(s)
Hipotálamo/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores/genética , Hipotálamo/citología , Ratones Noqueados , N-Acetilglucosaminiltransferasas/genética , Plasticidad Neuronal/genética , Terminales Presinápticos/metabolismo , Ratas , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/genética , Transmisión Sináptica/genética
6.
Front Neural Circuits ; 10: 31, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199672

RESUMEN

Mutation of the metabotropic glutamate receptor type 7 (mGlu7) induces absence-like epileptic seizures, but its precise role in the somatosensory thalamocortical network remains unknown. By combining electrophysiological recordings, optogenetics, and pharmacology, we dissected the contribution of the mGlu7 receptor at mouse thalamic synapses. We found that mGlu7 is functionally expressed at both glutamatergic and GABAergic synapses, where it can inhibit neurotransmission and regulate short-term plasticity. These effects depend on the PDZ-ligand of the receptor, as they are lost in mutant mice. Interestingly, the very low affinity of mGlu7 receptors for glutamate raises the question of how it can be activated, namely at GABAergic synapses and in basal conditions. Inactivation of the receptor activity with the mGlu7 negative allosteric modulator (NAM), ADX71743, enhances thalamic synaptic transmission. In vivo administration of the NAM induces a lethargic state with spindle and/or spike-and-wave discharges accompanied by a behavioral arrest typical of absence epileptic seizures. This provides evidence for mGlu7 receptor-mediated tonic modulation of a physiological function in vivo preventing synchronous and potentially pathological oscillations.


Asunto(s)
Corteza Cerebral/citología , Vías Nerviosas/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Tálamo/fisiología , Animales , Benzoxazoles/química , Benzoxazoles/farmacología , Corteza Cerebral/fisiología , Channelrhodopsins , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , GABAérgicos/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/fisiología , Densidad Postsináptica/efectos de los fármacos , Densidad Postsináptica/genética , Receptores de GABA-A/fisiología , Receptores de Glutamato Metabotrópico/genética , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética
7.
Neuron ; 89(4): 734-40, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26833136

RESUMEN

Movement suppression in Parkinson's disease (PD) is thought to arise from increased efficacy of the indirect pathway basal ganglia circuit, relative to the direct pathway. However, the underlying pathophysiological mechanisms remain elusive. To examine whether changes in the strength of synaptic inputs to these circuits contribute to this imbalance, we obtained paired whole-cell recordings from striatal direct- and indirect-pathway medium spiny neurons (dMSNs and iMSNs) and optically stimulated inputs from sensorimotor cortex or intralaminar thalamus in brain slices from control and dopamine-depleted mice. We found that dopamine depletion selectively decreased synaptic strength at thalamic inputs to dMSNs, suggesting that thalamus drives asymmetric activation of basal ganglia circuitry underlying parkinsonian motor impairments. Consistent with this hypothesis, in vivo chemogenetic and optogenetic inhibition of thalamostriatal terminals reversed motor deficits in dopamine-depleted mice. These results implicate thalamostriatal projections in the pathophysiology of PD and support interventions targeting thalamus as a potential therapeutic strategy.


Asunto(s)
Cuerpo Estriado/patología , Vías Nerviosas/fisiología , Trastornos Parkinsonianos/patología , Sinapsis/fisiología , Tálamo/patología , Adrenérgicos/toxicidad , Animales , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Conducta Exploratoria , Lateralidad Funcional , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Haz Prosencefálico Medial/lesiones , Ratones , N-Metilaspartato/farmacología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
8.
J Neurosci ; 36(4): 1324-35, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26818519

RESUMEN

Aberrant gene expression within the hippocampus has recently been implicated in the pathogenesis of obesity-induced memory impairment. Whether a dysregulation of epigenetic modifications mediates this disruption in gene transcription has yet to be established. Here we report evidence of obesity-induced alterations in DNA methylation of memory-associated genes, including Sirtuin 1 (Sirt1), within the hippocampus, and thus offer a novel mechanism by which SIRT1 expression within the hippocampus is suppressed during obesity. Forebrain neuron-specific Sirt1 knock-out closely recapitulated the memory deficits exhibited by obese mice, consistent with the hypothesis that the high-fat diet-mediated reduction of hippocampal SIRT1 could be responsible for obesity-linked memory impairment. Obese mice fed a diet supplemented with the SIRT1-activating molecule resveratrol exhibited increased hippocampal SIRT1 activity and preserved hippocampus-dependent memory, further strengthening this conclusion. Thus, our findings suggest that the memory-impairing effects of diet-induced obesity may potentially be mediated by neuroepigenetic dysregulation of SIRT1 within the hippocampus. SIGNIFICANCE STATEMENT: Previous studies have implicated transcriptional dysregulation within the hippocampus as being a relevant pathological concomitant of obesity-induced memory impairment, yet a deeper understanding of the basis for, and etiological significance of, transcriptional dysregulation in this context is lacking. Here we present the first evidence of epigenetic dysregulation (i.e., altered DNA methylation and hydroxymethylation) of memory-related genes, including Sirt1, within the hippocampus of obese mice. Furthermore, experiments using transgenic and pharmacological approaches strongly implicate reduced hippocampal SIRT1 as being a principal pathogenic mediator of obesity-induced memory impairment. This paper offers a novel working model that may serve as a conceptual basis for the development of therapeutic interventions for obesity-induced memory impairment.


Asunto(s)
Hipocampo/metabolismo , Trastornos de la Memoria/etiología , Neuronas/metabolismo , Obesidad/complicaciones , Obesidad/fisiopatología , Sirtuina 1/metabolismo , Animales , Antioxidantes/farmacología , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Insulina/metabolismo , Masculino , Trastornos de la Memoria/dietoterapia , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/inducido químicamente , Prosencéfalo/patología , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Resveratrol , Sirtuina 1/genética , Memoria Espacial/efectos de los fármacos , Memoria Espacial/efectos de la radiación , Estilbenos/farmacología , Factores de Tiempo
9.
J Neurosci ; 36(2): 405-18, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758833

RESUMEN

Generalized spike-wave seizures involving abnormal synchronization of cortical and underlying thalamic circuitry represent a major category of childhood epilepsy. Inborn errors of Cacna1a, the P/Q-type voltage-gated calcium channel α subunit gene, expressed throughout the brain destabilize corticothalamic rhythmicity and produce this phenotype. To determine the minimal cellular lesion required for this network disturbance, we used neurotensin receptor 1 (Ntsr1) cre-driver mice to ablate floxed Cacna1a in layer VI pyramidal neurons, which supply the sole descending cortical synaptic input to thalamocortical relay cells and reticular interneurons and activate intrathalamic circuits. Targeted Cacna1a ablation in layer VI cells resulted in mice that display a robust spontaneous spike-wave absence seizure phenotype accompanied by behavioral arrest and inhibited by ethosuximide. To verify the selectivity of the molecular lesion, we determined that P/Q subunit proteins were reduced in corticothalamic relay neuron terminal zones, and confirmed that P/Q-mediated glutamate release was reduced at these synapses. Spike-triggered exocytosis was preserved by N-type calcium channel rescue, demonstrating that evoked release at layer VI terminals relies on both P/Q and N-type channels. Whereas intrinsic excitability of the P/Q channel depleted layer VI neurons was unaltered, T-type calcium currents in the postsynaptic thalamic relay and reticular cells were dramatically elevated, favoring rebound bursting and seizure generation. We find that an early P/Q-type release defect, limited to synapses of a single cell-type within the thalamocortical circuit, is sufficient to remodel synchronized firing behavior and produce a stable generalized epilepsy phenotype. SIGNIFICANCE STATEMENT: This study dissects a critical component of the corticothalamic circuit in spike-wave epilepsy and identifies the developmental importance of P/Q-type calcium channel-mediated presynaptic glutamate release at layer VI pyramidal neuron terminals. Genetic ablation of Cacna1a in layer VI neurons produced synchronous spike-wave discharges in the cortex and thalamus that were inhibited by ethosuximide. These mice also displayed N-type calcium channel compensation at descending thalamic synapses, and consistent with other spike-wave models increased low-threshold T-type calcium currents within postsynaptic thalamic relay and reticular neurons. These results demonstrate, for the first time, that preventing the developmental homeostatic switch from loose to tightly coupled synaptic release at a single class of deep layer cortical excitatory output neurons results in generalized spike-wave epilepsy.


Asunto(s)
Canales de Calcio Tipo N/deficiencia , Epilepsia Tipo Ausencia/patología , Neuronas/patología , Tálamo/patología , Corteza Visual/patología , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Canales de Calcio Tipo N/genética , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Etosuximida/uso terapéutico , Potenciales Postsinápticos Excitadores/genética , Femenino , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos Motores/etiología , Trastornos Motores/genética , Mutación/genética , Tiempo de Reacción/genética , Receptores de Neurotensina/metabolismo
10.
Neurobiol Dis ; 73: 106-17, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25281316

RESUMEN

Dominant loss-of-function mutations in voltage-gated sodium channel NaV1.1 cause Dravet Syndrome, an intractable childhood-onset epilepsy. NaV1.1(+/-) Dravet Syndrome mice in C57BL/6 genetic background exhibit severe seizures, cognitive and social impairments, and premature death. Here we show that Dravet Syndrome mice in pure 129/SvJ genetic background have many fewer seizures and much less premature death than in pure C57BL/6 background. These mice also have a higher threshold for thermally induced seizures, fewer myoclonic seizures, and no cognitive impairment, similar to patients with Genetic Epilepsy with Febrile Seizures Plus. Consistent with this mild phenotype, mutation of NaV1.1 channels has much less physiological effect on neuronal excitability in 129/SvJ mice. In hippocampal slices, the excitability of CA1 Stratum Oriens interneurons is selectively impaired, while the excitability of CA1 pyramidal cells is unaffected. NaV1.1 haploinsufficiency results in increased rheobase and threshold for action potential firing and impaired ability to sustain high-frequency firing. Moreover, deletion of NaV1.1 markedly reduces the amplification and integration of synaptic events, further contributing to reduced excitability of interneurons. Excitability is less impaired in inhibitory neurons of Dravet Syndrome mice in 129/SvJ genetic background. Because specific deletion of NaV1.1 in forebrain GABAergic interneuons is sufficient to cause the symptoms of Dravet Syndrome in mice, our results support the conclusion that the milder phenotype in 129/SvJ mice is caused by lesser impairment of sodium channel function and electrical excitability in their forebrain interneurons. This mild impairment of excitability of interneurons leads to a milder disease phenotype in 129/SvJ mice, similar to Genetic Epilepsy with Febrile Seizures Plus in humans.


Asunto(s)
Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Inhibición Neural/genética , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Fenómenos Biofísicos/genética , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/etiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Miedo/psicología , Hipocampo/citología , Hipertermia Inducida/efectos adversos , Técnicas In Vitro , Lidocaína/análogos & derivados , Lidocaína/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Bloqueadores de los Canales de Sodio/farmacología
11.
Neuron ; 82(2): 365-79, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24685175

RESUMEN

Thalamocortical (TC) connectivity is reorganized by thalamic inputs during postnatal development; however, the dynamic characteristics of TC reorganization and the underlying mechanisms remain unexplored. We addressed this question using dendritic refinement of layer 4 (L4) stellate neurons in mouse barrel cortex (barrel cells) as a model; dendritic refinement of L4 neurons is a critical component of TC reorganization through which postsynaptic L4 neurons acquire their dendritic orientation toward presynaptic TC axon termini. Simultaneous labeling of TC axons and individual barrel cell dendrites allowed in vivo time-lapse imaging of dendritic refinement in the neonatal cortex. The barrel cells reinforced the dendritic orientation toward TC axons by dynamically moving their branches. In N-methyl-D-aspartate receptor (NMDAR)-deficient barrel cells, this dendritic motility was enhanced, and the orientation bias was not reinforced. Our data suggest that L4 neurons have "fluctuating" dendrites during TC reorganization and that NMDARs cell autonomously regulate these dynamics to establish fine-tuned circuits.


Asunto(s)
Corteza Cerebral/citología , Dendritas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Receptores de N-Metil-D-Aspartato/metabolismo , Tálamo/fisiología , Animales , Animales Recién Nacidos , Corteza Cerebral/fisiología , Dendritas/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Neuronas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
12.
J Neurosci ; 33(18): 7618-26, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23637156

RESUMEN

The lateral hypothalamus (LH) sends a dense glutamatergic and peptidergic projection to dopamine neurons in the ventral tegmental area (VTA), a cell group known to promote reinforcement and aspects of reward. The role of the LH to VTA projection in reward-seeking behavior can be informed by using optogenetic techniques to dissociate the actions of LH neurons from those of other descending forebrain inputs to the VTA. In the present study, we identify the effect of neurotensin (NT), one of the most abundant peptides in the LH to VTA projection, on excitatory synaptic transmission in the VTA and reward-seeking behavior. Mice displayed robust intracranial self-stimulation of LH to VTA fibers, an operant behavior mediated by NT 1 receptors (Nts1) and NMDA receptors. Whole-cell patch-clamp recordings of VTA dopamine neurons demonstrated that NT (10 nm) potentiated NMDA-mediated EPSCs via Nts1. Results suggest that NT release from the LH into the VTA activates Nts1, thereby potentiating NMDA-mediated EPSCs and promoting reward. The striking behavioral and electrophysiological effects of NT and glutamate highlight the LH to VTA pathway as an important component of reward.


Asunto(s)
Condicionamiento Operante/fisiología , Ácido Glutámico/metabolismo , Hipotálamo/fisiología , Neurotensina/metabolismo , Recompensa , Área Tegmental Ventral/fisiología , Animales , Proteínas Bacterianas/genética , Channelrhodopsins , Condicionamiento Operante/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Hipotálamo/efectos de los fármacos , Técnicas In Vitro , Luz , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Vías Nerviosas/fisiología , Neurotensina/farmacología , Pirazoles/farmacología , Quinolinas/farmacología , Quinoxalinas/farmacología , Receptores de Neurotensina/antagonistas & inhibidores , Receptores de Neurotensina/deficiencia , Autoestimulación , Transducción de Señal/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Valina/análogos & derivados , Valina/farmacología , Área Tegmental Ventral/efectos de los fármacos
13.
J Neurosci ; 33(9): 3953-66, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447605

RESUMEN

Down syndrome (DS) is associated with neurological complications, including cognitive deficits that lead to impairment in intellectual functioning. Increased GABA-mediated inhibition has been proposed as a mechanism underlying deficient cognition in the Ts65Dn (TS) mouse model of DS. We show that chronic treatment of these mice with RO4938581 (3-bromo-10-(difluoromethyl)-9H-benzo[f]imidazo[1,5-a][1,2,4]triazolo[1,5-d][1,4]diazepine), a selective GABA(A) α5 negative allosteric modulator (NAM), rescued their deficits in spatial learning and memory, hippocampal synaptic plasticity, and adult neurogenesis. We also show that RO4938581 normalized the high density of GABAergic synapse markers in the molecular layer of the hippocampus of TS mice. In addition, RO4938581 treatment suppressed the hyperactivity observed in TS mice without inducing anxiety or altering their motor abilities. These data demonstrate that reducing GABAergic inhibition with RO4938581 can reverse functional and neuromorphological deficits of TS mice by facilitating brain plasticity and support the potential therapeutic use of selective GABA(A) α5 NAMs to treat cognitive dysfunction in DS.


Asunto(s)
Síndrome de Down/complicaciones , Síndrome de Down/patología , Hipocampo/patología , Discapacidades para el Aprendizaje/tratamiento farmacológico , Neuronas/fisiología , Receptores de GABA-A/metabolismo , Estimulación Acústica , Análisis de Varianza , Animales , Benzodiazepinas/farmacología , Benzodiazepinas/uso terapéutico , Biofisica , Proteínas Portadoras/metabolismo , Recuento de Células , Proliferación Celular/efectos de los fármacos , Señales (Psicología) , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Conducta Exploratoria/efectos de los fármacos , Moduladores del GABA/farmacología , Moduladores del GABA/uso terapéutico , Glutamato Descarboxilasa/metabolismo , Hipocampo/efectos de los fármacos , Hipercinesia/tratamiento farmacológico , Hipercinesia/etiología , Imidazoles/farmacología , Imidazoles/uso terapéutico , Antígeno Ki-67 , Discapacidades para el Aprendizaje/etiología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuronas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Desempeño Psicomotor/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Reflejo/efectos de los fármacos , Reflejo/genética , Reflejo de Sobresalto/efectos de los fármacos , Prueba de Desempeño de Rotación con Aceleración Constante , Convulsiones/etiología , Filtrado Sensorial/efectos de los fármacos , Tritio/farmacocinética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
14.
Nat Neurosci ; 16(1): 13-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23222912

RESUMEN

Despite the prevailing idea that neurogliaform cells produce a spatially unrestricted widespread inhibition, we demonstrate here that their activity attenuates thalamic-evoked feed-forward inhibition in layer IV barrel cortex but has no effect on feed-forward excitation. The result of this circuit selectivity is a dynamic regulation in the temporal window for integration of excitatory thalamic input, thus revealing a new role for neurogliaform cells in shaping sensory processing.


Asunto(s)
Neuroglía/fisiología , Dinámicas no Lineales , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Potenciales de Acción/genética , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , GABAérgicos/farmacología , Proteínas Fluorescentes Verdes/genética , Humanos , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Ratones , Ratones Transgénicos , Modelos Neurológicos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Inhibición Neural/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuropéptido Y/genética , Ácidos Nipecóticos/farmacología , Parvalbúminas/metabolismo , Ácidos Fosfínicos/farmacología , Propanolaminas/farmacología , Receptores de Serotonina/genética , Sinapsis/efectos de los fármacos , Sinapsis/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
15.
J Neurosci ; 32(43): 15106-11, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23100431

RESUMEN

Accumulative evidence indicates that microglial cells influence the normal development of brain synapses. Yet, the mechanisms by which these immune cells target maturating synapses and influence their functional development at early postnatal stages remain poorly understood. Here, we analyzed the role of CX3CR1, a microglial receptor activated by the neuronal chemokine CX3CL1 (or fractalkine) which controls key functions of microglial cells. In the whisker-related barrel field of the mouse somatosensory cortex, we show that the recruitment of microglia to the sites where developing thalamocortical synapses are concentrated (i.e., the barrel centers) occurs only after postnatal day 5 and is controlled by the fractalkine/CX3CR1 signaling pathway. Indeed, at this developmental stage fractalkine is overexpressed within the barrels and CX3CR1 deficiency delays microglial cell recruitment into the barrel centers. Functional analysis of thalamocortical synapses shows that CX3CR1 deficiency also delays the functional maturation of postsynaptic glutamate receptors which normally occurs at these synapses between the first and second postnatal week. These results show that reciprocal interactions between neurons and microglial cells control the functional maturation of cortical synapses.


Asunto(s)
Discapacidades del Desarrollo/patología , Receptores de Quimiocina/deficiencia , Corteza Somatosensorial/patología , Sinapsis/patología , Tálamo/patología , Factores de Edad , Animales , Animales Recién Nacidos , Receptor 1 de Quimiocinas CX3C , Quimiocina CX3CL1/metabolismo , Discapacidades del Desarrollo/genética , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Antagonistas del GABA/farmacología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Receptores de Quimiocina/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Estadísticas no Paramétricas
16.
Neuroscience ; 222: 215-27, 2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-22796079

RESUMEN

Beside its role in development and maturation of synapses, brain-derived neurotrophic factor (BDNF) is suggested to play a critical role in modulation and plasticity of glutamatergic as well as GABAergic synaptic transmission. Here, we used heterozygous BDNF knockout (BDNF(+/-)) mice, which chronically lack approximately 50% of BDNF of wildtype (WT) animals, to investigate the role of BDNF in regulating synaptic transmission in the ventrobasal complex (VB) of the thalamus. Excitatory transmission was characterized at glutamatergic synapses onto relay (TC) neurons of the VB and intrathalamic inhibitory transmission was characterized at GABAergic synapses between neurons of the reticular thalamic nucleus (RTN) and TC neurons. Reduced expression of BDNF in BDNF(+/-) mice did not affect intrinsic membrane properties of TC neurons. Recordings in TC neurons, however, revealed a strong reduction in the frequency of miniature excitatory postsynaptic currents (mEPSCs) in BDNF(+/-) mice, as compared to WT littermates, whereas mEPSC amplitudes were not significantly different between genotypes. A mainly presynaptic impairment of corticothalamic excitatory synapses in BDNF(+/-) mice was also indicated by a decreased paired-pulse ratio and faster synaptic fatigue upon prolonged repetitive stimulation at 40 Hz. For miniature inhibitory postsynaptic currents (mIPSCs) recorded in TC neurons, both, frequency and amplitude showed a significant reduction in knock-out animals, concurrent with a prolonged decay time constant, whereas paired-pulse depression and synaptic fatigue of inhibitory synapses were not significantly different between WT and BDNF(+/-) mice. Spontaneous IPSCs (sIPSCs) recorded in VB neurons of BDNF(+/-) animals showed a significantly reduced frequency. However, the glutamatergic drive onto RTN neurons, as revealed by the percentage reduction in frequency of sIPSCs after application of AMPA and NMDA receptor blockers, was not significantly different. Together, the present findings suggest that a chronically reduced level of BDNF to ∼50% of WT levels in heterozygous knock-out animals, strongly attenuates glutamatergic and GABAergic synaptic transmission in thalamic circuits. We hypothesize that this impairment of excitatory and inhibitory transmission may have profound consequences for the generation of rhythmical activity in the thalamocortical network.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Corteza Cerebral/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Tálamo/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Interpretación Estadística de Datos , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/fisiología , Técnicas In Vitro , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Formación Reticular/fisiología , Sinapsis/genética , Transmisión Sináptica/genética , Ácido gamma-Aminobutírico/genética
17.
J Neurosci ; 32(12): 4042-8, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22442070

RESUMEN

Hypothalamic proopiomelanocortin (POMC) neurons and their peptide products mediate important aspects of energy balance, analgesia, and reward. In addition to peptide products, there is evidence that POMC neurons can also express the amino acid transmitters GABA and glutamate, suggesting these neurons may acutely inhibit or activate downstream neurons. However, the release of amino acid transmitters from POMC neurons has not been thoroughly investigated in an intact system. In the present study, the light-activated cation channel channelrhodopsin-2 (ChR2) was used to selectively evoke transmitter release from POMC neurons. Whole-cell electrophysiologic recordings were made in brain slices taken from POMC-Cre transgenic mice that had been injected with a viral vector containing a floxed ChR2 sequence. Brief pulses of blue light depolarized POMC-ChR2 neurons and induced the release of GABA and glutamate onto unidentified neurons within the arcuate nucleus, as well as onto other POMC neurons. To determine whether the release of GABA and glutamate from POMC terminals can be readily modulated, opioid and GABA(B) receptor agonists were applied. Agonists for µ- and κ-, but not δ-opioid receptors inhibited transmitter release from POMC neurons, as did the GABA(B) receptor agonist baclofen. This regulation indicates that opioids and GABA released from POMC neurons may act at presynaptic receptors on POMC terminals in an autoregulatory manner to limit continued transmission. The results show that, in addition to the relatively slow and long-lasting actions of peptides, POMC neurons can rapidly affect the activity of downstream neurons via GABA and glutamate release.


Asunto(s)
Ácido Glutámico/metabolismo , Hipotálamo/citología , Neuronas/citología , Terminales Presinápticos/metabolismo , Proopiomelanocortina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Analgésicos Opioides/farmacología , Animales , Channelrhodopsins , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Red Nerviosa/fisiología , Neuronas/metabolismo , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Péptidos/farmacología , Proopiomelanocortina/genética , Quinoxalinas/farmacología
18.
J Neurosci ; 31(44): 16012-25, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049443

RESUMEN

Thalamocortical (TC) projections provide the major pathway for ascending sensory information to the mammalian neocortex. Arrays of these projections form synaptic inputs on thalamorecipient neurons, thus contributing to the formation of receptive fields (RFs) in sensory cortices. Experience-dependent plasticity of RFs persists throughout an organism's life span but in adults requires activation of cholinergic inputs to the cortex. In contrast, synaptic plasticity at TC projections is limited to the early postnatal period. This disconnect led to the widespread belief that TC synapses are the principal site of RF plasticity only in neonatal sensory cortices, but that they lose this plasticity upon maturation. Here, we tested an alternative hypothesis that mature TC projections do not lose synaptic plasticity but rather acquire gating mechanisms that prevent the induction of synaptic plasticity. Using whole-cell recordings and direct measures of postsynaptic and presynaptic activity (two-photon glutamate uncaging and two-photon imaging of the FM 1-43 assay, respectively) at individual synapses in acute mouse brain slices that contain the auditory thalamus and cortex, we determined that long-term depression (LTD) persists at mature TC synapses but is gated presynaptically. Cholinergic activation releases presynaptic gating through M(1) muscarinic receptors that downregulate adenosine inhibition of neurotransmitter release acting through A(1) adenosine receptors. Once presynaptic gating is released, mature TC synapses can express LTD postsynaptically through group I metabotropic glutamate receptors. These results indicate that synaptic plasticity at TC synapses is preserved throughout the life span and, therefore, may be a cellular substrate of RF plasticity in both neonate and mature animals.


Asunto(s)
Corteza Cerebral/citología , Depresión Sináptica a Largo Plazo/fisiología , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Tálamo/citología , Animales , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Glutamatos/farmacología , Técnicas In Vitro , Indoles/farmacología , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Receptor de Adenosina A1/deficiencia , Transmisión Sináptica/genética
19.
J Neurosci ; 31(46): 16675-84, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22090494

RESUMEN

Synaptic refinement, a developmental process that consists of selective elimination and strengthening of immature synapses, is essential for the formation of precise neuronal circuits and proper brain function. At glutamatergic synapses in the brain, activity-dependent recruitment of AMPA receptors (AMPARs) is a key mechanism underlying the strengthening of immature synapses. Studies using receptor overexpression have shown that the recruitment of AMPARs is subunit specific. With the notable exception of hippocampal CA3-CA1 synapses, however, little is known about how native receptors behave or the roles of specific AMPAR subunits in synaptic refinement in vivo. Using patch-clamp recordings in acute slices, we examined developmental refinement of whisker relay (lemniscal) synapses in the thalamus in mice deficient of AMPAR subunits. Deletion of GluA3 or GluA4 caused significant reductions of synaptic AMPAR currents in thalamic neurons at P16-P17, with a greater reduction observed in GluA3-deficient mice. Deletions of both GluA3 and GluA4 abolished synaptic AMPAR responses in the majority of thalamic neurons, indicating that at thalamic relay synapses AMPARs are composed primarily of GluA3 and GluA4. Surprisingly, deletions of GluA3 or GluA4 or both had no effect on the elimination of relay inputs: the majority of thalamic neurons in these knock-out mice-as in wild-type mice-receive a single relay input. However, experience-dependent strengthening of thalamic relay synapses was impaired in GluA3 knock-out mice. Together these findings suggest that the elimination of immature glutamatergic synapses proceeds normally in the absence of synaptic strengthening, and highlight the role of GluA3-containing AMPARs in experience-dependent synaptic plasticity.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Sinapsis/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Biofisica , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Receptores AMPA/deficiencia , Privación Sensorial/fisiología , Estadísticas no Paramétricas , Sinapsis/efectos de los fármacos , Sinapsis/genética , Tálamo/citología , Regulación hacia Arriba/genética , Vibrisas/inervación
20.
J Neurosci ; 31(43): 15340-51, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22031880

RESUMEN

Information processing in the striatum is critical for basal ganglia function and strongly influenced by neuromodulators (e.g., dopamine). The striatum also receives modulatory afferents from the histaminergic neurons in the hypothalamus which exhibit a distinct diurnal rhythm with high activity during wakefulness, and little or no activity during sleep. In view of the fact that the striatum also expresses a high density of histamine receptors, we hypothesized that released histamine will affect striatal function. We studied the role of histamine on striatal microcircuit function by performing whole-cell patch-clamp recordings of neurochemically identified striatal neurons combined with electrical and optogenetic stimulation of striatal afferents in mouse brain slices. Bath applied histamine had many effects on striatal microcircuits. Histamine, acting at H(2) receptors, depolarized both the direct and indirect pathway medium spiny projection neurons (MSNs). Excitatory, glutamatergic input to both classes of MSNs from both the cortex and thalamus was negatively modulated by histamine acting at presynaptic H(3) receptors. The dynamics of thalamostriatal, but not corticostriatal, synapses were modulated by histamine leading to a facilitation of thalamic input. Furthermore, local inhibitory input to both classes of MSNs was negatively modulated by histamine. Subsequent dual whole-cell patch-clamp recordings of connected pairs of striatal neurons revealed that only lateral inhibition between MSNs is negatively modulated, whereas feedforward inhibition from fast-spiking GABAergic interneurons onto MSNs is unaffected by histamine. These findings suggest that the diurnal rhythm of histamine release entrains striatal function which, during wakefulness, is dominated by feedforward inhibition and a suppression of excitatory drive.


Asunto(s)
Cuerpo Estriado/citología , Agonistas de los Receptores Histamínicos/farmacología , Histamina/farmacología , Inhibición Neural/efectos de los fármacos , Neuronas/fisiología , Transmisión Sináptica/efectos de los fármacos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Channelrhodopsins , Estimulación Eléctrica , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Retroalimentación Fisiológica/efectos de los fármacos , Retroalimentación Fisiológica/fisiología , Femenino , GABAérgicos/farmacología , Proteínas Fluorescentes Verdes/genética , Hipocampo/fisiología , Histamina/metabolismo , Agonistas de los Receptores Histamínicos/metabolismo , Antagonistas de los Receptores Histamínicos/farmacología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp/métodos , Piperidinas/farmacología , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Transmisión Sináptica/genética , Tálamo/fisiología , Transfección/métodos , Tirosina 3-Monooxigenasa/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA