Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 8(21): e2100627, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34486241

RESUMEN

Optical stimulation technologies are gaining great consideration in cardiology, neuroscience studies, and drug discovery pathways by providing control over cell activity with high spatio-temporal resolution. However, this high precision requires manipulation of biological processes at genetic level concealing its development from broad scale application. Therefore, translating these technologies into tools for medical or pharmacological applications remains a challenge. Here, an all-optical nongenetic method for the modulation of electrogenic cells is introduced. It is demonstrated that plasmonic metamaterials can be used to elicit action potentials by converting near infrared laser pulses into stimulatory currents. The suggested approach allows for the stimulation of cardiomyocytes and neurons directly on commercial complementary metal-oxide semiconductor microelectrode arrays coupled with ultrafast pulsed laser, providing both stimulation and network-level recordings on the same device.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Rayos Infrarrojos , Miocitos Cardíacos/fisiología , Nanoestructuras/toxicidad , Neuronas/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Línea Celular , Humanos , Metales/química , Ratones , Microelectrodos , Miocitos Cardíacos/citología , Nanoestructuras/química , Neuronas/citología , Porosidad , Ratas , Semiconductores , Dióxido de Silicio/química
2.
Sci Rep ; 11(1): 5177, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664347

RESUMEN

Epiretinal prostheses aim at electrically stimulating the inner most surviving retinal cells-retinal ganglion cells (RGCs)-to restore partial sight to the blind. Recent tests in patients with epiretinal implants have revealed that electrical stimulation of the retina results in the percept of color of the elicited phosphenes, which depends on the frequency of stimulation. This paper presents computational results that are predictive of this finding and further support our understanding of the mechanisms of color encoding in electrical stimulation of retina, which could prove pivotal for the design of advanced retinal prosthetics that elicit both percept and color. This provides, for the first time, a directly applicable "amplitude-frequency" stimulation strategy to "encode color" in future retinal prosthetics through a predictive computational tool to selectively target small bistratified cells, which have been shown to contribute to "blue-yellow" color opponency in the retinal circuitry. The presented results are validated with experimental data reported in the literature and correlated with findings in blind patients with a retinal prosthetic implant collected by our group.


Asunto(s)
Ceguera/terapia , Neuronas/fisiología , Retina/fisiopatología , Células Ganglionares de la Retina/fisiología , Potenciales de Acción/efectos de la radiación , Ceguera/fisiopatología , Simulación por Computador , Estimulación Eléctrica , Terapia por Estimulación Eléctrica , Membrana Epirretinal/patología , Humanos , Neuronas/patología , Retina/diagnóstico por imagen , Células Ganglionares de la Retina/patología , Prótesis Visuales
3.
J Neurophysiol ; 120(6): 2719-2729, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30133383

RESUMEN

The rapid development of wireless communications has raised questions about their potential health risks. So far, the only identified biological effects of radiofrequency fields (RF) are known to be caused by heating, but the issue of potential nonthermal biological effects, especially on the central nervous system (CNS), remains open. We previously reported a decrease in the firing and bursting rates of neuronal cultures exposed to a Global System for Mobile (GSM) RF field at 1,800 MHz for 3 min (Moretti D, Garenne A, Haro E, Poulleier de Gannes F, Lagroye I, Lévêque P, Veyret B, Lewis N. Bioelectromagnetics 34: 571-578, 2013). The aim of the present work was to assess the dose-response relationship for this effect and also to identify a potential differential response elicited by pulse-modulated GSM and continuous-wave (CW) RF fields. Spontaneous bursting activity of neuronal cultures from rat embryonic cortices was recorded using 60-electrode multielectrode arrays (MEAs). At 17-28 days in vitro, the neuronal cultures were subjected to 15-min RF exposures, at specific absorption rates (SAR) ranging from 0.01 to 9.2 W/kg. Both GSM and CW signals elicited a clear decrease in bursting rate during the RF exposure phase. This effect became more marked with increasing SAR and lasted even beyond the end of exposure for the highest SAR levels. Moreover, the amplitude of the effect was greater with the GSM signal. Altogether, our experimental findings provide evidence for dose-dependent effects of RF signals on the bursting rate of neuronal cultures and suggest that part of the mechanism is nonthermal. NEW & NOTEWORTHY In this study, we investigated the effects of some radiofrequency (RF) exposure parameters on the electrical activity of neuronal cultures. We detected a clear decrease in bursting activity, dependent on exposure duration. The amplitude of this effect increased with the specific absorption rate (SAR) level and was greater with Global System for Mobile signal than with continuous-wave signal, at the same average SAR. Our experiment provides unique evidence of a decrease in electrical activity of cortical neuronal cultures during RF exposure.


Asunto(s)
Potenciales de Acción/efectos de la radiación , Neuronas/efectos de la radiación , Ondas de Radio , Animales , Células Cultivadas , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
4.
Health Phys ; 112(6): 501-511, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28441282

RESUMEN

Guidelines for prevention of peripheral nerve stimulation from exposure to low frequency magnetic fields have been developed by standard-setting bodies. Exposure limits or reference levels (RLs) are typically set in terms of the maximum root-mean-square amplitude of a sinusoidal waveform; however, environmental flux densities are often periodic, non-sinusoidal waveforms. This work presents a procedure for deriving RLs for any generalized periodic waveform using the empirical nerve-stimulation threshold data obtained from human volunteer MRI experiments. For this purpose, the "Law of Electrostimulation" (LOE), which sets forth conditions of a waveform necessary to trigger the action potential required to depolarize cell membranes, is applied to various waveforms. The results of the LOE analysis are waveform-specific, amplitude thresholds of stimulation that are found in terms of the empirically-derived rheobase threshold time-rate-of-change flux density and chronaxie from trapezoidal pulse MRI experiments. The thresholds are converted to amplitude RLs in two asymptotic frequency regimes as per the usual practice in standard setting. The resulting RLs have the same frequency dependence as in existing standards (i.e., inverse-frequency below a transition frequency and flat above). It is shown that the transition frequency is dependent only on the shape of the waveform. Both sinusoidal and non-sinusoidal waveforms have identical peak-to-peak amplitude RLs above their respective transition frequencies. Below these frequencies, all peak-to-peak amplitude RLs have the same functional dependence on frequency when the frequency is normalized to the waveform-specific transition frequency. This results in simple criteria for testing the amplitude of any arbitrary periodic waveform against potential for stimulation. These criteria are compared to guidance given for non-sinusoidal waveforms in the ICNIRP 1 Hz-100 kHz exposure standard.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Nervios Periféricos/efectos de la radiación , Potenciales de Acción/efectos de la radiación , Humanos , Imagen por Resonancia Magnética/efectos adversos , Modelos Teóricos , Valores de Referencia
5.
Lasers Med Sci ; 29(1): 351-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23715785

RESUMEN

The aim of this study is to analyze the differences between early and delayed use of low-level laser therapy (LLLT) in functional and morphological recovery of the peripheral nerve. Thirty male Wistar rats were divided into three groups after the sciatic nerve was crushed: (1) control group without laser treatment, (2) early group with laser treatment started immediately after surgery and lasted 14 days, and (3) delayed group with laser treatment starting on the postoperative day 7 and lasted until day 21. A 650-nm diode laser (model: DH650-24-3(5), Huanic, China) with an output power of 25 mW exposed transcutaneously at three equidistant points on the surgical mark corresponding to the crushed nerve. The length of the laser application was calculated as 57 s to satisfy approximately 10 J/cm(2). A Sciatic Functional Index (SFI) was used to evaluate functional improvement in groups at pre- and post-surgery (on days 7, 14, and 21). Compound action potential (CAP) was measured after the sacrifice and histological examination was performed for all groups. SFI results showed that there was no significant difference between groups at different days (p > 0.05). On the other hand, the latency of CAP decreased significantly (p < 0.05) in the delayed group. Histological examination confirmed that the number of mononuclear cells was lower (p < 0.05) in both early and delayed groups. In conclusion, results supported the hypothesis that LLLT could accelerate the rate of recovery of injured peripheral nerves in this animal model. Though both laser groups had positive outcomes, delayed group showed better recovery.


Asunto(s)
Terapia por Luz de Baja Intensidad/métodos , Regeneración Nerviosa/efectos de la radiación , Potenciales de Acción/efectos de la radiación , Animales , Modelos Animales de Enfermedad , Láseres de Semiconductores/uso terapéutico , Masculino , Regeneración Nerviosa/fisiología , Conducción Nerviosa/efectos de la radiación , Ratas , Ratas Wistar , Nervio Ciático/lesiones , Nervio Ciático/fisiopatología , Nervio Ciático/efectos de la radiación , Factores de Tiempo
6.
J Biomed Opt ; 18(12): 128005, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24343448

RESUMEN

Near-infrared stimulation (NIS) is an emerging technique used to evoke action potentials in nervous systems. Its efficacy of evoking action potentials has been demonstrated in different nerve tissues. However, few studies have been performed using NIS to stimulate the deep brain structures, such as globus pallidus (GP) and subthalamic nucleus (STN). Male Sprague-Dawley rats were randomly divided into GP stimulation group (n=11) and STN stimulation group (n=6). After introducing optrodes stereotaxically into the GP or STN, we stimulated neural tissue for 2 min with continuous near-infrared light of 808 nm while varying the radiant exposure from 40 to 10 mW. The effects were investigated with extracellular recordings and the temperature rises at the stimulation site were also measured. NIS was found to elicit excitatory responses in eight out of 11 cases (73%) and inhibitory responses in three cases in the GP stimulation group, whereas it predominantly evoked inhibitory responses in seven out of eight cases (87.5%) and an excitatory response in one case in STN stimulation group. Only radiation above 20 mW, accompanying temperature increases of more than 2°C, elicited a statistically significant neural response (p<0.05). The responsiveness to NIS was linearly dependent on the power of radiation exposure.


Asunto(s)
Globo Pálido/efectos de la radiación , Rayos Infrarrojos , Terapia por Luz de Baja Intensidad/métodos , Subtálamo/efectos de la radiación , Potenciales de Acción/efectos de la radiación , Animales , Electrofisiología , Diseño de Equipo , Globo Pálido/fisiología , Rayos Infrarrojos/efectos adversos , Rayos Infrarrojos/uso terapéutico , Rayos Láser , Terapia por Luz de Baja Intensidad/efectos adversos , Terapia por Luz de Baja Intensidad/instrumentación , Masculino , Ratas , Ratas Sprague-Dawley , Subtálamo/fisiología , Temperatura
7.
Clin EEG Neurosci ; 43(3): 176-83, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22956646

RESUMEN

During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS dose parameters can be adjusted, in an application-specific manner, to target or avoid specific brain regions. Though the tDCS electrode montage often follows basic rules of thumb (increased/decreased excitability "under" the anode/cathode electrode), computational forward models of brain current flow provide more accurate insight into detailed current flow patterns and, in some cases, can even challenge simplified electrode-placement assumptions. With the increased recognized value of computational forward models in informing tDCS montage design and interpretation of results, there have been recent advances in modeling tools and a greater proliferation of publications.  In addition, the importance of customizing tDCS for potentially vulnerable populations (eg, skull defects, brain damage/stroke, and extremes of age) can be considered. Finally, computational models can be used to design new electrode montages, for example, to improve spatial targeting such as high-definition tDCS. Pending further validation and dissemination of modeling tools, computational forward models of neuromodulation will become standard tools to guide the optimization of clinical trials and electrotherapy.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/fisiología , Modelos Neurológicos , Neuronas/fisiología , Estimulación Magnética Transcraneal/métodos , Potenciales de Acción/efectos de la radiación , Animales , Encéfalo/efectos de la radiación , Simulación por Computador , Humanos , Neuronas/efectos de la radiación
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 1): 061906, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23005126

RESUMEN

Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites ("virtual electrodes") in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.


Asunto(s)
Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Terapia por Estimulación Eléctrica/métodos , Sistema de Conducción Cardíaco/fisiología , Sistema de Conducción Cardíaco/efectos de la radiación , Modelos Cardiovasculares , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/efectos de la radiación , Animales , Simulación por Computador , Campos Electromagnéticos , Humanos
9.
Artículo en Inglés | MEDLINE | ID: mdl-23366965

RESUMEN

Magnetic stimulation is a key tool in experimental brain research and several clinical applications. Whereas coil designs and the spatial field properties have been intensively studied in the literature, the temporal dynamics of the field has received little attention. The available pulse shapes are typically determined by the relatively limited capabilities of commercial stimulation devices instead of efficiency or optimality. Furthermore, magnetic stimulation is relatively inefficient with respect to the required energy compared to other neurostimulation techniques. We therefore analyze and optimize the waveform dynamics with a nonlinear model of a mammalian motor axon for the first time, without any pre-definition of waveform candidates. We implemented an unbiased and stable numerical algorithm using variational calculus in combination with a global optimization method. This approach yields very stable results with comprehensible characteristic properties, such as a first phase which reduces ohmic losses in the subsequent pulse phase. We compare the energy loss of these optimal waveforms with the waveforms generated by existing magnetic stimulation devices.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Magnetoterapia/métodos , Modelos Neurológicos , Neuronas Motoras/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Axones/efectos de la radiación , Simulación por Computador , Transferencia de Energía/fisiología , Transferencia de Energía/efectos de la radiación , Humanos , Campos Magnéticos , Neuronas Motoras/efectos de la radiación , Dosis de Radiación
10.
Adv Gerontol ; 24(1): 105-7, 2011.
Artículo en Ruso | MEDLINE | ID: mdl-21809628

RESUMEN

Law intensive laser radiation is a multifactorial, inherently information-power influence on biological tissues. Coinciding under characteristics with natural, the dosed out external influence is necessary for live organisms not only as a source of free energy, but also as the supplier of building materials. As an alarm indicator we had chosen the change of concentration of microcells in blood whey, owing to high sensitivity of this parameter. Photoexcitation conducts to acceleration of chemical reactions, in particular the oxidation-reduction. The probability of "capture" of a photon by a molecule depends on its energy and from power level of a molecule. Absorption of a photon by a molecule occurs when the direction transition coincides with fluctuations of an electric vector of a light wave. Efficiency of carrying over can be defined on time of a life of a luminescence. The quantum exit can be expressed through the relation of intensity of fluorescence to a difference of capacities of falling and leaving light streams. As a result of occurrence of a gradient of temperature in around membrane areas there is a change of electric potential of a membrane that causes outflow of ions from a membrane. Thereof the albuminous channels causing active transportation of ions and polar molecules reveal. As a result of change of electrochemical ionic balance lability of microcells to information doses of laser influence is provided.


Asunto(s)
Envejecimiento/sangre , Envejecimiento/efectos de la radiación , Transferencia de Energía , Terapia por Luz de Baja Intensidad , Potenciales de Acción/efectos de la radiación , Anciano , Calcio/sangre , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Humanos , Canales Iónicos/sangre , Iones , Fotones , Potasio/sangre , Teoría Cuántica
11.
J Peripher Nerv Syst ; 16(2): 130-5, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21692912

RESUMEN

Low-level laser therapy (LLLT) has been shown in clinical trials to relieve chronic pain and the World Health Organization has added LLLT to their guidelines for treatment of chronic neck pain. The mechanisms for the pain-relieving effects of LLLT are however poorly understood. We therefore assessed the effects of laser irradiation (LI) on somatosensory-evoked potentials (SSEPs) and compound muscle action potentials (CMAPs) in a series of experiments using visible (λ = 650 nm) or infrared (λ = 808 nm) LI applied transcutaneously to points on the hind limbs of rats overlying the course of the sciatic nerve. This approximates the clinical application of LLLT. The 650-nm LI decreased SSEP amplitudes and increased latency after 20 min. CMAP proximal amplitudes and hip/ankle (H/A) ratios decreased at 10 and 20 min with increases in proximal latencies approaching significance. The 808-nm LI decreased SSEP amplitudes and increased latencies at 10 and 20 min. CMAP proximal amplitudes and H/A ratios decreased at 10 and 20 min. Latencies were not significantly increased. All LI changes for both wavelengths returned to baseline by 48 h. These results strengthen the hypothesis that a neural mechanism underlies the clinical effectiveness of LLLT for painful conditions.


Asunto(s)
Potenciales de Acción/efectos de la radiación , Analgesia/métodos , Potenciales Evocados Motores/efectos de la radiación , Potenciales Evocados Somatosensoriales/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Animales , Rayos Infrarrojos , Rayos Láser , Luz , Músculos/efectos de la radiación , Ratas , Ratas Sprague-Dawley , Nervio Ciático/efectos de la radiación
12.
J Physiol ; 589(Pt 6): 1283-94, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21242259

RESUMEN

The present results show that the semicircular canal crista ampullaris of the toadfish, Opsanus tau, is sensitive to infrared radiation (IR) applied in vivo. IR pulse trains (∼1862 nm, ∼200 µs pulse⁻¹) delivered to the sensory epithelium by an optical fibre evoked profound changes in phasic and tonic discharge rates of postsynaptic afferent neurons. Phasic afferent responses to pulsed IR occurred with a latency of <8 ms while tonic responses developed with a time constant (τ) of 7 ms to 10 s following the onset or cessation of the radiation. Afferents responded to direct optical radiation of the sensory epithelium but did not respond to thermal stimuli that generated nearly equivalent temperature increases of the whole organ. A subset of afferent neurons fired an action potential in response to each IR pulse delivered to the sensory epithelium, at phase-locked rates up to 96 pulses per second. The latency between IR pulses and afferent nerve action potentials was much greater than synaptic delay and spike generation, demonstrating the presence of a signalling delay interposed between the IR pulse and the action potential. The same IR stimulus applied to afferent nerve axons failed to evoke responses of similar magnitude and failed to phase-lock afferent nerve action potentials. The present data support the hypothesis that pulsed IR activates sensory hair cells, thus leading to modulation of synaptic transmission and afferent nerve discharge reported here.


Asunto(s)
Batrachoidiformes/fisiología , Rayos Infrarrojos , Rayos Láser , Estimulación Luminosa , Conductos Semicirculares/fisiología , Conductos Semicirculares/efectos de la radiación , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Calcio/metabolismo , Femenino , Células Ciliadas Ampollares/fisiología , Células Ciliadas Ampollares/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Masculino , Estimulación Luminosa/métodos
13.
Artículo en Inglés | MEDLINE | ID: mdl-21096667

RESUMEN

An analytical approach to threshold problems in functional magnetic stimulation of nerve and skeletal muscle fibers was recently proposed, framed in the concept of excitation functional. Three generations of available equipments for magnetic stimulation are briefly considered, stressing the corresponding pulse shape in the stimulation coils. Using the criterion of minimum energy dissipated in biological tissues, an optimal shape for a current pulse in the coil that produces a just threshold depolarization in a nerve or skeletal muscle fiber is found. The method can be further developed and applied to other threshold problems in functional electric stimulation.


Asunto(s)
Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Terapia por Estimulación Eléctrica/métodos , Estimulación Eléctrica/métodos , Modelos Neurológicos , Fibras Nerviosas/fisiología , Fibras Nerviosas/efectos de la radiación , Terapia Asistida por Computador/métodos , Animales , Simulación por Computador , Campos Electromagnéticos , Humanos , Dosis de Radiación
15.
Nature ; 465(7299): 788-92, 2010 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-20473285

RESUMEN

Despite a rapidly-growing scientific and clinical brain imaging literature based on functional magnetic resonance imaging (fMRI) using blood oxygenation level-dependent (BOLD) signals, it remains controversial whether BOLD signals in a particular region can be caused by activation of local excitatory neurons. This difficult question is central to the interpretation and utility of BOLD, with major significance for fMRI studies in basic research and clinical applications. Using a novel integrated technology unifying optogenetic control of inputs with high-field fMRI signal readouts, we show here that specific stimulation of local CaMKIIalpha-expressing excitatory neurons, either in the neocortex or thalamus, elicits positive BOLD signals at the stimulus location with classical kinetics. We also show that optogenetic fMRI (of MRI) allows visualization of the causal effects of specific cell types defined not only by genetic identity and cell body location, but also by axonal projection target. Finally, we show that of MRI within the living and intact mammalian brain reveals BOLD signals in downstream targets distant from the stimulus, indicating that this approach can be used to map the global effects of controlling a local cell population. In this respect, unlike both conventional fMRI studies based on correlations and fMRI with electrical stimulation that will also directly drive afferent and nearby axons, this of MRI approach provides causal information about the global circuits recruited by defined local neuronal activity patterns. Together these findings provide an empirical foundation for the widely-used fMRI BOLD signal, and the features of of MRI define a potent tool that may be suitable for functional circuit analysis as well as global phenotyping of dysfunctional circuitry.


Asunto(s)
Encéfalo/citología , Encéfalo/efectos de la radiación , Imagen por Resonancia Magnética , Vías Nerviosas/efectos de la radiación , Neuronas/metabolismo , Neuronas/efectos de la radiación , Potenciales de Acción/efectos de la radiación , Anestesia , Animales , Encéfalo/anatomía & histología , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/efectos de la radiación , Chlorophyta , Mediciones Luminiscentes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Corteza Motora/irrigación sanguínea , Corteza Motora/citología , Corteza Motora/metabolismo , Corteza Motora/efectos de la radiación , Neuronas/clasificación , Neuronas/citología , Oxígeno/sangre , Oxígeno/metabolismo , Estimulación Luminosa , Ratas , Rodopsina/genética , Rodopsina/metabolismo , Rodopsina/efectos de la radiación , Tálamo/irrigación sanguínea , Tálamo/citología , Tálamo/metabolismo , Tálamo/efectos de la radiación
16.
Lasers Med Sci ; 25(1): 79-86, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19462168

RESUMEN

In acute experiments using adult rabbits, we measured the paroxysmal discharge threshold (PADT) elicited by stimulation to the apical dendritic layer of the hippocampal CA1 region before and after low-power laser irradiation. Nd:YVO(4) laser irradiation (wavelength: 532 nm) was introduced into the same region as the stimulation site. The average PADT was 247 +/- 13 microA (n = 18) before laser irradiation, while after 5-min laser irradiation with 50, 75, and 100 mW, PADT was 333 +/- 40 (n = 4), 353 +/- 33 (n = 4) and 367 +/- 27 microA (n = 6), respectively. The latter two increments were statistically significant compared to the control (p < 0.05 and p < 0.01). After 10-min laser irradiation with 75 and 100 mW, PADT was 340 +/- 47 (n = 9) and 480 +/- 60 microA (n = 11; p < 0.01), respectively. Laser irradiation with a specific wavelength and average power offers the potential to suppress the generation of paroxysmal discharges in rabbit hippocampus CA1. Correlation analyses suggest that PADT increments are based on photochemical as well as photothermal effects of laser irradiation.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/efectos de la radiación , Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad/métodos , Potenciales de Acción/efectos de la radiación , Animales , Temperatura Corporal , Región CA1 Hipocampal/anatomía & histología , Estimulación Eléctrica , Fenómenos Electrofisiológicos , Epilepsia/fisiopatología , Epilepsia/terapia , Terapia por Luz de Baja Intensidad/instrumentación , Masculino , Potenciales de la Membrana/efectos de la radiación , Modelos Animales , Conducción Nerviosa/efectos de la radiación , Conejos
17.
Artículo en Inglés | MEDLINE | ID: mdl-19964438

RESUMEN

The neocortex is the most common target of sub-dural electrotherapy and non-invasive brain stimulation modalities including transcranial magnetic stimulation (TMS) and transcranial direct current simulation (tDCS). Specific neuronal elements targeted by cortical stimulation are considered to underlie therapeutic effects, but the exact cell-type(s) affected by these methods remains poorly understood. We determined if neuronal morphology predicted responses to subthreshold uniform electric fields. We characterized the effects of subthreshold electrical stimulation on identified cortical neurons in vitro. Uniform electric fields were applied to rat motor cortex brain slices, while recording from interneurons and pyramidal cells across cortical layers, using whole cell patch clamp. Neuron morphology was reconstructed following intracellular dialysis of biocytin. Based solely on volume-weighted morphology, we developed a simplified model of neuronal polarization by sub-threshold electric field: an electrotonically linear cylinder that further predicts polarization at distal dendritic tree terminations. We found that neuronal morphology correlated with somatic sub-threshold polarization. Layer V/VI pyramidal neuron somata (individually) and dendrites (averaging across neurons) were most sensitive to sub-threshold fields. This analysis was extended to predict a terminal polarization of a human cortical neuron as 1.44 mV during tDCS.


Asunto(s)
Potenciales de Acción/fisiología , Estimulación Eléctrica/métodos , Modelos Neurológicos , Corteza Motora/citología , Corteza Motora/fisiología , Neuronas/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Células Cultivadas , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Campos Electromagnéticos , Corteza Motora/efectos de la radiación , Neuronas/efectos de la radiación , Dosis de Radiación , Ratas , Ratas Sprague-Dawley
18.
Cent Nerv Syst Agents Med Chem ; 9(2): 79-86, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20021341

RESUMEN

In the past 20 years, a number of new antiepileptic drugs (AEDs) have been introduced and other molecules are in development, some of which are advantageous in terms of pharmacokinetics, tolerability and potential for drug interactions. These drugs are regarded as second generation compared to older agents such as barbiturates, phenytoin, carbamazepine, ethosuximide and valproic acid. Although some of these second generation compounds may be advantageous in terms of kinetics, tolerability and potential for drug interactions, all of them still target voltage-gated channels or GABA-mediated inhibition, predominantly, without any real improvement in epilepsy therapy. Studies on mechanisms of seizure generation and propagation have identified new potential targets for AEDs. The growing understanding of the pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies. In this review the molecular targets for new AEDs are discussed, providing further suggestions on how future research can be improved.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Carbamazepina/administración & dosificación , Epilepsia/metabolismo , Convulsiones/terapia , Ácido Valproico/administración & dosificación , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/efectos de la radiación , Animales , Anticonvulsivantes/uso terapéutico , Barbitúricos/administración & dosificación , Barbitúricos/uso terapéutico , Carbamazepina/uso terapéutico , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Monitoreo de Drogas , Electrochoque , Epilepsia/tratamiento farmacológico , Etosuximida/administración & dosificación , Etosuximida/uso terapéutico , Humanos , Estructura Molecular , Proteínas de Transporte de Neurotransmisores/administración & dosificación , Proteínas de Transporte de Neurotransmisores/uso terapéutico , Fenitoína/administración & dosificación , Fenitoína/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Relación Estructura-Actividad , Transmisión Sináptica/efectos de los fármacos , Resultado del Tratamiento , Ácido Valproico/uso terapéutico , Ácido gamma-Aminobutírico/administración & dosificación , Ácido gamma-Aminobutírico/uso terapéutico
19.
J Magn Reson Imaging ; 29(1): 229-36, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19097100

RESUMEN

PURPOSE: To clarify whether sinusoidal pulses possess lower thresholds than rectangular ones at perception threshold, a statement often made that contradicts the theory of stimulation. MATERIALS AND METHODS: The results of a nerve stimulation study with 65 volunteers and with trapezoidal and sinusoidal gradient pulses were used to apply the combination of the electric field, induced in the tissue of the human body, with the "Fundamental Law of Electrostimulation." This law claims that the waveshape of a pulse is not essential as long as the amplitude of the pulse does not decrease below rheobase (rheobase condition). RESULTS: If the rheobase condition is applied to sinusoidal waveforms and the pulse duration and amplitude is corrected accordingly, both trapezoidal and sinusoidal gradient pulses have identical threshold amplitudes as a function of pulse duration. CONCLUSION: The "Fundamental Law of Electrostimulation," including the "rheobase condition," proved to be a good basis for describing magnetic field stimulation (magnetostimulation) and that application of it to magnetostimulation is suitable as the basis for describing magnetic field stimulation with various waveforms. For nonrectangular pulses, pulse durations and pulse amplitudes must be corrected according to the "rheobase condition." The exponential Blair Equation is less suited to be applied in magnetostimulation.


Asunto(s)
Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Estimulación Eléctrica/métodos , Modelos Neurológicos , Nervios Periféricos/fisiología , Nervios Periféricos/efectos de la radiación , Simulación por Computador , Umbral Diferencial/fisiología , Umbral Diferencial/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Dosis de Radiación
20.
J Neurosci ; 28(45): 11615-21, 2008 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-18987197

RESUMEN

The brain selectively extracts the most relevant information in top-down processing manner. Does the corticofugal system, a "back projection system," constitute the neural basis of such top-down selection? Here, we show how focal activation of the auditory cortex with 500 nA electrical pulses influences the auditory information processing in the cochlear nucleus (CN) that receives almost unprocessed information directly from the ear. We found that cortical activation increased the response magnitudes and shortened response latencies of physiologically matched CN neurons, whereas decreased response magnitudes and lengthened response latencies of unmatched CN neurons. In addition, cortical activation shifted the frequency tunings of unmatched CN neurons toward those of the activated cortical neurons. Our data suggest that cortical activation selectively enhances the neural processing of particular auditory information and attenuates others at the first processing level in the brain based on sound frequencies encoded in the auditory cortex. The auditory cortex apparently implements a long-range feedback mechanism to select or filter incoming signals from the ear.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Potenciales Evocados/fisiología , Sonido , Estimulación Acústica/métodos , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Corteza Auditiva/efectos de la radiación , Conducta Animal , Estimulación Eléctrica/métodos , Potenciales Evocados/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Psicofísica , Tiempo de Reacción/fisiología , Tiempo de Reacción/efectos de la radiación , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/efectos de la radiación , Umbral Sensorial/efectos de los fármacos , Umbral Sensorial/fisiología , Umbral Sensorial/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA