Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 106(2): 691-700, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34633236

RESUMEN

Potato virus V (PVV) causes a disease of potato (Solanum tubersosum) in South and Central America, Europe, and the Middle East. We report here the complete genomic sequences of 42 new PVV isolates from the potato's Andean domestication center in Peru and of eight historical or recent isolates from Europe. When the principal open reading frames of these genomic sequences together with those of nine previously published genomic sequences were analyzed, only two from Peru and one from Iran were found to be recombinant. The phylogeny of the 56 nonrecombinant open reading frame sequences showed that the PVV population had two major phylogroups, one of which formed three minor phylogroups (A1 to A3) of isolates, all of which are found only in the Andean region of South America (Peru and Colombia), and the other formed two minor phylogroups, a basal one of Andean isolates (A4) that is paraphyletic to a crown cluster containing all the isolates found outside South America (World). This suggests that PVV originated in the Andean region, with only one minor phylogroup spreading elsewhere in the world. In minor phylogroups A1 and A3, there were two subclades on long branches containing isolates from S. phureja evolving more rapidly than the others, and these interfered with dating calculations. Although no temporal signal was directly detected among the dated nonrecombinant sequences, PVV and potato virus Y (PVY) are from the same potyvirus lineage and are ecologically similar, so "subtree dating" was done via a single maximum likelihood phylogeny of PVV and PVY sequences, and PVY's well-supported 157 ce "time to most common recent ancestor" was extrapolated to date that of PVV as 29 bce. Thus the independent historical coincidences supporting the datings of the PVV and PVY phylogenies are the same; PVV arose ≥2,000 years ago in the Andes and was taken to Europe during the Columbian Exchange, where it diversified around 1853 ce, soon after the European potato late blight pandemic. PVV is likely to be more widespread than currently realized and is of biosecurity relevance for world regions that have not yet recorded its presence.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Filogenia , Potyvirus , Solanum tuberosum , Evolución Biológica , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Solanum tuberosum/virología , América del Sur
2.
J Gen Virol ; 102(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33709906

RESUMEN

Single aphids can simultaneously or sequentially acquire and transmit multiple potato virus Y (PVY) strains. Multiple PVY strains are often found in the same field and occasionally within the same plant, but little is known about how PVY strains interact in plants or in aphid stylets. Immuno-staining and confocal microscopy were used to examine the spatial and temporal dynamics of PVY strain mixtures (PVYO and PVYNTN or PVYO and PVYN) in epidermal leaf cells of 'Samsun NN' tobacco and 'Goldrush' potato. Virus binding and localization was also examined in aphid stylets following acquisition. Both strains systemically infected tobacco and co-localized in cells of all leaves examined; however, the relative amounts of each virus changed over time. Early in the tobacco infection, when mosaic symptoms were observed, PVYO dominated the infection although PVYNTN was detected in some cells. As the infection progressed and vein necrosis developed, PVYNTN was prevalent. Co-localization of PVYO and PVYN was also observed in epidermal cells of potato leaves with most cells infected with both viruses. Furthermore, two strains could be detected binding to the distal end of aphid stylets following virus acquisition from a plant infected with a strain mixture. These data are in contrast with the traditional belief of spatial separation of two closely related potyviruses and suggest apparent non-antagonistic interaction between PVY strains that could help explain the multitude of emerging recombinant PVY strains discovered in potato in recent years.


Asunto(s)
Áfidos/virología , Nicotiana/virología , Potyvirus/patogenicidad , Solanum tuberosum/virología , Animales , Transmisión de Enfermedad Infecciosa , Células Epidérmicas/virología , Enfermedades de las Plantas , Hojas de la Planta/virología , Potyvirus/clasificación , Potyvirus/genética
3.
Viruses ; 12(12)2020 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322703

RESUMEN

The potato was introduced to Europe from the Andes of South America in the 16th century, and today it is grown worldwide; it is a nutritious staple food eaten by millions and underpins food security in many countries. Unknowingly, potato virus Y (PVY) was also introduced through trade in infected potato tubers, and it has become the most important viral pathogen of potato. Phylogenetic analysis has revealed the spread and emergence of strains of PVY, including strains causing economically important diseases in tobacco, tomato and pepper, and that the virus continues to evolve with the relatively recent emergence of new damaging recombinant strains. High-throughput, next-generation sequencing platforms provide powerful tools for detection, identification and surveillance of new PVY strains. Aphid vectors of PVY are expected to increase in incidence and abundance in a warmer climate, which will increase the risk of virus spread. Wider deployment of crop cultivars carrying virus resistance will be an important means of defence against infection. New cutting-edge biotechnological tools such as CRISPR and SIGS offer a means for rapid engineering of resistance in established cultivars. We conclude that in future, human activities and ingenuity should be brought to bear to control PVY and the emergence of new strains in key crops by increased focus on host resistance and factors driving virus evolution and spread.


Asunto(s)
Productos Agrícolas/virología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Solanum tuberosum/virología , Resistencia a la Enfermedad , Susceptibilidad a Enfermedades , Ambiente , Genoma Viral , Técnicas de Diagnóstico Molecular , Epidemiología Molecular , Potyvirus/genética , Estrés Fisiológico
4.
Virus Res ; 288: 198125, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32835742

RESUMEN

Plant viral infections lead to accumulation of virus-derived small interfering RNAs (vsiRNAs) as a result of host defense mechanisms. High-throughput sequencing technology enables vsiRNA profiling analyses from virus infected plants, which provide important insights into virus-host interactions. Potato virus Y (PVY) is a detrimental plant pathogen that can infect a variety of solanaceous crops, e.g., potato, tobacco, tomato, and pepper. We analyzed and characterized vsiRNAs derived from Nicotiana tabacum cv. Samsun infected with two recombinant PVY strains, N-Wi and NTN. We observed that the average percentage of vsiRNAs derived from plants infected with N-Wi was higher than from plants infected with NTN, indicating that N-Wi invokes a stronger host response than NTN in tobacco. The size distribution pattern and polarity of vsiRNAs were similar between both virus strains with the 21 and 22 nucleotide (nt) vsiRNA classes as most predominant and the sense/antisense vsiRNAs ratio nearly equal in the 20-24 nt class. However, the percentage of sense vsiRNAs was significantly higher in the 25-26 nt long vsiRNAs. Distinct vsiRNA hotspots, identifying highly abundant reads of different unique vsiRNA sequences, were observed in both viral genomes. Previous studies found an A or U bias at the 5' terminal nucleotide position of 21 nt vsiRNAs; in contrast, our analysis revealed a C and U nucleotide bias. This study provides insights that will help further elucidate differential processing of vsiRNAs in plant antiviral defense.


Asunto(s)
Genoma Viral , Interacciones Huésped-Patógeno/genética , Potyvirus/genética , ARN Interferente Pequeño/genética , ARN Viral/genética , Solanum tuberosum/virología , Perfilación de la Expresión Génica , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Potyvirus/patogenicidad , Nicotiana/virología
5.
Virus Res ; 286: 198077, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32619560

RESUMEN

Potato virus Y (PVY) is a member of the genus Potyvirus, family Potyviridae, is considered one of the most devastating pest affecting economically important crops, such as potato, tobacco, tomato and pepper, representing a serious threat due to high incidence and worldwide distribution. Its economic significance as well as it biological and molecular complexities have aroused great attention, thus several studies have explore it genetic characteristics. However, little is known about PVY codon usage. To shed light on the relation of codon usage among viruses and their hosts is extremely important to understand virus survival, fitness and evolution. In this study, we performed a comprehensive analysis of codon usage and composition of PVY non-recombinant strains (PVYN-NA, PVYEu-N, PVYO, PVYO5, PVYC) based on 130 complete open reading frame sequences extracted from public databases. Furthermore, similarities between the synonymous codon usage of PVY and its main hosts were investigated. The results obtained in the current study suggest that the overall codon usage among PVY genotypes is similar and slightly biased. PVY codon usage is strongly influenced by mutational bias, but also by G + C compositional constraint and dinucleotide composition. Furthermore, similarities among codon usage preferences between PVY strains and analyzed hosts were observed.


Asunto(s)
Uso de Codones , Genoma Viral , Sistemas de Lectura Abierta , Potyvirus/genética , Solanum tuberosum/virología , Composición de Base , Bases de Datos de Ácidos Nucleicos , Variación Genética , Filogenia , Enfermedades de las Plantas/virología , Potyvirus/clasificación
6.
Viruses ; 12(4)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340210

RESUMEN

Potato virus Y (PVY) is the most economically important virus infecting cultivated potato (Solanum tuberosum L.). Accurate diagnosis is crucial to regulate the trade of tubers and for the sanitary selection of plant material for propagation. However, high genetic diversity of PVY represents a challenge for the detection and classification of isolates. Here, the diversity of Irish PVY isolates from a germplasm collection and commercial sites was investigated using conventional molecular and serological techniques. Recombinant PVY isolates were prevalent, with PVYNTNa being the predominant genotype. In addition, we evaluated Nanopore sequencing to detect and reconstruct the whole genome sequence of four viruses (PVY, PVX, PVS, PLRV) and five PVY genotypes in a subset of eight potato plants. De novo assembly of Nanopore sequencing reads produced single contigs covering greater than 90% of the viral genome and sharing greater than 99.5% identity to the consensus sequences obtained with Illumina sequencing. Interestingly, single near full genome contigs were obtained for different isolates of PVY co-infecting the same plant. Mapping reads to available reference viral genomes enabled us to generate near complete genome sequences sharing greater than 99.90% identity to the Illumina-derived consensus. This is the first report describing the use of Oxford Nanopore's MinION to detect and genotype potato viruses. We reconstructed the genome of PVY and other RNA viruses; indicating the technologies potential for virus detection in potato production systems, and for the study of genetic diversity of highly heterogeneous viruses such as PVY.


Asunto(s)
Genoma Viral , Secuenciación de Nanoporos , Enfermedades de las Plantas/virología , Potyvirus/genética , Solanum tuberosum/virología , Genómica/métodos , Genotipo , Técnicas de Genotipaje , Filogenia , Potyvirus/clasificación , Potyvirus/aislamiento & purificación , Pruebas Serológicas
7.
Plant Dis ; 103(11): 2933-2939, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31545136

RESUMEN

A new virus with flexuous, filamentous particles approximately 650 nm long was discovered in Manchurian tubergourd (Thladiantha dubia Bunge) leaves exhibiting severe mosaic symptoms. The whole genome sequence of the virus was determined by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The entire genome consisted of 10,112 nucleotides (nt) excluding the poly (A) tail, which shared the highest nucleotide sequence identity (73.8%) with that of papaya leaf distortion mosaic virus Hainan-DF isolate (PLDMV-Hainan-DF). A phylogenetic analysis showed that this virus clustered with PLDMV isolates in a subbranch within the potyviral clade. Of the 23 species of indicator plants tested, only potato and its original host were systemically infected by the virus tested upon mechanical inoculation. A field survey showed that the virus was widely distributed on T. dubia and potatoes in Northeast China. Moreover, this virus displayed a high degree of genetic variation as evaluated by the sequences of the coat protein (CP) gene. Based on these results, the name Thladiantha dubia mosaic virus (ThDMV) is proposed for this new potyvirus.


Asunto(s)
Cucurbitaceae , Filogenia , Potyvirus , China , Cucurbitaceae/virología , Genoma Viral/genética , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Potyvirus/genética , Potyvirus/fisiología , Solanum tuberosum/virología
8.
Plant Dis ; 103(7): 1746-1756, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31082318

RESUMEN

In 1976, a virus with flexuous, filamentous virions typical of the family Potyviridae was isolated from symptomatic pepino (Solanum muricatum) plants growing in two valleys in Peru's coastal desert region. In 2014, a virus with similar-shaped virions was isolated from asymptomatic fruits obtained from pepino plants growing in six coastal valleys and a valley in Peru's Andean highlands. Both were identified subsequently as Wild potato mosaic virus (WPMV) by serology or high-throughput sequencing (HTS). The symptoms caused by two old and seven new isolates from pepino were examined in indicator plants. Infected solanaceous hosts varied considerably in their sensitivities to infection and individual isolates varied greatly in virulence. All seven new isolates caused quick death of infected Nicotiana benthamiana plants and more than half of them killed infected plants of Physalis floridana and S. chancayense. These three species were the most sensitive to infection. The most virulent isolate was found to be BA because it killed five of eight solanaceous host species whereas CA was the least severe because it only killed N. benthamiana. Using HTS, complete genomic sequences of six isolates were obtained, with one isolate (FE) showing evidence of recombination. The distances between individual WPMV isolates in phylogenetic trees and the geographical distances between their collection sites were found to be unrelated. The individual WPMV isolates displayed nucleotide sequence identities of 80.9-99.8%, whereas the most closely related virus, Potato virus V (PVV), was around 75% identical to WPMV. WPMV, PVV, and Peru tomato virus formed clusters of similar phylogenetic diversity, and were found to be distinct but related viruses within the overall Potato virus Y lineage. WPMV infection seems widespread and of likely economic significance to pepino producers in Peru's coastal valleys. Because it constitutes the fifth virus found infecting pepino and this crop is entirely vegetatively propagated, development of healthy pepino stock programs is advocated.


Asunto(s)
Genoma Viral , Potyvirus , Solanum , Genoma Viral/genética , Perú , Filogenia , Potyvirus/clasificación , Potyvirus/genética , Solanum/microbiología , Especificidad de la Especie
9.
J Virol Methods ; 267: 16-21, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30796947

RESUMEN

Potato virus Y (PVY) is a global challenge for potato production and the leading cause of seed crop downgrading and rejection for certification. Accurate and timely diagnosis is key to effective control of PVY. Here we optimized the isothermal recombinase polymerase amplification (RPA) for accurate detection of different PVY O and N types that were tested, present in different tissues of potato plants including tubers with a primer set that specifically targets the highly conserved pipo region within the viral genome. Combined with a simplified preparation of the template by tissue homogenization, we established a rapid RPA procedure, which can allow real time detection in less than 10 min with a fluorescent probe. Specificity of the reaction was determined by the lack of cross-reactivity with other common potato viruses. Although RPA reagents remain more expensive than PCR reagents, RPA technology is equivalent in that results can be visualized by gel electrophoresis or with a fluorescent probe with greater sensitivity; and it is superior to the common PCR-based assay in its versatility, speed, and lack of need for a highly purified RNA template.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico/métodos , Potyvirus/aislamiento & purificación , Solanum tuberosum/virología , Cartilla de ADN/genética , Enfermedades de las Plantas/virología , Extractos Vegetales , Tubérculos de la Planta/virología , Potyvirus/clasificación , ARN Viral/análisis , Recombinasas , Sensibilidad y Especificidad , Temperatura
10.
Plant Dis ; 103(2): 289-297, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30501466

RESUMEN

In 2011-2014, ELISA or nucleic acid spot hybridization (NASH) testing for common potato viruses or Potato spindle tuber viroid (PSTVd) was performed on 500 leaf samples collected in potato fields in the northeast provinces Heilongjiang and Inner Mongolia, China. The results revealed that 38.4% (Heilongjiang) and 27.7% (Inner Mongolia) were positive for Potato virus Y (PVY). To unveil the strain composition and population structure of PVY in the region, the multiplex RT-PCR described by Chikh-Ali et al. was performed on all of the ELISA-PVY-positive samples. Of the 158 samples whose PVY strain scenarios could be determined, PVYNTN-NW-SYR-II and PVYN-Wi were the most abundant strains, occurring in 58.9 and 47.5% samples, followed by PVYNTN-NW-SYR-I (31.0%), PVYN:O (19.6%), Eu-PVYNTN (7.6%), NA-PVYN (1.3%), and PVYO (0.6%). In the 84 single-strain-infected samples, PVYN-Wi accounted for 41.7%, PVYNTN-NW-SYR-II for 40.5%, PVYNTN-NW-SYR-I for 14.3%, and PVYN:O and Eu-PVYNTN for 3.6% each. Seven isolates representing PVYNTN-NW-SYR-I (HLJ-6-1 and HLJ-9-4), PVYNTN-NW-SYR-II (INM-W-369-12 and SC-1-1-2), PVYN:O (HLJ-30-2), and PVYN-Wi (HLJ-BDH-2 and HLJ-C-429) were sequenced and analyzed molecularly. Whereas the sequence identities for isolates belonging to the same strain group were >98.5%, they fell for isolates belonging to different strain groups to 92.7-98.1% at the genome level and 96.1-98.4% at the polyprotein level. Interestingly, the exact location of the recombination events varied among isolates within a strain group. Phylogenetic analysis of all 42 full length PVY sequences from China indicated that most clustered to various recombinant groups, despite the fact that the PVY isolates were isolated from at least five host species. Pathological analysis of four isolates representing PVYN:O, PVYN-Wi, PVYNTN-NW-SYR-I, and PVYNTN-NW-SYR-II revealed that the PVYNTN-NW-SYR-II isolate incited the most severe symptoms on potato cultivar Kexin 13, followed by PVYNTN-NW-SYR-I, PVYN:O and PVYN-Wi. The PVYNTN-NW-SYR-I and PVYNTN-NW-SYR-II isolates also caused necrotic ringspots on the tubers of Kexin 13, indicating their ability to induce the potato tuber necrotic ringspot disease in potato.


Asunto(s)
Variación Genética , Potyvirus , Solanum tuberosum , China , Filogenia , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Potyvirus/genética , Solanum tuberosum/virología
11.
Plant Dis ; 102(11): 2233-2240, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30145947

RESUMEN

Spectral phenotyping is an efficient method for the nondestructive characterization of plant biochemical and physiological status. We examined the ability of a full range (350 to 2,500 nm) of foliar spectral data to (i) detect Potato virus Y (PVY) and physiological effects of the disease in visually asymptomatic leaves, (ii) classify different strains of PVY, and (iii) identify specific potato cultivars. Across cultivars, foliar spectral profiles of PVY-infected leaves were statistically different (F = 96.1, P ≤ 0.001) from noninfected leaves. Partial least-squares discriminate analysis (PLS-DA) accurately classified leaves as PVY infected (validation κ = 0.73) and the shortwave infrared spectral regions displayed the strongest correlations with infection status. Although spectral profiles of different PVY strains were statistically different (F = 6.4, P ≤ 0.001), PLS-DA did not classify different strains well (validation κ = 0.12). Spectroscopic retrievals revealed that PVY infection decreased photosynthetic capacity and increased leaf lignin content. Spectral profiles of potato cultivars also differed (F = 9.2, P ≤ 0.001); whereas average spectral classification was high (validation κ = 0.76), the accuracy of classification varied among cultivars. Our study expands the current knowledge base by (i) identifying disease presence before the onset of visual symptoms, (ii) providing specific biochemical and physiological responses to disease infection, and (iii) discriminating between multiple cultivars within a single plant species.


Asunto(s)
Enfermedades de las Plantas/prevención & control , Solanum tuberosum/virología , Análisis Espectral/métodos , Enfermedades de las Plantas/virología , Hojas de la Planta/fisiología , Hojas de la Planta/virología , Potyvirus/clasificación , Solanum tuberosum/fisiología
12.
Virus Genes ; 54(2): 272-279, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29330664

RESUMEN

Beet mosaic virus (BtMV), the only Potyvirus known to infect sugar beet, occurs worldwide in beet crops. The full genome sequencing of a BtMV isolate from Iran (Ir-VRU), enabled us to better understand the evolutionary history of this virus. Selection analysis suggested that BtMV evolution is mainly under negative selection but its strength varies in different proteins with the multifunctional proteins under strongest selection. Recombination has played a major role in the evolution of the BtMVs; only the Ir-VRU and USA isolates show no evidence of recombination. The ML phylogenies of BtMVs from coat protein and full sequences were completely congruent. The primary divergence of the BtMV phylogeny is into USA and Eurasian lineages, and the latter then divides to form a cluster only found in Iran, and a sister cluster that includes all the European and Chinese isolates. A simple patristic dating method estimated that the primary divergence of the BtMV population was only 360 (range 260-490) years ago, suggesting an emergence during the development of sugar beet as a crop over the past three centuries rather than with the use of leaf beet as a vegetable for at least 2000 years.


Asunto(s)
Beta vulgaris/virología , Variación Genética , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Potyvirus/aislamiento & purificación , Análisis por Conglomerados , Evolución Molecular , Genoma Viral , Genómica , Irán , Filogenia , Potyvirus/genética , Recombinación Genética , Selección Genética , Análisis de Secuencia de ADN , Homología de Secuencia
13.
Arch Virol ; 163(2): 447-458, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29119360

RESUMEN

Potato virus Y (PVY) infection has been a global challenge for potato production and the leading cause of downgrading and rejection of seed crops for certification. Accurate and timely diagnosis is a key for effective disease control. Here, we have optimized a reverse transcription loop-mediated amplification (RT-LAMP) assay to differentiate the PVY O and N serotypes. The RT-LAMP assay is based on isothermal autocyclic strand displacement during DNA synthesis. The high specificity of this method relies heavily on the primer sets designed for the amplification of the targeted regions. We designed specific primer sets targeting a region within the coat protein gene that contains nucleotide signatures typical for O and N coat protein types, and these primers differ in their annealing temperature. Combining this assay with total RNA extraction by magnetic capture, we have established a highly sensitive, simplified and shortened RT-LAMP procedure as an alternative to conventional nucleic acid assays for diagnosis. This optimized procedure for virus detection may be used as a preliminary test for identifying the viral serotype prior to investing time and effort in multiplex RT-PCR tests when a specific strain is needed.


Asunto(s)
Magnetismo/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Potyvirus/aislamiento & purificación , Cartilla de ADN/genética , Magnetismo/instrumentación , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Potyvirus/clasificación , Potyvirus/genética , ARN Viral/genética , Serogrupo , Solanum tuberosum/virología
14.
Acta Virol ; 61(4): 479-482, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29186965

RESUMEN

Watermelon mosaic virus (WMV) is a member of the genus Potyvirus, which is the largest genus of plant viruses. WMV is a significant pathogen of crop plants, including Cucurbitaceae species. A WMV strain, designated as WMV-Pg, was identified in transcriptome data collected from ginseng (Panax ginseng) root. WMV-Pg showed 84% nucleotide sequence identity and 91% amino acid sequence identity with its closest related virus, WMV-Fr. A phylogenetic analysis of WMV-Pg with other WMVs and soybean mosaic viruses (SMVs) indicated that WMV-Pg is a distinct subtype of the WMV/SMV group of the genus Potyvirus in the family Potyviridae.


Asunto(s)
Genoma Viral , Panax/virología , Enfermedades de las Plantas/virología , Potyvirus/genética , Potyvirus/aislamiento & purificación , Panax/genética , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/virología , Raíces de Plantas/genética , Raíces de Plantas/virología , Potyvirus/clasificación , Transcriptoma
15.
Virus Res ; 241: 116-124, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28666897

RESUMEN

In the past decade recombinant strains of Potato virus Y (PVY) have overtaken the ordinary strain, PVYO, as the predominant viruses affecting the US seed potato crop. Aphids may be a contributing factor in the emergence of the recombinant strains, but studies indicate that differences in transmission efficiency of individual PVY strains either from single or mixed infections, although variable, are not generally significant. Multiple strains of PVY are present in all potato production areas and common in many potato fields. Therefore, it is likely that individual alate aphids moving through a potato field will sequentially encounter multiple strains as they "taste test" multiple potato plants while looking for a suitable host. This study examined the transmission likelihood and efficiency of three common PVY strains when acquired sequentially by individual aphids. Green peach aphids (Myzus persicae, Sulzer) were allowed a 2-3min acquisition access period (AAP) on potato leaves infected with PVYO, PVYN:O or PVYNTN, followed by another 2-3min AAP on a second potato leaf infected with a different PVY strain before being transferred to healthy potato seedlings for a 24h inoculation access period. All possible combinations of the three strains were tested. Strain-specific infection of the recipient plants was determined by TAS-ELISA and RT-PCR 3-4wk post-inoculation. The recombinant strains, PVYN:O and PVYNTN, were transmitted more efficiently than PVYO when they were sequentially acquired regardless of the order acquired. PVYN:O and PVYNTN were transmitted with similar efficiencies when they were sequentially acquired regardless of the order. The recombinant strains appear to preferentially bind to the aphid stylet over PVYO or they may be preferentially released during inoculation. This may contribute to the increased incidence of the recombinant strains over PVYO in fields or production regions where multiple PVY strains are detected.


Asunto(s)
Áfidos/virología , Transmisión de Enfermedad Infecciosa , Enfermedades de las Plantas/virología , Potyvirus/patogenicidad , Recombinación Genética/genética , Solanum tuberosum/virología , Secuencia de Aminoácidos , Animales , Potyvirus/clasificación , Potyvirus/genética , Alineación de Secuencia
16.
Virus Res ; 241: 95-104, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28625667

RESUMEN

Potato virus Y (PVY) is the most important viral pathogen affecting potato crops worldwide. PVY can be transmitted non-persistently by aphids that do not colonize the host plant, resulting in a rapid acquisition and transmission of the virus between plants. PVY exists as a complex of strains that can be distinguished according to their pathogenicity, serology and genomic analysis. While virus incidence remains low in Scottish seed potato crops, PVY has become the increasingly prevalent virus. The monitoring of PVYN and PVYO serotypes has revealed a recent shift towards PVYN which now accounts for more than 90% of all PVY cases. A survey of the molecular diversity of PVYN isolates indicated that 80%-90% belong to the recombinant European (EU)-NTN group, with North-American (NA)-NTN and non-recombinant EU-N variants accounting for the remainder. The shift from non-recombinant to recombinant PVY isolates is a common trend observed worldwide. Surveys of a range of PVY isolates representing the main strain and phylogenetic groups suggest that PVY has the ability to overcome hypersensitive response-mediated resistance with significant differences between isolates of the same strain group. Contrastingly, genes mediating extreme resistance (Ryadg, Rysto) provide efficient resistance to PVY transmission to progeny tubers. Transmission experiments in field conditions of PVY isolates representing the three main molecular groups (PVYO, PVYEU-NTN, PVYNA-NTN) indicate that PVYEU-NTN has the highest transmission rate. Our results suggest that PVYEU-NTN isolate has a competitive advantage over PVYO and PVYNA-NTN isolates which is likely to be an important factor in shaping the evolution of viruses and the population dynamics of PVY.


Asunto(s)
Resistencia a la Enfermedad/fisiología , Enfermedades de las Plantas/virología , Potyvirus/genética , Potyvirus/patogenicidad , Solanum tuberosum/virología , Animales , Áfidos/virología , Transmisión de Enfermedad Infecciosa , Insectos Vectores/virología , Dinámica Poblacional , Potyvirus/clasificación
17.
J Virol ; 91(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28592544

RESUMEN

RNA viruses are one of the fastest-evolving biological entities. Within their hosts, they exist as genetically diverse populations (i.e., viral mutant swarms), which are sculpted by different evolutionary mechanisms, such as mutation, natural selection, and genetic drift, and also the interactions between genetic variants within the mutant swarms. To elucidate the mechanisms that modulate the population diversity of an important plant-pathogenic virus, we performed evolution experiments with Potato virus Y (PVY) in potato genotypes that differ in their defense response against the virus. Using deep sequencing of small RNAs, we followed the temporal dynamics of standing and newly generated variations in the evolving viral lineages. A time-sampled approach allowed us to (i) reconstruct theoretical haplotypes in the starting population by using clustering of single nucleotide polymorphisms' trajectories and (ii) use quantitative population genetics approaches to estimate the contribution of selection and genetic drift, and their interplay, to the evolution of the virus. We detected imprints of strong selective sweeps and narrow genetic bottlenecks, followed by the shift in frequency of selected haplotypes. Comparison of patterns of viral evolution in differently susceptible host genotypes indicated possible diversifying evolution of PVY in the less-susceptible host (efficient in the accumulation of salicylic acid).IMPORTANCE High diversity of within-host populations of RNA viruses is an important aspect of their biology, since they represent a reservoir of genetic variants, which can enable quick adaptation of viruses to a changing environment. This study focuses on an important plant virus, Potato virus Y, and describes, at high resolution, temporal changes in the structure of viral populations within different potato genotypes. A novel and easy-to-implement computational approach was established to cluster single nucleotide polymorphisms into viral haplotypes from very short sequencing reads. During the experiment, a shift in the frequency of selected viral haplotypes was observed after a narrow genetic bottleneck, indicating an important role of the genetic drift in the evolution of the virus. On the other hand, a possible case of diversifying selection of the virus was observed in less susceptible host genotypes.


Asunto(s)
Evolución Molecular , Flujo Genético , Genética de Población , Potyvirus/clasificación , Potyvirus/crecimiento & desarrollo , Solanum tuberosum/virología , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Polimorfismo de Nucleótido Simple , Potyvirus/genética , Solanum tuberosum/inmunología , Factores de Tiempo
18.
Virology ; 507: 40-52, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28399436

RESUMEN

Potato virus Y (PVY) exists as a complex of strains, including a growing number of recombinants. Evolution of PVY proceeds through accumulation of mutations and more rapidly through recombination. Here, the role of recombination in PVY evolution and the origin of common PVY recombinants were studied through whole genome analysis of 119 newly sequenced PVY isolates largely from U.S. potato, and subsequent combined phylogenetic and recombination analyses with an additional 166 whole PVY genomes from the GenBank database. Two novel PVYC recombinants were sequenced and identified, along with one novel PVYN:O recombinant. Sequence diversity in the parental sequences made it possible to trace the origins of all recombinant types of PVY, which also showed remarkable sequence diversity in most cases. The results suggested that the common recombinant PVY strains originated more than once, from different parental sequences.


Asunto(s)
Enfermedades de las Plantas/virología , Potyvirus/genética , Recombinación Genética , Solanum tuberosum/virología , Proteínas de la Cápside/genética , Genoma Viral , Filogenia , Potyvirus/clasificación , Potyvirus/aislamiento & purificación , ARN Viral/genética , Análisis de Secuencia de ADN
19.
Acta Virol ; 60(1): 49-54, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26982467

RESUMEN

Deep sequencing analysis of the transcriptome of a Solanum phureja cv. Criolla Colombia plant with symptoms typical of a virus disease revealed an infection with potato virus V (PVV). The PVV-phureja genome comprises 9904 nt, exhibits 83% nucleotide identity with currently fully sequenced PVV isolates and contains one large ORF that codes for a polyprotein of 3065 residues flanked by 5' and 3' UTR of 217 and 448 nt, respectively. Phylogenetic analysis of the PVV-phureja polyprotein indicates that it is divergent with respect to most PVV isolates. This is the first complete PVV genome of an isolate infecting a host different to S. tuberosum and, to this date, the only one from the South American Andes.


Asunto(s)
Genoma Viral , Enfermedades de las Plantas/virología , Potyvirus/aislamiento & purificación , Solanum/virología , Secuencia de Bases , Colombia , Datos de Secuencia Molecular , Filogenia , Potyvirus/clasificación , Potyvirus/genética
20.
J Gen Virol ; 97(3): 797-802, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26675892

RESUMEN

In the past decade, the incidence and distribution of the recombinant, tuber necrotic strain of Potato virus Y (PVYNTN) has been increasing in the US seed potato crop while the ordinary strain (PVYO) has been decreasing. The transmission efficiency of both strains was determined from two potato cultivars when acquired sequentially by the same aphid or when acquired by separate aphids and inoculated to the same plant. PVYNTN was transmitted more efficiently than PVYO and the order of acquisition or inoculation did not affect the preferential transmission of PVYNTN. When a recipient plant became infected with both strains, PVYNTN maintained higher titre than PVYO and would facilitate the acquisition of PVYNTN. Furthermore, the acquisition and transmission of PVYNTN over PVYO was enhanced in the potato cultivar that expressed a strain-specific Ny-like resistance gene that confers partial resistance to PVYO.


Asunto(s)
Áfidos/virología , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Solanum tuberosum/virología , Animales , Enfermedades de las Plantas/parasitología , Potyvirus/clasificación , Potyvirus/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA