Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 237(2): 548-562, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35946378

RESUMEN

Hypersensitive response (HR)-conferred resistance is associated with induction of programmed cell death and pathogen spread restriction in its proximity. The exact role of chloroplastic reactive oxygen species and its link with salicylic acid (SA) signaling in HR remain unexplained. To unravel this, we performed a detailed spatiotemporal analysis of chloroplast redox response in palisade mesophyll and upper epidermis to potato virus Y (PVY) infection in a resistant potato genotype and its transgenic counterpart with impaired SA accumulation and compromised resistance. Besides the cells close to the cell death zone, we detected individual cells with oxidized chloroplasts further from the cell death zone. These are rare in SA-deficient plants, suggesting their role in signaling for resistance. We confirmed that chloroplast redox changes play important roles in signaling for resistance, as blocking chloroplast redox changes affected spatial responses at the transcriptional level. Through spatiotemporal study of stromule induction after PVY infection, we show that stromules are induced by cell death and also as a response to PVY multiplication at the front of infection. Overall induction of stromules is attenuated in SA-deficient plants.


Asunto(s)
Potyvirus , Solanum tuberosum , Cloroplastos/metabolismo , Oxidación-Reducción , Comunicación Celular , Transducción de Señal , Apoptosis , Potyvirus/fisiología , Solanum tuberosum/genética , Enfermedades de las Plantas/genética
2.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35887257

RESUMEN

In this work we developed and exploited a spray-induced gene silencing (SIGS)-based approach to deliver double-stranded RNA (dsRNA), which was found to protect potato against potato virus Y (PVY) infection. Given that dsRNA can act as a defence-inducing signal that can trigger sequence-specific RNA interference (RNAi) and non-specific pattern-triggered immunity (PTI), we suspected that these two pathways may be invoked via exogeneous application of dsRNA, which may account for the alterations in PVY susceptibility in dsRNA-treated potato plants. Therefore, we tested the impact of exogenously applied PVY-derived dsRNA on both these layers of defence (RNAi and PTI) and explored its effect on accumulation of a homologous virus (PVY) and an unrelated virus (potato virus X, PVX). Here, we show that application of PVY dsRNA in potato plants induced accumulation of both small interfering RNAs (siRNAs), a hallmark of RNAi, and some PTI-related gene transcripts such as WRKY29 (WRKY transcription factor 29; molecular marker of PTI), RbohD (respiratory burst oxidase homolog D), EDS5 (enhanced disease susceptibility 5), SERK3 (somatic embryogenesis receptor kinase 3) encoding brassinosteroid-insensitive 1-associated receptor kinase 1 (BAK1), and PR-1b (pathogenesis-related gene 1b). With respect to virus infections, PVY dsRNA suppressed only PVY replication but did not exhibit any effect on PVX infection in spite of the induction of PTI-like effects in the presence of PVX. Given that RNAi-mediated antiviral immunity acts as the major virus resistance mechanism in plants, it can be suggested that dsRNA-based PTI alone may not be strong enough to suppress virus infection. In addition to RNAi- and PTI-inducing activities, we also showed that PVY-specific dsRNA is able to upregulate production of a key enzyme involved in poly(ADP-ribose) metabolism, namely poly(ADP-ribose) glycohydrolase (PARG), which is regarded as a positive regulator of biotic stress responses. These findings offer insights for future development of innovative approaches which could integrate dsRNA-induced RNAi, PTI and modulation of poly(ADP-ribose) metabolism in a co-ordinated manner, to ensure a high level of crop protection.


Asunto(s)
Potyvirus , Solanum tuberosum , Enfermedades de las Plantas/genética , Poli Adenosina Difosfato Ribosa , Potyvirus/fisiología , Interferencia de ARN , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Solanum tuberosum/metabolismo
3.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35887367

RESUMEN

Tissue culture methods enable virus elimination from vegetatively propagated crop plants but cannot prevent new infections. Here we used a tissue culture transgenic approach for curing field cultivars of Solanum tuberosum through the stimulation of RNA interference (RNAi)-based antiviral defenses. Expression cassettes carrying inverted repeats of potato virus S (PVS, genus Carlavirus) movement or coat protein sequences were used for the transformation of potato cultivars naturally infected with PVS and/or a related carlavirus potato virus M (PVM), without or with potato virus Y (PVY, genus Potyvirus). A high proportion of transformants PCR-positive for transgenes were cured from both carlaviruses and PVY. After 3-year field trials, 22 transgenic lines representing seven cultivars remained free of any virus or became infected only with PVY. Vegetative progenies of the transgenic lines of cultivar Zeren (initially coinfected with PVS, PVM, and PVY), sampled after in vitro propagation or field trials, and other field cultivars accumulated transgene-derived 21, 22, and 24 nt small interfering (si)RNAs almost exclusively from the PVS inverted repeats. Additionally, some field progenies accumulated 21-22 nt siRNAs from the entire PVY genome, confirming PVY infection. Taken together, transgenic RNAi is effective for virus elimination from naturally infected potato cultivars and their sequence-specific immunization against new infections.


Asunto(s)
Potyvirus , Solanum tuberosum , Carlavirus , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Potyvirus/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
4.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409157

RESUMEN

Glutathione is a metabolite that plays an important role in plant response to biotic stress through its ability to remove reactive oxygen species, thereby limiting the degree of potential oxidative damage. It can couple changes in the intracellular redox state to the development, especially the defense responses, of plants. Several studies have focused on measuring glutathione levels in virus infected plants, but have not provided complete information. Therefore, we analyzed, for the first time, the content of glutathione as well as its ultrastructural distribution related to susceptible and hypersensitive potato-Potato virus Y NTN (PVYNTN) interaction, with an aim of providing new insight into interactive responses to PVYNTN stress. Our findings reported that the inoculation of PVYNTN caused a dynamic increase in the content of glutathione, not only in resistance but also in susceptible reaction, especially at the first steps of plant-virus interaction. Moreover, the increase in hypersensitive response was much more dynamic, and accompanied by a significant reduction in the content of PVYNTN. By contrast, in susceptible potato Irys, the content of glutathione decreased between 7 and 21 days after virus inoculation, which led to a significant increase in PVYNTN concentration. Additionally, our findings clearly indicated the steady induction of two selected potato glutathione S-transferase StGSTF1 and StGSTF2 genes after PVYNTN inoculation, regardless of the interaction type. However, the relative expression level of StGSTF1 did not significantly differ between resistant and susceptible plants, whereas the relative expression levels of StGSTF2 differed between susceptible and resistant reactions. Therefore, we proposed that StGSTF2 can act as a marker of the type of response to PVYNTN. Our observations indicated that glutathione is an important component of signaling as well as the regulatory network in the PVYNTN-potato pathosystem. In resistance responses to PVYNTN, this metabolite activates plant defenses by reducing potential damage to the host plant cell, causing a reduction in virus concentration, while it can also be involved in the development of PVYNTN elicited symptoms, as well as limiting oxidative stress, leading to systemic infection in susceptible potato plants.


Asunto(s)
Virus de Plantas , Potyvirus , Solanum tuberosum , Susceptibilidad a Enfermedades , Glutatión/metabolismo , Enfermedades de las Plantas/genética , Potyvirus/fisiología , Solanum tuberosum/genética
5.
Bull Entomol Res ; 112(5): 626-635, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35229709

RESUMEN

Myzus persicae (Sulzer) is an important agricultural pest worldwide causing major economic losses due to its ability to transmit over 100 viruses including Potato virus Y (PVY). Myzus persicae shows considerable variation with respect to performance on its host plants. The objective of this study was to use a survival experiment, behavioural observations, including observations of probing and feeding behaviour obtained using the electrical penetration graph (EPG) technique, and a PVY acquisition experiment to determine whether or not potato was still the more suitable host for M. persicae originating on potato and reared on a novel host, table beet, for over 15 years. In a survival experiment, the pre-reproductive period was significantly longer while adult survival and whole longevity were significantly lower for M. persicae reared on beet fed beet leaves compared to M. persicae reared on potato fed potato leaves. The number of progenies produced and fecundity were both significantly reduced (90 and 85%, respectively) for M. persicae reared on beet fed beet leaves. Ethological observations and EPG assessment of M. persicae behaviour reared on beet placed on beet leaves showed significantly impaired behavioural responses compared to M. persicae reared on potato placed on potato leaves. The rate of PVY acquisition was the same for M. persicae reared on beet and on potato. These results indicate that after 15 years on table beet, M. persicae still performs better on its original host, potato, and appears to be a specialized potato-adapted genotype.


Asunto(s)
Áfidos , Potyvirus , Solanum tuberosum , Animales , Áfidos/fisiología , Potyvirus/fisiología , Conducta Alimentaria , Hojas de la Planta
6.
Plant Dis ; 106(3): 891-900, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34705492

RESUMEN

In-field management of Potato virus Y (PVY) faces challenges caused by the changing availability and environmental acceptability of chemical agents to control aphid vectors of the virus and by proliferation of PVY strains with different symptoms and rates of spread. From 2018 to 2020, foliar spray treatments were compared in field experiments in New Brunswick, Canada, to measure effectiveness at reducing spread of PVYO, PVYN:O, and PVYNTN strains. Mineral oil, insecticide, combined oil and insecticide spray, and a biopesticide (i.e., LifeGard WG) were compared. Insecticide-only and mineral oil-only treatments were not effective, but several combined oil and insecticide treatments and biopesticide treatments significantly reduced PVY spread. The biopesticide was proportionately more effective with recombinant PVYN:O and PVYNTN strains, possibly by exciting the plant's hypersensitive resistance response, caused naturally only in cultivar 'Goldrush' by PVYO. Pesticide residue analysis showed that mineral oil increased the retention of pyrethroid insecticide in the potato foliage longer than with insecticide applied alone, which may explain the beneficial synergistic effect of combined sprays for reducing PVY spread. Tuber yields were generally unchanged in chemical insecticide treatments but were slightly lower in biopesticide treatment. The cost per PVY treatment was competitive across all effective treatments, including biopesticide; however, there was some revenue loss from lower yield with the biopesticide. This biopesticide is certified organic, however, and thus a small premium on the price for organic production could offset this yield deficit.


Asunto(s)
Insecticidas , Potyvirus , Solanum tuberosum , Agentes de Control Biológico/farmacología , Insecticidas/farmacología , Aceite Mineral/farmacología , Enfermedades de las Plantas/prevención & control , Potyvirus/fisiología
7.
Viruses ; 13(10)2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696360

RESUMEN

Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV-plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes.


Asunto(s)
Interacciones Microbiota-Huesped , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Genes prv , Interacciones Microbiota-Huesped/genética , Solanum lycopersicum/genética , Solanum lycopersicum/virología , Enfermedades de las Plantas/genética , Potyvirus/genética , Solanum tuberosum/genética , Solanum tuberosum/virología
8.
Viruses ; 13(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064103

RESUMEN

Plant-virus interactions are frequently influenced by elevated temperature, which often increases susceptibility to a virus, a scenario described for potato cultivar Chicago infected with potato virus Y (PVY). In contrast, other potato cultivars such as Gala may have similar resistances to PVY at both normal (22 °C) and high (28 °C) temperatures. To elucidate the mechanisms of temperature-independent antivirus resistance in potato, we analysed responses of Gala plants to PVY at different temperatures using proteomic, transcriptional and metabolic approaches. Here we show that in Gala, PVY infection generally upregulates the accumulation of major enzymes associated with the methionine cycle (MTC) independently of temperature, but that temperature (22 °C or 28 °C) may finely regulate what classes accumulate. The different sets of MTC-related enzymes that are up-regulated at 22 °C or 28 °C likely account for the significantly increased accumulation of S-adenosyl methionine (SAM), a key component of MTC which acts as a universal methyl donor in methylation reactions. In contrast to this, we found that in cultivar Chicago, SAM levels were significantly reduced which correlated with the enhanced susceptibility to PVY at high temperature. Collectively, these data suggest that MTC and its major transmethylation function determines resistance or susceptibility to PVY.


Asunto(s)
Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Metionina/metabolismo , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Solanum tuberosum/metabolismo , Solanum tuberosum/virología , Cromatografía Liquida , Biología Computacional/métodos , Calor , Redes y Vías Metabólicas , Metilación , Proteínas de Plantas , Espectrometría de Masas en Tándem
9.
J Gen Virol ; 102(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34161221

RESUMEN

In recent years, several recombinant strains of potato virus Y, notably PVYNTN and PVYN:O have displaced the ordinary strain, PVYO, and emerged as the predominant strains affecting the USA potato crop. Previously we reported that recombinant strains were transmitted more efficiently than PVYO when they were acquired sequentially, regardless of acquisition order. In another recent study, we showed that PVYNTN binds preferentially to the aphid stylet over PVYO when aphids feed on a mixture of PVYO and PVYNTN. To understand the mechanism of this transmission bias as well as preferential virus binding, we separated virus and active helper component proteins (HC), mixed them in homologous and heterologous combinations, and then fed them to aphids using Parafilm sachets. Mixtures of PVYO HC with either PVYN:O or PVYNTN resulted in efficient transmission. PVYN:O HC also facilitated the transmission of PVYO and PVYNTN, albeit with reduced efficiency. PVYNTN HC failed to facilitate transmission of either PVYO or PVYN:O. When PVYO HC or PVYN:O HC was mixed with equal amounts of the two viruses, both viruses in all combinations were transmitted at high efficiencies. In contrast, no transmission occurred when combinations of viruses were mixed with PVYNTN HC. Further study evaluated transmission using serial dilutions of purified virus mixed with HCs. While PVYNTN HC only facilitated the transmission of the homologous virus, the HCs of PVYO and PVYN:O facilitated the transmission of all strains tested. This phenomenon has likely contributed to the increase in the recombinant strains affecting the USA potato crop.


Asunto(s)
Áfidos/virología , Cisteína Endopeptidasas/metabolismo , Enfermedades de las Plantas/virología , Potyvirus/genética , Potyvirus/fisiología , Solanum tuberosum/virología , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Animales , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Recombinación Genética , Nicotiana/virología , Proteínas Virales/química , Proteínas Virales/genética
10.
Mol Cell Probes ; 55: 101691, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33358935

RESUMEN

This was the first report on evaluating candidate reference genes for quantifying the expression profiles of both coding (e.g., mRNA) and non-coding (e.g., miRNA) genes in potato response to potato virus Y (PVY) inoculation. The reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) method was employed to quantify the expression profiles of eight selected candidate reference genes; their expression stability was analyzed by four statistical algorithms, i.e., geNorm, BestKeeper, NormFinder and RefFinder. The most stable reference genes were sEF1a, sTUBb and seIF5 with a high stability. The least stable ones were sPP2A, sSUI1 and sGAPDH. The same reference gene allows for normalization of both miRNA and mRNA levels from a single RNA sample using cDNAs synthesized in a single RT reaction, in which a stem-loop primer was used for miRNAs and the oligo (dT) for mRNAs.


Asunto(s)
Genes de Plantas , MicroARNs/genética , Potyvirus/fisiología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Solanum tuberosum/genética , Solanum tuberosum/virología , Cartilla de ADN/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estándares de Referencia , Reproducibilidad de los Resultados , Programas Informáticos
11.
Mol Plant Pathol ; 22(1): 77-91, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33146443

RESUMEN

Plant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in such regulatory effects remain largely uncharacterized. To provide more insight into the mechanisms whereby temperature regulates plant-virus interactions, we analysed changes in the proteome of potato cv. Chicago plants infected with potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), which is known to significantly increase plant susceptibility to the virus. One of the most intriguing findings is that the main enzymes of the methionine cycle (MTC) were down-regulated at the higher but not at normal temperatures. With good agreement, we found that higher temperature conditions triggered consistent and concerted changes in the level of MTC metabolites, suggesting that the enhanced susceptibility of potato plants to PVY at 28 °C may at least be partially orchestrated by the down-regulation of MTC enzymes and concomitant cycle perturbation. In line with this, foliar treatment of these plants with methionine restored accumulation of MTC metabolites and subverted the susceptibility to PVY at elevated temperature. These data are discussed in the context of the major function of the MTC in transmethylation processes.


Asunto(s)
Metionina/metabolismo , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Solanum tuberosum/metabolismo , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Proteómica , Solanum tuberosum/virología , Temperatura
12.
Planta ; 252(4): 57, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32955625

RESUMEN

MAIN CONCLUSION: Specific and common genes including transcription factors, resistance genes and pathways were significantly induced in potato by Phytophthora infestans, Ralstonia solanacearum, and Potato virus Y infection. The three major pathogens, namely, Phytophthora infestans, Ralstonia solanacearum, and Potato virus Y, can cause late blight, bacterial wilt, and necrotic ringspot, respectively, and thus severely reduce the yield and quality of potatoes (Solanum tuberosum L.). This study was the first to systematically analyze the relationship between transcriptome alterations in potato infected by these pathogens at the early stages. A total of 75,500 unigenes were identified, and 44,008 were annotated into 5 databases, namely, non-redundant (NR), Swiss-Prot protein, clusters of orthologous groups for eukaryotic complete genomes (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A total of 6945 resistance genes and 11,878 transcription factors (TFs) were identified from all transcriptome data. Differential expression analysis revealed that 13,032 (9490 specifics), 9877 (6423 specifics), and 6661 (4144 specifics) differentially expressed genes (DEGs) were generated from comparisons of the P. infestans/control (Pi vs. Pi-CK), R. solanacearum/control (Rs vs. Rs-CK), and PVY/control (PVY vs. PVY-CK) treatments, respectively. The specific DEGs from the 3 comparisons were assigned to 13 common pathways, such as biosynthesis of amino acids, plant hormone signal transduction, carbon metabolism, and starch and sucrose metabolism. Weighted Gene Co-Expression Network Analysis (WGCNA) identified many hub unigenes, of which several unigenes were reported to regulate plant immune responses, such as FLAGELLIN-SENSITIVE 2 and chitinases. The present study provide crucial systems-level insights into the relationship between transcriptome changes in potato infected with the three pathogens. Moreover, this study presents a theoretical basis for breeding broad-spectrum and specific pathogen-resistant cultivars.


Asunto(s)
Interacciones Huésped-Patógeno , Phytophthora infestans , Potyvirus , Ralstonia solanacearum , Solanum tuberosum , Transcriptoma , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Phytophthora infestans/fisiología , Fitomejoramiento , Potyvirus/fisiología , Ralstonia solanacearum/fisiología , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Solanum tuberosum/parasitología , Solanum tuberosum/virología
13.
Genes (Basel) ; 11(4)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316258

RESUMEN

Potatoes are an important human food crop, but have a number of yield limiting factors, including disease susceptibility. Potato virus Y (PVY) is found worldwide, and is one of the main virus problems for potato growers. PVY is transmitted by aphids and mechanically by machinery, tools and people, and symptoms are variable across cultivars and strains, including being symptomless in some cultivars. Therefore, breeding resistant cultivars is the best way to control this virus. This study phenotypically screened 74 of the main commercial cultivars and a few other select cultivars grown in Australia, in order to identify sources of resistance to PVY. The cultivars were screened against PVYO and PVYNTN, with 23 out of 71 resistant to PVYO and 13 out of 74 resistant to PVYNTN, and all these 13 were resistant to both strains. When the phenotypic screening was compared to the results listed on the European Cultivated Potato Database, the majority of results were found to be consistent. We then evaluated three molecular markers RYSC3, M45, and STM0003 for the extreme resistance genes Ryadg and Rysto, to validate the usefulness of the markers for marker-assisted selection (MAS) on Australian germplasm. The degree of correlation between the resistance phenotypes and the RYSC3, M45, and STM0003 markers for Ryadg and Rysto conferred PVY resistance was determined. Three cultivars amplified the RYSC3 marker, while the M45 marker amplified the same 3 and an additional 9. Of the 12 cultivars, 11 phenotyped as resistant, but 1 was susceptible. The STM0003 marker was amplified from only 2 cultivars that both had resistant phenotypes. The RYSC3, M45, and STM0003 markers were therefore able to identify all the 13 cultivars that were resistant to both strains of PVY. Therefore, these markers will enable the identification of genotypes with resistance to PVY, and enable PVY resistant parents to be used for the development of superior progeny; these genetic markers can be used for MAS in the Australian potato breeding program.


Asunto(s)
Resistencia a la Enfermedad/genética , Marcadores Genéticos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Solanum tuberosum/genética , Solanum tuberosum/virología , Resistencia a la Enfermedad/inmunología , Genotipo , Humanos , Fenotipo
14.
J Sci Food Agric ; 100(8): 3418-3427, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32166770

RESUMEN

BACKGROUND: Plant viral infections induce changes in metabolic components in the host plant, with potential effects on compositional, organoleptic and storability features of agricultural products. Identification of modulated metabolites may provide clues concerning pathways implementing responses in plant-pathogen interactions. A time course study of metabolic fingerprinting of onion yellow dwarf virus (OYDV)-infected versus healthy 'Rossa di Tropea' onion bulbs was performed using proton high-resolution magic angle spinning nuclear magnetic resonance (1 H HR-MAS NMR) and ultra-performance liquid chromatography (UPLC), providing an overview of the metabolic state of the bulb in response to OYDV infection during storage. RESULTS: Metabolites accumulated/depleted upon infection were identified, belonging to flavonoid, saccharide, amino acid and organic acid classes. A decrease in quercetin glucosides content and antioxidant activity was observed in infected bulbs; some amino acids (Arg, Asn, Phe, Val) accumulated, while others were depleted (Leu); for some metabolites, a bimodal time-course was observed during storage (Glc, Lys). Virus interference on metabolic pathways, and the effects of the metabolic shift on edible product storability, organoleptic and nutritional quality were discussed. CONCLUSIONS: OYDV infection induces a metabolic shift in 'Rossa di Tropea' onion during bulb storage, involving several pathways and affecting storability and organoleptic and nutritional quality of bulbs at marketable stage. © 2020 Society of Chemical Industry.


Asunto(s)
Cebollas/metabolismo , Cebollas/virología , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Antioxidantes/química , Antioxidantes/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Almacenamiento de Alimentos , Espectroscopía de Resonancia Magnética , Valor Nutritivo , Cebollas/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/virología
15.
Viruses ; 12(1)2020 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-31948116

RESUMEN

The plant cell wall acts not only as a physical barrier, but also as a complex and dynamic structure that actively changes under different biotic and abiotic stress conditions. The question is, how are the different cell wall compounds modified during different interactions with exogenous stimuli such as pathogens? Plants exposed to viral pathogens respond to unfavorable conditions on multiple levels. One challenge that plants face under viral stress is the number of processes required for differential cell wall remodeling. The key players in these conditions are the cell wall genes and proteins, which can be regulated in specific ways during the interactions and have direct influences on the rebuilding of the cell wall structure. The cell wall modifications occurring in plants during viral infection remain poorly described. Therefore, this study focuses on cell wall dynamics as an effect of incompatible interactions between the potato virus Y (PVYNTN) and resistant potatoes (hypersensitive plant), as well as compatible (susceptible plant) interactions. Our analysis describes, for the first time, the expression of the potato expansin A3 (StEXPA3) and potato extensin 4 (StEXT4) genes in PVYNTN-susceptible and -resistant potato plant interactions. The results indicated a statistically significant induction of the StEXPA3 gene during a susceptible response. By contrast, we demonstrated the predominantly gradual activation of the StEXT4 gene during the hypersensitive response to PVYNTN inoculation. Moreover, the in situ distributions of expansins (StEXPAs), which are essential cell wall-associated proteins, and the hydroxyproline-rich glycoprotein (HRGP) extensin were investigated in two types of interactions. Furthermore, cell wall loosening was accompanied by an increase in StEXPA deposition in a PVYNTN-susceptible potato, whereas the HRGP content dynamically increased during the hypersensitive response, when the cell wall was reinforced. Ultrastructural localization and quantification revealed that the HRGP extensin was preferably located in the apoplast, but deposition in the symplast was also observed in resistant plants. Interestingly, during the hypersensitive response, StEXPA proteins were mainly located in the symplast area, in contrast to the susceptible potato where StEXPA proteins were mainly observed in the cell wall. These findings revealed that changes in the intracellular distribution and abundance of StEXPAs and HRGPs can be differentially regulated, depending on different types of PVYNTN-potato plant interactions, and confirmed the involvement of apoplast and symplast activation as a defense response mechanism.


Asunto(s)
Pared Celular/metabolismo , Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Potyvirus/fisiología , Solanum tuberosum/virología , Pared Celular/genética , Pared Celular/ultraestructura , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Glicoproteínas/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Solanum tuberosum/genética
16.
BMC Genomics ; 21(1): 18, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906869

RESUMEN

BACKGROUND: Potato virus Y (PVY) is a major pathogen of potatoes with major impact on global agricultural production. Resistance to PVY can be achieved by engineering potatoes to express a recessive, resistant allele of eukaryotic translation initiation factor eIF4E, a host dependency factor essential to PVY replication. Here we analyzed transcriptome changes in eIF4E over-expressing potatoes to shed light on the mechanism underpinning eIF4E-mediated recessive PVY resistance. RESULTS: As anticipated, modified eIF4E-expressing potatoes demonstrated a high level of resistance, eIF4E expression, and an unexpected suppression of the susceptible allele transcript, likely explaining the bulk of the potent antiviral phenotype. In resistant plants, we also detected marked upregulation of genes involved in cell stress responses. CONCLUSIONS: Our results reveal a previously unanticipated second layer of signaling attributable to eIF4E regulatory control, and potentially relevant to establishment of a broader, more systematic antiviral host defense.


Asunto(s)
Resistencia a la Enfermedad/genética , Factor 4E Eucariótico de Iniciación/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Alelos , Capsicum/genética , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Genes Recesivos , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente , Potyvirus/genética , Potyvirus/fisiología , Transducción de Señal/genética , Solanum tuberosum/virología
17.
Phytopathology ; 110(1): 164-173, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31532352

RESUMEN

Potato virus Y (PVY; Potyviridae) is a continuing challenge for potato production owing to the increasing popularity of strain-specific resistant cultivars. Hypersensitive resistance (HR) is one type of plant defense responses to restrict virus spread. In many potato cultivars, such as cultivar Premier Russet (PR), local necrosis at the site of infection protects against the most common PVYO strain, but the HR often fails to restrain necrotic strains, which spread systemically. Here, we established the role of callose accumulation in the strain-specific resistance responses to PVY infection. We first uncovered that PVY, independent of the strain, is naturally capable of suppressing pathogenesis-related callose formation in a susceptible host. Such activity can be dissociated from viral replication by the transient expression of the viral-encoded helper component proteinase (HCPro) protein, identifying it as the pathogen elicitor. However, unlike the necrotic strain, PVYO and its corresponding HCPro are unable to block callose accumulation in resistant PR potatoes, in which we observed an abundance of callose deposition and the inability of the virus to spread. The substitution of eight amino acid residues within the HCPro C-terminal region that differ between PVYO and PVYN strains and were previously shown to be responsible for eliciting the HR response, are sufficient to restore the ability of HCProO to suppress callose accumulation, despite the resistant host background, in line with a new viral function in pathogenicity.


Asunto(s)
Cisteína Endopeptidasas , Resistencia a la Enfermedad , Glucanos , Potyvirus , Solanum tuberosum , Proteínas Virales , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Glucanos/metabolismo , Potyvirus/enzimología , Potyvirus/genética , Potyvirus/fisiología , Solanum tuberosum/virología , Especificidad de la Especie , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
18.
Plant Dis ; 104(1): 269-275, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31746695

RESUMEN

The recombinant strain of potato virus Y (PVY), PVYNTN, is the main cause of the potato tuber necrotic ringspot disease (PTNRD) in susceptible potato cultivars, which reduces the quality of potato tubers, in addition to the yield loss. Control of PVY has been the main challenge in most potato-producing areas. Here, the effects of the age-related resistance (ARR) were investigated in transplants of a potato cultivar Yukon Gold to the infection with PVYNTN strain in greenhouse experiments. Within the first 3 weeks after transplanting into soil (week 1 [W1] to W3), Yukon Gold plants developed ARR that impaired the systemic movement of PVYNTN into upper noninoculated leaves and concomitant translocation into progeny tubers starting from W4 after transplanting. The yield and quality of tubers from PVY-infected plants with the established ARR (W5 to W8) were comparable with the healthy controls, suggesting that late PVY infection would not significantly affect commercial potato production. Plants inoculated early (W1 to W2), before the establishment of the ARR, exhibited a 100% primary systemic infection with PVYNTN and produced fewer tubers of smaller sizes, exhibiting PTNRD; this resulted ≤70% yield reduction compared with plants inoculated later in the season (W5 to W8). This ARR greatly restricted the systemic movement of PVYNTN in the foliage and resulted in very limited translocation rates of the virus into tested progeny tubers: 7.8 and 4.1% in 2017 and 2018, respectively, of all plants inoculated later in the season (W5 to W8). This study suggests that PVYNTN management programs in Yukon Gold seed potato should focus more on the early stages of the potato development before the onset of the ARR.


Asunto(s)
Potyvirus , Solanum tuberosum , Resistencia a la Enfermedad/fisiología , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Solanum tuberosum/virología
19.
Sci Data ; 6(1): 250, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673114

RESUMEN

Potato virus Y (PVY) is the most economically important viral pathogen of potato worldwide. Different potato cultivars react to the pathogen differently, resulting in resistant, tolerant or disease outcome of the interaction. Here we focus on tolerant interaction between potato cv. Désirée and PVYNTN. To capture the response in its full complexity, we analyzed the dynamic changes on multiple molecular levels, including transcriptomics, sRNAomics, degradomics, proteomics and hormonomics. The analysis was complemented by the measurements of viral accumulation, photosynthetic activity and phenotypisation of the symptoms. Besides cv. Désirée we also studied its transgenic counterpart depleted for the accumulation of salicylic acid (NahG-Désirée). This multiomics analysis provides better insights into the mechanisms leading to tolerant response of potato to viral infection and can be used as a base in further studies of plant immunity regulation.


Asunto(s)
Interacciones Huésped-Patógeno , Potyvirus/fisiología , Solanum tuberosum/virología
20.
Plant Dis ; 103(11): 2933-2939, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31545136

RESUMEN

A new virus with flexuous, filamentous particles approximately 650 nm long was discovered in Manchurian tubergourd (Thladiantha dubia Bunge) leaves exhibiting severe mosaic symptoms. The whole genome sequence of the virus was determined by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The entire genome consisted of 10,112 nucleotides (nt) excluding the poly (A) tail, which shared the highest nucleotide sequence identity (73.8%) with that of papaya leaf distortion mosaic virus Hainan-DF isolate (PLDMV-Hainan-DF). A phylogenetic analysis showed that this virus clustered with PLDMV isolates in a subbranch within the potyviral clade. Of the 23 species of indicator plants tested, only potato and its original host were systemically infected by the virus tested upon mechanical inoculation. A field survey showed that the virus was widely distributed on T. dubia and potatoes in Northeast China. Moreover, this virus displayed a high degree of genetic variation as evaluated by the sequences of the coat protein (CP) gene. Based on these results, the name Thladiantha dubia mosaic virus (ThDMV) is proposed for this new potyvirus.


Asunto(s)
Cucurbitaceae , Filogenia , Potyvirus , China , Cucurbitaceae/virología , Genoma Viral/genética , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Potyvirus/genética , Potyvirus/fisiología , Solanum tuberosum/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA