Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
DNA Cell Biol ; 41(9): 790-809, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35947859

RESUMEN

[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.


Asunto(s)
Empalme Alternativo , Neoplasias , Empalme Alternativo/genética , Biología Computacional , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Precursores del ARN/genética , Precursores del ARN/uso terapéutico , Empalmosomas/genética
2.
Mol Ther ; 30(3): 1018-1035, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34793975

RESUMEN

Alternative pre-mRNA splicing (AS) provides the potential to produce diversity at RNA and protein levels. Disruptions in the regulation of pre-mRNA splicing can lead to diseases. With the development of transcriptome and genome sequencing technology, increasing diseases have been identified to be associated with abnormal splicing of mRNAs. In tumors, abnormal alternative splicing frequently plays critical roles in cancer pathogenesis and may be considered as new biomarkers and therapeutic targets for cancer intervention. Metabolic abnormalities and immune disorders are important hallmarks of cancer. AS produces multiple different isoforms and diversifies protein expression, which is utilized by the immune and metabolic reprogramming systems to expand gene functions. The abnormal splicing events contributed to tumor progression, partially due to effects on immune response and metabolic reprogramming. Herein, we reviewed the vital role of alternative splicing in regulating cancer metabolism and immune response. We discussed how alternative splicing regulates metabolic reprogramming of cancer cells and antitumor immune response, and the possible strategies to targeting alternative splicing pathways or splicing-regulated metabolic pathway in the context of anticancer immunotherapy. Further, we highlighted the challenges and discuss the perspectives for RNA-based strategies for the treatment of cancer with abnormally alternative splicing isoforms.


Asunto(s)
Empalme Alternativo , Neoplasias , Humanos , Inmunidad/genética , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Isoformas de Proteínas/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo
3.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34769221

RESUMEN

Recent comprehensive genomic studies including single-cell RNA sequencing and characterization have revealed multiple processes by which protein-coding and noncoding RNA processing are dysregulated in many cancers. More specifically, the abnormal regulation of mRNA and precursor mRNA (pre-mRNA) processing, which includes the removal of introns by splicing, is frequently altered in tumors, producing multiple different isoforms and diversifying protein expression. These alterations in RNA processing result in numerous cancer-specific mRNAs and pathogenically spliced events that generate altered levels of normal proteins or proteins with new functions, leading to the activation of oncogenes or the inactivation of tumor suppressor genes. Abnormally spliced pre-mRNAs are also associated with resistance to cancer treatment, and certain cancers are highly sensitive to the pharmacological inhibition of splicing. The discovery of these alterations in RNA processing has not only provided new insights into cancer pathogenesis but identified novel therapeutic vulnerabilities and therapeutic opportunities in targeting these aberrations in various ways (e.g., small molecules, splice-switching oligonucleotides (SSOs), and protein therapies) to modulate alternative RNA splicing or other RNA processing and modification mechanisms. Some of these strategies are currently progressing toward clinical development or are already in clinical trials. Additionally, tumor-specific neoantigens produced from these pathogenically spliced events and other abnormal RNA processes provide a potentially extensive source of tumor-specific therapeutic antigens (TAs) for targeted cancer immunotherapy. Moreover, a better understanding of the molecular mechanisms associated with aberrant RNA processes and the biological impact they play might provide insights into cancer initiation, progression, and metastasis. Our goal is to highlight key alternative RNA splicing and processing mechanisms and their roles in cancer pathophysiology as well as emerging therapeutic alternative splicing targets in cancer, particularly in gastrointestinal (GI) malignancies.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Antineoplásicos/uso terapéutico , Neoplasias Gastrointestinales , Precursores del ARN , ARN Neoplásico , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , Humanos , Precursores del ARN/biosíntesis , Precursores del ARN/genética , ARN Neoplásico/genética , ARN Neoplásico/metabolismo
4.
Gene ; 794: 145752, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34082065

RESUMEN

Intron retention (IR) is an important regulatory mechanism that affects gene expression and protein functions. Using klotho mice at the pre-symptomatic state, we discovered that retained-introns accumulated in several organs including the liver and that among these retained introns in the liver a subset was recovered to the normal state by a Japanese traditional herbal medicine. This is the first report of IR recovery by a medicine. IR-recovered genes fell into two categories: those involved in liver-specific metabolism and in splicing. Metabolome analysis of the liver showed that the klotho mice were under starvation stress. In addition, our differentially expressed gene analysis showed that liver metabolism was actually recovered by the herbal medicine at the transcriptional level. By analogy with the widespread accumulation of intron-retained pre-mRNAs induced by heat shock stress, we propose a model in which retained-introns in klotho mice were induced by an aging stress and in which this medicine-related IR recovery is indicative of the actual recovery of liver-specific metabolic function to the healthy state. Accumulation of retained-introns was also observed at the pre-symptomatic state of aging in wild-type mice and may be an excellent marker for this state in general.


Asunto(s)
Envejecimiento/genética , Perfilación de la Expresión Génica/métodos , Marcadores Genéticos/efectos de los fármacos , Glucuronidasa/genética , Hígado/química , Fitoquímicos/administración & dosificación , Envejecimiento/efectos de los fármacos , Empalme Alternativo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Respuesta al Choque Térmico , Intrones , Japón , Proteínas Klotho , Hígado/efectos de los fármacos , Medicina Tradicional , Metabolómica , Ratones , Modelos Animales , Fitoquímicos/farmacología , Precursores del ARN/genética , Análisis de Secuencia de ARN
5.
J Biol Chem ; 295(52): 18199-18212, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33100268

RESUMEN

Post-transcriptional modifications of pre-mRNAs expand the diversity of proteomes in higher eukaryotes. In the brain, these modifications diversify the functional output of many critical neuronal signal molecules. In this study, we identified a brain-specific A-to-I RNA editing that changed glutamine to arginine (Q/R) at exon 20 and an alternative splicing of exon 4 in Tmem63b, which encodes a ubiquitously expressed osmosensitive cation channel. The channel isoforms lacking exon 4 occurred in ∼80% of Tmem63b mRNAs in the brain but were not detected in other tissues, suggesting a brain-specific splicing. We found that the Q/R editing was catalyzed by Adar2 (Adarb1) and required an editing site complementary sequence located in the proximal 5' end of intron 20. Moreover, the Q/R editing was almost exclusively identified in the splicing isoform lacking exon 4, indicating a coupling between the editing and the splicing. Elimination of the Q/R editing in brain-specific Adar2 knockout mice did not affect the splicing efficiency of exon 4. Furthermore, transfection with the splicing isoform containing exon 4 suppressed the Q/R editing in primary cultured cerebellar granule neurons. Thus, our study revealed a coupling between an RNA editing and a distant alternative splicing in the Tmem63b pre-mRNA, in which the splicing plays a dominant role. Finally, physiological analysis showed that the splicing and the editing coordinately regulate Ca2+ permeability and osmosensitivity of channel proteins, which may contribute to their functions in the brain.


Asunto(s)
Adenosina Desaminasa/fisiología , Empalme Alternativo , Encéfalo/metabolismo , Canales de Calcio/genética , Exones , Edición de ARN , Precursores del ARN/genética , Proteínas de Unión al ARN/fisiología , Animales , Canales de Calcio/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Plant Cell Environ ; 42(1): 133-144, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29626361

RESUMEN

Plant microRNAs are commonly encoded in transcripts containing a single microRNA precursor. Processing by DICER-LIKE 1 and associated factors results in the production of a small RNA, followed by its incorporation into an AGO-containing protein complex to guide silencing of an mRNA possessing a complementary target sequence. Certain microRNA loci contain more than one precursor stem-loop structure, thus encoding more than one microRNA in the same transcript. Here, we describe a unique case where the evolutionary conserved miR398a is encoded in the same transcript as the legume-specific miR2119. The dicistronic arrangement found in common bean was also observed in other legumes. In Phaseolus vulgaris, mature miR398 and miR2119 are repressed in response to water deficit, and we demonstrate that both are functional as they target the mRNAs for CSD1 and ADH1, respectively. Our results indicate that the repression of miR398 and miR2119 leads to coordinated up-regulation of CSD1 and ADH1 mRNAs in response to water deficit in common bean and possibly in other legumes. Furthermore, we show that miRNA directed CSD1 and ADH1 mRNAs up-regulation also occurs when common bean plants are exposed to flooding, suggesting that plant redox status and fermentation metabolism must be closely coordinated under different adverse conditions.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , MicroARNs/metabolismo , Phaseolus/metabolismo , Proteínas de Plantas/metabolismo , Precursores del ARN/metabolismo , Superóxido Dismutasa/metabolismo , Alcohol Deshidrogenasa/genética , Deshidratación , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , Phaseolus/fisiología , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa , Precursores del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Superóxido Dismutasa/genética
7.
SLAS Discov ; 24(1): 57-67, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085848

RESUMEN

Familial dysautonomia (FD) is an autonomic and sensory neuropathy caused by a mutation in the splice donor site of intron 20 of the ELP1 gene. Variable skipping of exon 20 leads to a tissue-specific reduction in the level of ELP1 protein. We have shown that the plant cytokinin kinetin is able to increase cellular ELP1 protein levels in vivo and in vitro through correction of ELP1 splicing. Studies in FD patients determined that kinetin is not a practical therapy due to low potency and rapid elimination. To identify molecules with improved potency and efficacy, we developed a cell-based luciferase splicing assay by inserting renilla (Rluc) and firefly (Fluc) luciferase reporters into our previously well-characterized ELP1 minigene construct. Evaluation of the Fluc/Rluc signal ratio enables a fast and accurate way to measure exon 20 inclusion. Further, we developed a secondary assay that measures ELP1 splicing in FD patient-derived fibroblasts. Here we demonstrate the quality and reproducibility of our screening method. Development and implementation of this screening platform has allowed us to efficiently screen for new compounds that robustly and specifically enhance ELP1 pre-mRNA splicing.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Disautonomía Familiar/genética , Precursores del ARN/genética , Empalme del ARN/efectos de los fármacos , ARN Mensajero/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Elongación Transcripcional/genética , Línea Celular , Citocininas/farmacología , Exones/efectos de los fármacos , Exones/genética , Células HEK293 , Humanos , Cinetina/farmacología , Empalme del ARN/genética
8.
PLoS One ; 13(8): e0199673, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30067748

RESUMEN

Opium poppy (Papaver somniferum L.) is one of the ancient medical crops, which produces several important alkaloids such as morphine, noscapine, sanguinarine and codeine. MicroRNAs are endogenous non-coding RNAs that play important regulatory roles in plant diverse biological processes. Many plant miRNAs are encoded as single transcriptional units, in contrast to animal miRNAs, which are often clustered. Herein, using computational approaches, a total of 22 miRNA precursors were identified, which five of them were located as a clustered in pre-ribosomal RNA. Afterward, the transcript level of the precursor and the mature of clustered miRNAs in two species of the Papaveraceae family, i.e. P. somniferum L. and P. bracteatum L, were quantified by RT-PCR. With respect to obtained results, these clustered miRNAs were expressed differentially in different tissues of these species. Moreover, using target prediction and Gene Ontology (GO)-based on functional classification indicated that these miRNAs might play crucial roles in various biological processes as well as metabolic pathways. In this study, we discovered the clustered miRNA derived from pre-rRNA, which may shed some light on the importance of miRNAs in the plant kingdom.


Asunto(s)
MicroARNs/metabolismo , Papaver/genética , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Secuencia de Bases , Biología Computacional , Ontología de Genes , Redes y Vías Metabólicas/genética , MicroARNs/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , Plantas Medicinales/genética , Precursores del ARN/genética , ARN Ribosómico/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia
9.
Methods Mol Biol ; 1780: 497-523, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29856033

RESUMEN

Advances in molecular biology and genetics have been used to elucidate the fundamental genetic mechanisms underlying central nervous system (CNS) diseases, yet disease-modifying therapies are currently unavailable for most CNS conditions. Antisense oligonucleotides (ASOs) are synthetic single stranded chains of nucleic acids that bind to a specific sequence on ribonucleic acid (RNA) and regulate posttranscriptional gene expression. Decreased gene expression with ASOs might be able to reduce production of the disease-causing protein underlying dominantly inherited neurodegenerative disorders. Huntington's disease (HD), which is caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene and leads to the pathogenic expansion of a polyglutamine (PolyQ ) tract in the N terminus of the huntingtin protein (Htt), is a prime candidate for ASO therapy.State-of-the art translational science techniques can be applied to the development of an ASO targeting HTT RNA, allowing for a data-driven, stepwise progression through the drug development process. A deep and wide-ranging understanding of the basic, preclinical, clinical, and epidemiologic components of drug development will improve the likelihood of success. This includes characterizing the natural history of the disease, including evolution of biomarkers indexing the underlying pathology; using predictive preclinical models to assess the putative gain-of-function of mutant Htt protein and any loss-of-function of the wild-type protein; characterizing toxicokinetic and pharmacodynamic effects of ASOs in predictive animal models; developing sensitive and reliable biomarkers to monitor target engagement and effects on pathology that translate from animal models to patients with HD; establishing a drug delivery method that ensures reliable distribution to relevant CNS tissue; and designing clinical trials that move expeditiously from proof of concept to proof of efficacy. This review focuses on the translational science techniques that allow for efficient and informed development of an ASO for the treatment of HD.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/terapia , Oligonucleótidos Antisentido/uso terapéutico , Reparación del Gen Blanco/métodos , Investigación Biomédica Traslacional/métodos , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Macaca fascicularis , Ratones , Mutación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Precursores del ARN/genética , Ratas , Resultado del Tratamiento
10.
Int J Mol Sci ; 19(5)2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29724052

RESUMEN

Pepper (Capsicum annuum L.) is an economically important vegetable crop worldwide. Although many genes associated with anther and pollen development have been identified, little is known about the mechanism of pollen abortion in pepper. Here, we identified and isolated two putative aborted microspore (AMS) isoforms from pepper flowers: CaAMS1 and CaAMS2. Sequence analysis showed that CaAMS2 was generated by retention of the fourth intron in CaAMS1 pre-mRNA. CaAMS1 encodes a putative protein with a basic helix-loop-helix (bHLH) domain belonging to the MYC subfamily of bHLH transcription factors, and it is localized to the nucleus. Truncated CaAMS2-1 and CaAMS2-2 are produced by alternative splicing. Quantitative real-time PCR analysis showed that CaAMS (referred to CaAMS1 and CaAMS2-2) was preferentially expressed in stamens and its expression level gradually decreases with flower development. RNA in situ hybridization analysis showed that CaAMS is strongly expressed in the tapetum at the tetrad and uninucleate stages. Downregulation of CaAMS led to partial shortened filaments, shriveled, indehiscent stamens and abortive pollens in pepper flowers. Several genes involved in pollen exine formation were downregulated in defective CaAMS-silenced anthers. Thus, CaAMS seems to play an important role in pepper tapetum and pollen development by regulating a complex genetic network.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Capsicum/fisiología , Flores/metabolismo , Polen/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Genes myc , Hibridación in Situ , Isoformas de Proteínas , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Gene ; 641: 220-225, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29066300

RESUMEN

The KCNH2 or human ether-a go-go-related gene (hERG) encodes the Kv11.1 potassium channel that conducts the rapidly activating delayed rectifier potassium current in the heart. The expression of Kv11.1 C-terminal isoforms is directed by the alternative splicing and polyadenylation of intron 9. Splicing of intron 9 leads to the formation of a functional, full-length Kv11.1a isoform and polyadenylation of intron 9 results in the production of a non-functional, C-terminally truncated Kv11.1a-USO isoform. The relative expression of Kv11.1a and Kv11.1a-USO plays an important role in regulating Kv11.1 channel function. In the heart, only one-third of KCNH2 pre-mRNA is processed to Kv11.1a due to the weak 5' splice site of intron 9. We previously showed that the weak 5' splice site is caused by sequence deviation from the consensus, and that mutations toward the consensus sequence increased the efficiency of intron 9 splicing. It is well established that 5' splice sites are recognized by complementary base-paring with U1 small nuclear RNA (U1 snRNA). In this study, we modified the sequence of U1 snRNA to increase its complementarity to the 5' splice site of KCNH2 intron 9 and observed a significant increase in the efficiency of intron 9 splicing. RNase protection assay and western blot analysis showed that modified U1 snRNA increased the expression of the functional Kv11.1a isoform and concomitantly decreased the expression of the non-functional Kv11.1a-USO isoform. In patch-clamp experiments, modified U1 snRNA significantly increased Kv11.1 current. Our findings suggest that relative expression of Kv11.1 C-terminal isoforms can be regulated by modified U1 snRNA.


Asunto(s)
Canal de Potasio ERG1/genética , ARN Nuclear Pequeño/genética , Regulación hacia Arriba/genética , Empalme Alternativo/genética , Línea Celular , Células HEK293 , Humanos , Intrones/genética , Poliadenilación/genética , Isoformas de Proteínas/genética , Precursores del ARN/genética , Sitios de Empalme de ARN/genética
12.
PLoS One ; 12(8): e0182331, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28783765

RESUMEN

The discovery of small-molecule regulators of microRNAs remains challenging, but a few have been reported. Herein, we describe small-molecule inhibitors of miR-31, a tumor-associated microRNA (miRNA), identified by high-throughput screening using a cell-based reporter assay. Aminosulfonylarylisoxazole compounds exhibited higher specificity for miR-31 than for six other miRNAs, i.e., miR-15a, miR-16, miR-21, miR-92a-1, miR-146a, and miR-155, and increased the expression of miR-31 target genes. The down-regulation of mature miR-31 was observed, while its precursor form increased following treatment with the compounds. Thus, the compounds may target the processing of pre-miR-31 into mature miR-31 and thereby inhibit the production of mature miR-31.


Asunto(s)
Isoxazoles/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Materiales Biomiméticos/farmacología , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Isoxazoles/antagonistas & inhibidores , Células MCF-7 , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
13.
Org Biomol Chem ; 14(43): 10208-10216, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27731469

RESUMEN

The protein Lin28 and microRNA let-7 play critical roles in mammalian development and human disease. Lin28 inhibits let-7 biogenesis through direct interaction with let-7 precursors (pre-let-7). Accumulating evidence in vitro and in vivo suggests this interaction plays a dominant role in embryonic stem cell self-renewal and tumorigenesis. Thus the Lin28-let-7 interaction might be an attractive drug target, if not for the well-known difficulties in targeting protein-RNA interactions with drugs. The identification and development of suitable probe molecules to further elucidate therapeutic potential, as well as mechanistic details of this pathway will be valuable. We report the development and application of a biophysical high-throughput screening assay for the identification of small molecule inhibitors of the Lin28-pre-let-7 interaction. A library of pharmacologically active small molecules was screened and several small molecule inhibitors were identified and biochemically validated. Of these four validated inhibitors, two compounds successfully restored processing of pre-let-7g in the presence of Lin28, validating the concept. Thus, we have identified examples of small molecule inhibitors of the interaction between Lin28 and pre-let-7. This study provides a proof of concept for small molecule inhibitors that antagonise the effects of Lin28 and enhance processing of let-7 miRNA.


Asunto(s)
MicroARNs/metabolismo , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Secuencia de Bases , Evaluación Preclínica de Medicamentos , Polarización de Fluorescencia , MicroARNs/genética , Precursores del ARN/genética
14.
BMC Plant Biol ; 16: 97, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27098368

RESUMEN

BACKGROUND: Microspore embryogenesis describes a stress-induced reprogramming of immature male plant gametophytes to develop into embryo-like structures, which can be regenerated into doubled haploid plants after whole genome reduplication. This mechanism is of high interest for both research as well as plant breeding. The objective of this study was to characterize transcriptional changes and regulatory relationships in early stages of cold stress-induced wheat microspore embryogenesis by transcriptome and small RNA sequencing using a highly responsive cultivar. RESULTS: Transcriptome and small RNA sequencing was performed in a staged time-course to analyze wheat microspore embryogenesis induction. The analyzed stages were freshly harvested, untreated uninucleate microspores and the two following stages from in vitro anther culture: directly after induction by cold-stress treatment and microspores undergoing the first nuclear divisions. A de novo transcriptome assembly resulted in 29,388 contigs distributing to 20,224 putative transcripts of which 9,305 are not covered by public wheat cDNAs. Differentially expressed transcripts and small RNAs were identified for the stage transitions highlighting various processes as well as specific genes to be involved in microspore embryogenesis induction. CONCLUSION: This study establishes a comprehensive functional genomics resource for wheat microspore embryogenesis induction and initial understanding of molecular mechanisms involved. A large set of putative transcripts presumably specific for microspore embryogenesis induction as well as contributing processes and specific genes were identified. The results allow for a first insight in regulatory roles of small RNAs in the reprogramming of microspores towards an embryogenic cell fate.


Asunto(s)
Polen/genética , ARN Pequeño no Traducido/genética , Transcriptoma , Triticum/genética , Análisis por Conglomerados , Frío , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , MicroARNs/genética , Proteínas de Plantas/genética , Polen/embriología , Precursores del ARN/genética , ARN de Planta/genética , Análisis de Secuencia de ARN/métodos , Triticum/embriología
15.
RNA Biol ; 12(3): 268-75, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826660

RESUMEN

In plants, Potato spindle tuber viroid (PSTVd) replication triggers post-transcriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM) of homologous RNA and DNA sequences, respectively. PTGS predominantly occurs in the cytoplasm, but nuclear PTGS has been also reported. In this study, we investigated whether the nuclear replicating PSTVd is able to trigger nuclear PTGS. Transgenic tobacco plants carrying cytoplasmic and nuclear PTGS sensor constructs were PSTVd-infected resulting in the generation of abundant PSTVd-derived small interfering RNAs (vd-siRNAs). Northern blot analysis revealed that, in contrast to the cytoplasmic sensor, the nuclear sensor transcript was not targeted for RNA degradation. Bisulfite sequencing analysis showed that the nuclear PTGS sensor transgene was efficiently targeted for RdDM. Our data suggest that PSTVd fails to trigger nuclear PTGS, and that RdDM and nuclear PTGS are not necessarily coupled.


Asunto(s)
Nicotiana/virología , Células Vegetales/virología , Edición de ARN , Precursores del ARN/metabolismo , ARN Interferente Pequeño/biosíntesis , ARN Viral/metabolismo , Secuencia de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/virología , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/virología , Metilación de ADN , Intrones , Datos de Secuencia Molecular , Tubérculos de la Planta/virología , Plantas Modificadas Genéticamente/virología , Precursores del ARN/genética , ARN Interferente Pequeño/genética , ARN Viral/genética , Solanum tuberosum/virología , Viroides/genética , Viroides/metabolismo , Replicación Viral/genética
16.
J Integr Plant Biol ; 57(3): 256-70, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25040236

RESUMEN

Increasing evidence suggests that long non-coding RNAs (lncRNAs) play significant roles in plants. However, little is known about lncRNAs in Panax ginseng C. A. Meyer, an economically significant medicinal plant species. A total of 3,688 mRNA-like non-coding RNAs (mlncRNAs), a class of lncRNAs, were identified in P. ginseng. Approximately 40% of the identified mlncRNAs were processed into small RNAs, implying their regulatory roles via small RNA-mediated mechanisms. Eleven miRNA-generating mlncRNAs also produced siRNAs, suggesting the coordinated production of miRNAs and siRNAs in P. ginseng. The mlncRNA-derived small RNAs might be 21-, 22-, or 24-nt phased and could be generated from both or only one strand of mlncRNAs, or from super long hairpin structures. A full-length mlncRNA, termed MAR (multiple-function-associated mlncRNA), was cloned. It generated the most abundant siRNAs. The MAR siRNAs were predominantly 24-nt and some of them were distributed in a phased pattern. A total of 228 targets were predicted for 71 MAR siRNAs. Degradome sequencing validated 68 predicted targets involved in diverse metabolic pathways, suggesting the significance of MAR in P. ginseng. Consistently, MAR was detected in all tissues analyzed and responded to methyl jasmonate (MeJA) treatment. It sheds light on the function of mlncRNAs in plants.


Asunto(s)
Panax/genética , ARN de Planta/genética , ARN no Traducido/genética , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/química , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN no Traducido/química , ARN no Traducido/metabolismo , Reproducibilidad de los Resultados
17.
J Biol Chem ; 289(50): 34683-98, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25281741

RESUMEN

Eukaryotic pre-mRNA splicing is an essential step in gene expression for all genes that contain introns. In contrast to transcription and translation, few well characterized chemical inhibitors are available with which to dissect the splicing process, particularly in cells. Therefore, the identification of specific small molecules that either inhibit or modify pre-mRNA splicing would be valuable for research and potentially also for therapeutic applications. We have screened a highly curated library of 71,504 drug-like small molecules using a high throughput in vitro splicing assay. This identified 10 new compounds that both inhibit pre-mRNA splicing in vitro and modify splicing of endogenous pre-mRNA in cells. One of these splicing modulators, DDD00107587 (termed "madrasin," i.e. 2-((7methoxy-4-methylquinazolin-2-yl)amino)-5,6-dimethylpyrimidin-4(3H)-one RNAsplicing inhibitor), was studied in more detail. Madrasin interferes with the early stages of spliceosome assembly and stalls spliceosome assembly at the A complex. Madrasin is cytotoxic at higher concentrations, although at lower concentrations it induces cell cycle arrest, promotes a specific reorganization of subnuclear protein localization, and modulates splicing of multiple pre-mRNAs in both HeLa and HEK293 cells.


Asunto(s)
Precursores del ARN/genética , Empalme del ARN/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Evaluación Preclínica de Medicamentos , Células HEK293 , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Quinazolinas/química , Quinazolinas/farmacología , ARN Mensajero/genética , Bibliotecas de Moléculas Pequeñas/química
18.
Biochem Biophys Res Commun ; 446(1): 119-24, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24569078

RESUMEN

Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A)(+) RNAs comprising mRNAs and poly (A)(+) non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A)(+) RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing.


Asunto(s)
Empalme Alternativo , Estructuras del Núcleo Celular/efectos de los fármacos , Estructuras del Núcleo Celular/metabolismo , Precursores del ARN/metabolismo , Actinobacteria/química , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Estructuras del Núcleo Celular/genética , Evaluación Preclínica de Medicamentos , Exones , Células HeLa , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Etiquetado in Situ Primed , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Precursores del ARN/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina , Tubercidina/aislamiento & purificación , Tubercidina/farmacología
19.
Mol Cell Biol ; 34(1): 123-31, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24190965

RESUMEN

La antigen (Sjögren's syndrome antigen B) is a phosphoprotein associated with nascent precursor tRNAs and other RNAs, and it is targeted by autoantibodies in patients with Sjögren's syndrome, systemic lupus erythematosus, and neonatal lupus. Increased levels of La are associated with leukemias and other cancers, and various viruses usurp La to promote their replication. Yeast cells (Saccharomyces cerevisiae and Schizosaccharomyces pombe) genetically depleted of La grow and proliferate, whereas deletion from mice causes early embryonic lethality, raising the question of whether La is required by mammalian cells generally or only to surpass a developmental stage. We developed a conditional La allele and used it in mice that express Cre recombinase in either B cell progenitors or the forebrain. B cell Mb1(Cre) La-deleted mice produce no B cells. Consistent with αCamKII Cre, which induces deletion in hippocampal CA1 cells in the third postnatal week and later throughout the neocortex, brains develop normally in La-deleted mice until ∼5 weeks and then lose a large amount of forebrain cells and mass, with evidence of altered pre-tRNA processing. The data indicate that La is required not only in proliferating cells but also in nondividing postmitotic cells. Thus, La is essential in different cell types and required for normal development of various tissue types.


Asunto(s)
Autoantígenos/inmunología , Linfocitos B/inmunología , Lóbulo Frontal/inmunología , Neuronas/inmunología , Ribonucleoproteínas/inmunología , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Linfocitos B/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/inmunología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Hipocampo/inmunología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas/metabolismo , ARN/genética , ARN/inmunología , ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/inmunología , Precursores del ARN/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/inmunología , ARN de Transferencia/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Síndrome de Sjögren/genética , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/metabolismo , Factores de Tiempo , Antígeno SS-B
20.
Postepy Hig Med Dosw (Online) ; 66: 683-95, 2012 Sep 18.
Artículo en Polaco | MEDLINE | ID: mdl-23001210

RESUMEN

The primary transcript of an eukaryotic gene (pre-mRNA) is composed of coding regions--exons intervened by non-coding introns--which are removed in the RNA splicing process, leading to the formation of mature, intron-free mRNA. Alternative splicing of pre-mRNA is responsible for high complexity of the cellular proteome and expresses effective use of genetic information contained in genomic DNA. Alternative splicing plays important roles in the organism, including apoptosis regulation or development and plasticity of the nervous system. The main role of alternative splicing is differential, dependent on conditions and the cell type, splicing of mRNA, generating diverse transcripts from one gene, and, after the translation, different isoforms of a particular protein. Because of the high complexity of this mechanism, alternative splicing is particularly prone to errors. The perturbations resulting from mutations in the key sequences for splicing regulations are especially harmful. The pathogenesis of numerous diseases results from disturbed alternative RNA splicing, and those include cancers and neurodegenerative disorders. The treatment of these conditions is problematic due to their genetic background and currently RNA interference, which is a common mechanism of eukaryotic gene regulation, is being studied. Initial successes in the attempts of silencing the expression of faulty protein isoforms support the idea of using RNA interference in targeting disease related to disturbances in alternative splicing of RNA.


Asunto(s)
Terapia Genética/métodos , Neoplasias/genética , Neoplasias/terapia , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Interferencia de ARN , Precursores del ARN/genética , Empalme Alternativo/genética , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Intrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA