Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.773
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1683-1689, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621952

RESUMEN

The purpose of this study was to evaluate the economics of Annao Pills combined with antihypertensive drugs in the treatment of primary hypertension in the Chinese medical setting. TreeAge pro 2018 was used for cost-effect analysis and sensitivity analysis of the two treatment regimens. The intervention time of the simulation model was 2 weeks. The cost parameters were derived from Yaozhi.com, and the effect parameters were based on Meta-analysis of randomized controlled trial(RCT) involving Annao Pills. The experimental group was treated with Annao Pills combined with anti-hypertensive drugs(nifedipine controlled-release tablets + losartan potassium tablets), and the control group was treated with anti-hypertensive drugs(nifedipine controlled-release tablets + losartan potassium tablets). The basic analysis showed that the incremental cost-effect ratio(ICER) of the two groups was 2 678.67 yuan, which was less than 7.26% of the per capita disposable income in 2022. That is, compared with anti-hypertensive drugs alone, Annao Pills combined with antihypertensive drugs cost 2 678.67 yuan more for each additional patient with primary hypertension. The results of sensitivity analysis verified the robustness of the basic analysis results. The probability sensitivity results showed that when the patient's personal willingness to pay the price was higher than 2 650 yuan, the probability of the regimen in the experimental group was higher, which was consistent with the results of the basic analysis. In conclusion, when the price was higher than 2 650 yuan, Annao Pills combined with anti-hypertensive drugs was more economical than anti-hypertensive drugs alone in terms of improving the response rate of the patients with primary hypertension.


Asunto(s)
Antihipertensivos , Nifedipino , Humanos , Antihipertensivos/uso terapéutico , Análisis Costo-Beneficio , Árboles de Decisión , Preparaciones de Acción Retardada , Hipertensión Esencial , Losartán/uso terapéutico
2.
Int J Pharm ; 656: 124096, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583821

RESUMEN

Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease that seriously threatens human life and health. Our previous study demonstrated the unique superiority of traditional Chinese medicine cryptotanshinone (CTS) combined with sustained pulmonary drug delivery for treating PF. In this study, we aimed to enhance the selectivity, targeting efficiency and sustained-release capability based on this delivery system. To this end, we developed and evaluated CTS-loaded modified liposomes-chitosan (CS) microspheres SM(CT-lipo) and liposome-exosome hybrid bionic vesicles-CS microspheres SM(LE). The prepared nano-in-micro particles system integrates the advantages of the carriers and complements each other. SM(CT-lipo) and SM(LE) achieved lung myofibroblast-specific targeting through CREKA peptide binding specifically to fibronectin (FN) and the homing effect of exosomes on parent cells, respectively, facilitating efficient delivery of anti-fibrosis drugs to lung lesions. Furthermore, compared with daily administration of conventional microspheres SM(NC) and positive control drug pirfenidone (PFD), inhaled administration of SM(CT-lipo) and SM(LE) every two days still attained similar efficacy, exhibiting excellent sustained drug release ability. In summary, our findings suggest that the developed SM(CT-lipo) and SM(LE) delivery strategies could achieve more accurate, efficient and safe therapy, providing novel insights into the treatment of chronic PF.


Asunto(s)
Quitosano , Exosomas , Fibronectinas , Liposomas , Fibrosis Pulmonar , Piridonas , Animales , Fibronectinas/administración & dosificación , Fibrosis Pulmonar/tratamiento farmacológico , Exosomas/química , Quitosano/química , Quitosano/administración & dosificación , Administración por Inhalación , Microesferas , Liberación de Fármacos , Masculino , Preparaciones de Acción Retardada , Fenantrenos/administración & dosificación , Fenantrenos/química , Fenantrenos/farmacocinética , Ratones , Sistemas de Liberación de Medicamentos/métodos , Humanos , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Ratas Sprague-Dawley , Antifibróticos/administración & dosificación , Antifibróticos/química
3.
Int J Biol Macromol ; 265(Pt 1): 130948, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503374

RESUMEN

A D-optimal design was employed to optimize the microencapsulation (MEC) of basil essential oil (BEO) within a biopolymer matrix using the complex coacervation technique. BEO microcapsules (BEO-MCs) obtained under the optimal conditions exhibited high yield and efficiency with 80.45 ± 0.01 % and 93.10 ± 0.18 %, respectively. The successful MEC of BEO with an average particle size of 4.81 ± 2.86 µm was confirmed by ATR-FTIR, X-RD, and SEM analyses. Furthermore, the thermal stability of BEO-MCs was assessed using TGA-DSC analysis, which provided valuable insights into the MC's thermal stability. Furthermore, the proposed model, with a high R2 value (0.99) and low RMSE (1.56 %), was the most suitable one among the tested models for the controlled release kinetics of the optimal BEO-MCs under simulated gastrointestinal conditions. The successful optimization of BEO MEC using biopolymers through the D-optimal design could be a promising avenue for food and pharmaceutical industries, providing new strategies for the development of effective products.


Asunto(s)
Ocimum basilicum , Aceites Volátiles , Pectinas , Caseínas , Preparaciones de Acción Retardada
4.
J Colloid Interface Sci ; 665: 389-398, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537587

RESUMEN

Photothermal therapy (PTT) has attracted much attention due to its less invasive, controllable and highly effective nature. However, PTT also suffers from intrinsic cancer resistance mediated by cell survival pathways. These survival pathways are regulated by a variety of proteins, among which heat shock protein (HSP) triggers thermotolerance and protects tumor cells from hyperthermia-induced apoptosis. Confronted by this challenge, we propose and validate here a novel MXene-based HSP-inhibited mild photothermal platform, which significantly enhances the sensitivity of tumor cells to heat-induced stress and thus improves the PPT efficacy. The Ti3C2@Qu nanocomposites are constructed by utilizing the high photothermal conversion ability of Ti3C2 nanosheets in combination with quercetin (Qu) as an inhibitor of HSP70. Qu molecules are loaded onto the nanoplatform in a pH-sensitive controlled release manner. The acidic environment of the tumor causes the burst-release of Qu molecules, which deplete the level of heat shock protein 70 (HSP70) in tumor cells and leave the tumor cells out from the protection of the heat-resistant survival pathway in advance, thus sensitizing the hyperthermia efficacy. The nanostructure, photothermal properties, pH-responsive controlled release, synergistic photothermal ablation of tumor cells in vitro and in vivo, and hyperthermia effect on subcellular structures of the Ti3C2@Qu nanocomposites were systematically investigated.


Asunto(s)
Hipertermia Inducida , Nanocompuestos , Nanopartículas , Neoplasias , Nitritos , Elementos de Transición , Humanos , Preparaciones de Acción Retardada , Titanio/farmacología , Fototerapia , Neoplasias/terapia , Línea Celular Tumoral , Nanopartículas/química
5.
Int J Biol Macromol ; 264(Pt 2): 130729, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460643

RESUMEN

Astrocyte elevated gene-1 (AEG-1) oncogene is a notorious and evolving target in a variety of human malignancies including osteosarcoma. The RNA interference (RNAi) has been clinically proven to effectively knock down specific genes. To successfully implement RNAi in vivo, protective vectors are required not only to protect unstable siRNAs from degradation, but also to deliver siRNAs to target cells with controlled release. Here, we synthesized a Zein-poly(l-lysine) dendrons non-viral modular system that enables efficient siRNA-targeted AEG-1 gene silencing in osteosarcoma and encapsulation of antitumor drugs for controlled release. The rational design of the ZDP integrates the non-ionic and low immunogenicity of Zein and the positive charge of the poly(l-lysine) dendrons (DPLL) to encapsulate siRNA and doxorubicin (DOX) payloads via electrostatic complexes and achieve pH-controlled release in a lysosomal acidic microenvironment. Nanocomplexes-directed delivery greatly improves siRNA stability, uptake, and AEG-1 sequence-specific knockdown in 143B cells, with transfection efficiencies comparable to those of commercial lipofectamine but with lower cytotoxicity. This AEG-1-focused RNAi therapy supplemented with chemotherapy inhibited, and was effective in inhibiting the growth in of osteosarcoma xenografts mouse models. The combination therapy is an alternative or combinatorial strategy that can produce durable inhibitory responses in osteosarcoma patients.


Asunto(s)
Neoplasias Óseas , Dendrímeros , Nanopartículas , Osteosarcoma , Zeína , Animales , Ratones , Humanos , Polilisina , Azidas , Preparaciones de Acción Retardada , Alquinos , Doxorrubicina/farmacología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , ARN Interferente Pequeño/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Línea Celular Tumoral , Microambiente Tumoral
6.
ACS Appl Mater Interfaces ; 16(12): 15143-15155, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38481099

RESUMEN

Realizing controllable input of botanical pesticides is conducive to improving pesticide utilization, reducing pesticide residues, and avoiding environmental pollution but is extremely challenging. Herein, we constructed a smart pesticide-controlled release platform (namely, SCRP) for enhanced treatment of tobacco black shank based on encapsulating honokiol (HON) with mesoporous hollow structured silica nanospheres covered with pectin and chitosan oligosaccharide (COS). The SCRP has a loading capacity of 12.64% for HON and could effectively protect HON from photolysis. Owing to the pH- and pectinase-sensitive property of the pectin, the SCRP could smartly release HON in response to a low pH or a rich pectinase environment in the black shank-affected area. Consequently, the SCRP effectively inhibits the infection of P. nicotianae on tobacco with a controlled rate for tobacco black shank of up to 87.50%, which is mainly due to the SCRP's capability in accumulating ROS, changing cell membrane permeability, and affecting energy metabolism. In addition, SCRP is biocompatible, and the COS layer enables SCRP to show a significant growth-promoting effect on tobacco. These results indicate that the development of a stimuli-responsive controlled pesticide release system for plant disease control is of great potential and value for practical agriculture production.


Asunto(s)
Plaguicidas , Plaguicidas/farmacología , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/química , Poligalacturonasa , Agricultura , Pectinas
7.
Food Chem ; 446: 138814, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402771

RESUMEN

In this study, extrusion method was employed to fabricate alginate-zein core-shell microcapsules loaded with buckwheat honey by dropping alginate and buckwheat honey mixture solution into a 70.0 % zein ethanol solution(v/v) containing 5.0 % CaCl2 solution (wt%). The microcapsules were constructed by two parts: 1) the formation of hydrophilic beads through the crosslinking of alginate chains with Ca2+; 2) the introduction of alginate beads into the aqueous zein ethanol solution which decreased the ethanol concentration, prompting the precipitation of zein and the deposition of zein nanoparticles onto the surfaces of alginate beads. Comparing with the alginate beads, the prepared microcapsules not only possessed better water-holding capacity, but also achieved controlled release of buckwheat honey. Importantly, the microcapsules significantly retained the antioxidant activity of the buckwheat honey. Therefore, this innovative method for fabricating alginate-zein core-shell microcapsules can suggest a promising approach to broaden the application of buckwheat honey in the food field.


Asunto(s)
Fagopyrum , Miel , Zeína , Cápsulas , Alginatos , Preparaciones de Acción Retardada , Agua , Etanol
8.
Int J Pharm ; 653: 123888, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38342325

RESUMEN

The goal of this work was to examine the heat-sensitizing effects of Janus-coated magnetic nanoparticles (JMNPs) as a vehicle for 5-fluorouracil (5-Fu) and Quercetin (Qu) in C6 and OLN-93 cell lines. The cellular uptake of nanoparticles was evaluated using Prussian blue staining and ICP-OES after monolayer culturing of C6 (rat brain cancer cell) and OLN-93 (normal rat brain cell) cells. The cells were treated with free 5-Fu, Qu, and MJNPs loaded with Qu/5-Fu for 24 h, followed by magnetic hyperthermia under an alternating magnetic field (AMF) at a temperature of 43 °C. Using the MTT test and Flow cytometry, the C6 and OLN-93 cells were investigated after being subjected to hyperthermia with and without magnetic nanoparticles. The results of Prussian blue staining confirmed the potential of MJNPs as carriers that facilitate the uptake of drugs by cancer cells. The results showed that the combined application of Qu/5-Fu/MJNPs with hyperthermia significantly increased the amount of ROS production compared to interventions without MJNPs. The therapeutic results demonstrated that the combination of Qu/5-Fu/MJNPs with hyperthermia considerably enhanced the rate of apoptotic and necrotic cell death compared to that of interventions without MJNPs. Furthermore, MTT findings indicated that controlled exposure of Qu/5-Fu/MJNPs to AMF caused a synergistic effect. The advanced Janus magnetic nanoparticles in this study can be proposed as a promising dual drug carrier (Qu/5-Fu) and thermosensitizer platform for dual-modal synergistic cancer therapy.


Asunto(s)
Ferrocianuros , Hipertermia Inducida , Nanopartículas , Polietilenglicoles , Polietileneimina , Ratas , Animales , Nanogeles , Preparaciones de Acción Retardada , Hipertermia Inducida/métodos , Fluorouracilo , Línea Celular Tumoral , Quercetina/farmacología
9.
Int J Biol Macromol ; 262(Pt 2): 130172, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360230

RESUMEN

Plant essential oils possess broad-spectral antimicrobial property, but the applications are impeded by their insolubility in water, extreme volatility, and strong irritation. Nanoparticle-stabilized emulsion (Pickering emulsion) gels are colloidal systems with ability to accommodate two immiscible phases in one system. The thick adsorption nanoparticle layers and the cross-linked networks in continuous phase could provide protective barriers for antibacterial oil and achieve on-demand controlled release. An emulsion hydrogel templated from gelatin nanoparticle-stabilized emulsion is one-pot constructed by conducting a tunable cross-linking process between oxidized dextran (Odex) and amikacin in the continuous phase and concomitantly trapping tea tree essential oil (TO) droplets in the three-dimensional network. The resulted emulsion hydrogel presents tunable gelation time, adequate mechanical strength, fascinating injectability, and self-healing capability. It is pH-responsiveness and presents controlled release of amikacin and TO, exhibiting a long-term bacteriostasis of 144 h. The emulsion hydrogel facilitates the outstanding wound healing efficiency in 14 days (95.2 ± 0.8 % of wound closure), accompanied with enhanced collagen deposition and angiogenic activities. The incorporation of TO into emulsion hydrogel system reduced its irritation and improved its biosafety, showing potential application in bacteria inhibition even as implants in vivo.


Asunto(s)
Amicacina , Nanopartículas , Amicacina/farmacología , Gelatina , Dextranos , Hidrogeles , Emulsiones , Preparaciones de Acción Retardada/farmacología , Liberación de Fármacos , Antibacterianos/farmacología , Cicatrización de Heridas
10.
Biomater Sci ; 12(7): 1771-1787, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38385306

RESUMEN

In the development of cancer vaccines, antigens are delivered to elicit potent and specific T-cell responses to eradicate tumour cells. Nonetheless, successful vaccines are often hampered by the poor immunogenicity of tumour antigens, rapid clearance by the innate immunity, and limited cross-presentation on MHC-I to activate CD8+ T-cells arm. To address these issues, we developed dextran-based nanogels to promote antigen uptake, storage, and cross-presentation on MHC-I, while directing immunogenic maturation of the antigen-presenting cells (APCs). To promote the nanocarriers interaction with cells, we modified DX with L-arginine (Arg), whose immunomodulatory activities have been well documented. The ArgDX nanogel performance was compared with the nanogel modified with L-histidine (His) and L-glutamate (Glut). Moreover, we introduced pH-sensitive hydrazone crosslinking during the nanogel formation for the conjugation and controlled release of antigen ovalbumin (OVA). The OVA-laden nanogels have an average size of 325 nm. We demonstrated that the nanogels could rapidly release cargoes upon a pH change from 7 to 5 within 8 days, indicating the controlled release of antigens in the acidic cellular compartments upon internalization. Our results revealed that the ArgDX nanogel could promote greater antigen uptake and storage in DCs in vitro and promoted a stronger immunogenic maturation of DCs and M1 polarization of the macrophages. The OVA signals were co-localized with lysosomal compartments up till 96 hours post-treatment and washing, suggesting the nanogels could facilitate prolonged antigen storage and supply from endo-lysosomal compartments. Furthermore, all the tested nanogel formulations retained antigens at the skin injection sites until day 21. Such delayed clearance could be due to the formation of micron-sized aggregates of OVA-laden nanogels, extending the interactions with the resident DCs. Amongst the amino acid modifications, ArgDX nanogels promoted the highest level of lymph node homing signal CCR7 on DCs. The nanogels also showed higher antigen presentation on both MHC-I and II than DX in vitro. In the in vivo immune studies, ArgDX nanogels were more superior in inducing cellular and humoral immunity than the other treatment groups on day 21 post-treatment. These results suggested that ArgDX nanogel is a promising self-adjuvanted nanocarrier for vaccine delivery.


Asunto(s)
Vacunas contra el Cáncer , Inmunidad Humoral , Polietilenglicoles , Polietileneimina , Animales , Ratones , Nanogeles , Dextranos , Linfocitos T CD8-positivos , Preparaciones de Acción Retardada , Células Dendríticas , Antígenos , Adyuvantes Inmunológicos/farmacología , Ovalbúmina/química , Ratones Endogámicos C57BL
11.
Medicine (Baltimore) ; 103(4): e36997, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277537

RESUMEN

RATIONALE: Previous studies have shown that acetaminophen has the potential to induce hepatotoxicity in patients, rendering it a prominent drug implicated in the development of acute hepatic failure. However, there is currently no available literature reporting the impact of ibuprofen-sustained release capsules on liver failure. PATIENT CONCERNS: A 65-year-old man was presented with a 4-day history of tea-colored urine with oil avoidance, jaundiced skin, and anorexia, and impaired liver function. One ibuprofen-sustained release capsule was taken on the day before the onset of the disease due to "headache." DIAGNOSES: A diagnosis of this patient was made of liver failure due to taking ibuprofen-sustained release capsules. INTERVENTIONS: Initially, the patient discontinued the use of hepatotoxic drugs in order to prevent further exposure. Subsequently, the patient underwent a standard therapeutic regimen, which encompassed the administration of hepatoprotective agents, nutritional support drugs, correction of acid-base imbalances, and electrolyte abnormalities, as well as other relevant treatments. OUTCOMES: After 9 days of hepatoprotective and nutritional supplement therapy, the patient saw notable improvement in symptoms, reporting an absence of discomfort, subsided skin jaundice, clear urine, and liver function tests returning to a near normal range. The patient was granted permission to be discharged from the hospital while being prescribed drugs. After 2 weeks of follow-up, the patient reported an absence of discomfort and exhibited normal results in the liver function test. CONCLUSIONS: Liver failure caused by ibuprofen-sustained release capsules has not been reported. It is worth noting that conventional treatments such as suspending offending agents, and administration of hepatoprotective agents and nutritional support drugs have proven to be successful. LESSON: There is currently no known peer-reviewed literature indicating that the administration of ibuprofen-sustained release capsules leads to liver failure. When patients taking ibuprofen-sustained release capsules encounter symptoms such as anorexia, skin jaundice, lack of appetite, and nausea, it is recommended that they undertake a cardiac and liver function tests. In the event that ibuprofen-sustained release capsules induce liver injury, it is imperative to administer timely and immediate medical intervention.


Asunto(s)
Ictericia , Fallo Hepático , Masculino , Humanos , Anciano , Ibuprofeno/efectos adversos , Preparaciones de Acción Retardada/efectos adversos , Anorexia , Cápsulas , Fallo Hepático/inducido químicamente
12.
Int J Biol Macromol ; 254(Pt 1): 127758, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287596

RESUMEN

This study has explored the potential of plant-derived oil bodies (OBs)-based oleogels as novel drug delivery systems for in vitro release under simulated physiological conditions. To obtain stable OBs-based oleogels, gum arabic (GA) and chitosan (CH) were coated onto the curcumin-loaded OBs using an electrostatic deposition technique, followed by 2,3,4-trihydroxybenzaldehyde (TB) induced Schiff-base cross-linking. Microstructural analyses indicated successful encapsulation of curcumin into the hydrophobic domain of the OBs through a pH-driven method combined with ultrasound treatment. The curcumin encapsulation efficiency of OBs increased up to 83.65 % and 92.18 % when GA and GA-CH coatings were applied, respectively, compared to uncoated OBs (63.47 %). In addition, GA-CH coatings retained the structural integrity of oleogel droplets with superior oil-holding capacity (99.07 %), while TB addition induced interconnected 3D-network structures with excellent gel strength (≥4.8 × 105 Pa) and thermal stability (≥80 °C). GA-CH coated oleogels appeared to provide the best protection for loaded bioactive against UV irradiation and high temperature-induced degradation during long-term storage. The combination of biopolymer coatings and TB-induced Schiff-base cross-linking synergistically hindered the simulated gastric degradability of oleogels, releasing only 23.35 %, 12.46 % and 7.19 % of curcumin by GA, GA-CH and GA-CH-TB stabilized oleogels, respectively, while also resulting in sustained release effects during intestinal conditions.


Asunto(s)
Quitosano , Curcumina , Goma Arábiga/química , Curcumina/química , Quitosano/química , Preparaciones de Acción Retardada , Gotas Lipídicas , Aceites de Plantas , Compuestos Orgánicos
13.
Adv Sci (Weinh) ; 11(12): e2305682, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225752

RESUMEN

There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.


Asunto(s)
Gelatina , Pérdida Auditiva Provocada por Ruido , Metacrilatos , Ratones , Animales , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/prevención & control , Niacinamida/uso terapéutico , NAD , Preparaciones de Acción Retardada/uso terapéutico , Porosidad , Microtomografía por Rayos X
14.
Int J Pharm ; 649: 123618, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37977290

RESUMEN

Cellulose acetate phthalate (CAP)/polyvinyl alcohol (PVA)/polyurethane (PU) nanofibers were synthesized by simple and coaxial electrospinning (ES) processes. Doxorubicin (DOX) and the CoFe2O4 nanoparticles were loaded into the nanofibers. The performance of the prepared nanofibers was investigated for the sustained release of DOX against A541 lung cancer cells under chemotherapy/external magnetic field (EMF) and alternating magnetic field (AMF, hyperthermia treatment) combined methods in both the in vitro and in vivo conditions. The sustained release of DOX from core-shell nanofibers containing 5 wt% cobalt ferrite was obtained within 300, 600 h, at pH of 5.5 and 7.4 without AMF and 168, 360 h, under an alternating magnetic field (AMF). More than 98.3 ± 0.2 % of A549 cancer cells were killed in the presence of core-shell nanofibers containing 100 µg DOX and 5 % cobalt ferrite nanoparticles in the presence of AMF. The flowcytometric results indicated that only 19.1 and 8.85 % cancer cells remained alive under EMF and AMF, respectively. The in vivo results revealed in stopping the growth of tumor volume and decrease in the relative tumor volume up to 0.5 were obtained using magnetic core-shell nanofibers containing 100 µg DOX and 5 % cobalt ferrite nanoparticles in the presence of EMF and AMF, respectively.


Asunto(s)
Hipertermia Inducida , Neoplasias Pulmonares , Nanofibras , Nanopartículas , Humanos , Preparaciones de Acción Retardada , Neoplasias Pulmonares/tratamiento farmacológico , Poliuretanos , Alcohol Polivinílico , Línea Celular Tumoral , Doxorrubicina
15.
Food Chem ; 439: 138094, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061299

RESUMEN

The antioxidant poly (lactic acid) bilayer active films with a different distribution of α-tocopherol (TOC) in two layers (outer layer/inner layer: 0%/6%, 2%/4%, 3%/3%, 4%/2%, 6%/0%) were developed. The effects of TOC distribution on the structural, physicochemical, mechanical, antioxidant and release properties of the films and their application in corn oil packaging were investigated. The different distributions of TOC showed insignificant effects on the color, transparency, tensile strength and oxygen and water vapor barrier properties of the films, but it affected the release behavior of TOC from the films into 95% ethanol and the oxidation degree of corn oil. The film with higher TOC in outer layer showed a slower release rate. The corn oil packaged by the film containing 4% TOC in outer layer and 2% TOC in inner layer exhibited the best oxidative stability. This concept showed a great potential to develop controlled-release active films for food packaging.


Asunto(s)
Antioxidantes , alfa-Tocoferol , Antioxidantes/química , alfa-Tocoferol/química , Aceite de Maíz , Preparaciones de Acción Retardada , Ácido Láctico , Embalaje de Alimentos
16.
Int J Biol Macromol ; 256(Pt 2): 128501, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040148

RESUMEN

Nano-carriers are well-known delivery systems to encapsulate different bioactive compounds and extracts. Such nano-systems are used in various food and drug areas to protect active ingredients, increase bioavailability, control the release, and deliver bioactive substances. This study aimed to design and fabricate a stable colloidal nano-delivery system to better preserve the antioxidant properties of pomegranate peel extract (PPE) and protect its sustained release in a gastrointestinal model. To achieve this goal, a nano-phytosomal system was fabricated with plant-based, cost-effective, and food-grade compounds, i.e., phosphatidylcholine (PC) and gamma-oryzanol (GO) for encapsulation of PPE. To fabricate the nano-phytosomes, thin film hydration/sonication method was used. The parameters of particle size, zeta potential, polydispersity index (PDI), loading capacity (LC), and encapsulation efficiency (EE) were investigated to evaluate the efficiency of the produced nano-system. In summary, the size, zeta potential, PDI, LC, and EE of homogenous spherical PC-GO-PPE nano-phytosomes (NPs) in the ratio of 8:2:2 % w/w were achieved as 60.61 ± 0.81 nm, -32.24 ± 0.84 mV, 0.19 ± 0.01, 19.13 ± 0.30 %, and 95.66 ± 1.52 %, respectively. Also, the structure of NPs was approved by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The optimized NPs were stable during one month of storage at 4 °C, and changes in the size of particles and PPE retention rate were insignificant (p > 0.05). The nano-encapsulation of PPE significantly decreased the loss of its antioxidant activity during one month of storage at 4 °C. The optimized NPs exhibited prolonged and sustained release of PPE in a gastrointestinal model, so that after 2 h in simulated gastric fluid (SGF) and 4 h in simulated intestinal fluid (SIF), 22.66 ± 2.51 % and 69.33 ± 4.50 % of initially loaded PPE was released, respectively. Optimized NPs had considerable cytotoxicity against the Michigan Cancer Foundation-7 cell line (MCF7) (IC50 = 103 µg/ml), but not against Human Foreskin Fibroblast cell line (HFF-2) (IC50 = 453 µg/ml). In conclusion, spherical PC-GO-PPE NPs were identified as a promising delivery system to efficiently encapsulate PPE, as well as protect and preserve its bioactivity, including antioxidant and cytotoxicity against cancer cell line.


Asunto(s)
Neoplasias , Fenilpropionatos , Granada (Fruta) , Humanos , Granada (Fruta)/química , Antioxidantes/química , Polifenoles/farmacología , Polifenoles/metabolismo , Fitosomas , Fosfatidilcolinas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Preparaciones de Acción Retardada , Extractos Vegetales/química
17.
J Control Release ; 365: 29-42, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931807

RESUMEN

Myocardial infarction (MI) has become the primary cause of cardiovascular mortality, while the current treatment methods in clinical all have their shortcomings. Injectable biomaterials have emerged as a promising solution for cardiac tissue repair after MI. In this study, we designed a smart multifunctional carrier that could meet the treatment needs of different MI pathological processes by programmatically releasing different therapeutic substances. The carrier could respond to inflammatory microenvironment in the early stage of MI with rapid release of curcumin (Cur), and then sustained release recombinant humanized collagen type III (rhCol III) to treat MI. The rapid release of Cur reduced inflammation and apoptosis in the early stages, while the sustained release of rhCol III promoted angiogenesis and cardiac repair in the later stages. In vitro and in vivo results suggested that the multifunctional carrier could effectively improve cardiac function, promote the repair of infarcted tissue, and inhibit ventricular remodeling by reducing cell apoptosis and inflammation, and promoting angiogenesis in the different pathological processes of MI. Therefore, this programmed-release carrier provides a promising protocol for MI therapy.


Asunto(s)
Infarto del Miocardio , Humanos , Preparaciones de Acción Retardada/uso terapéutico , Infarto del Miocardio/terapia , Corazón , Remodelación Ventricular , Inflamación/tratamiento farmacológico
18.
Food Chem ; 435: 137534, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769562

RESUMEN

The insufficient water vapor barrier and mechanical capacity of sodium alginate (SA) film limited its application in fruit preservation. Herein, cellulose nanocrystals (CNCs) were used to stabilize Pickering emulsion. Then, we prepared SA composite films. Ginger essential oil (GEO) was loaded as antimicrobials and antioxidants. Finally, the application on mangos were investigated. Compared to coarse emulsion, Pickering emulsion and its film-formation-solution showed more stable system and larger droplet size. The emulsion significantly changed the properties of SA film. Specifically, CNCs improved the thermal, tensile, and barrier properties of the film and GEO enhanced the ultraviolet-visible light barrier capacity. Additionally, the SA/CNC film possessed a homogeneous micromorphology which had a sustained-release effect on GEO, thus maintaining high postharvest quality and long-term bioavailability for mangos. In conclusion, the film prepared via Pickering emulsion showed satisfactory properties which had great potential in fruit preservation.


Asunto(s)
Mangifera , Nanopartículas , Aceites Volátiles , Zingiber officinale , Emulsiones/química , Alginatos/química , Preparaciones de Acción Retardada , Frutas , Celulosa/química , Nanopartículas/química
19.
ACS Nano ; 18(1): 919-930, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38142426

RESUMEN

Long-term immobilization of joints can lead to disuse atrophy of the muscles in the joints. Oral nutrients are used clinically for rehabilitation and therapeutic purposes, but bioavailability and targeting are limited. Here, we report tea polyphenols (dietary polyphenols), sustained-release nanofilms that release tea polyphenols through slow local degradation of core-shell nanofibers in muscles. This dietary polyphenol does not require gastrointestinal consumption and multiple doses and can directly remove inflammatory factors and superoxide generated in muscle tissue during joint fixation. The quality of muscles is increased by 30%, and muscle movement function is effectively improved. Although nanofibers need to be implanted into muscles, they can improve bacterial infections after joint surgery. To investigate the biological mechanism of this core-shell nanomembrane prevention, we conducted further transcriptomic studies on muscle, confirming that in addition to achieving antioxidation and anti-inflammation by inhibiting TNF-α and NF-κB signaling pathways, tea polyphenol core-shell nanofibers can also promote muscle formation by activating the p-Akt signaling pathway.


Asunto(s)
Nanofibras , Humanos , Preparaciones de Acción Retardada , , Polifenoles/farmacología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/prevención & control
20.
Int J Biol Macromol ; 259(Pt 1): 128875, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154719

RESUMEN

The utilization of biocompatible drug delivery systems with extended drug release capabilities is highly advantageous in cancer therapy, as they can mitigate adverse effects. To establish such a biocompatible system with prolonged drug release behavior, researchers developed an innovative drug carrier. In this study, a sustainable approach was employed to synthesize a new zinc-based metal-organic framework (Zn-MOF) through the reaction between synthesized Schiff base ligands and zinc ions. Comprehensive analyses, including FT-IR, XRD, SEM, BET surface area, and TGA techniques, were employed to thoroughly characterize the frameworks. Following comprehensive characterization, curcumin (CUR) was loaded onto the Zn-MOF, resulting in CUR entrapment efficiency and loading capacity of 79.23 % and 26.11 %, respectively. In vitro evaluations of CUR release from CUR@MOF exhibited controlled release patterns, releasing 78.9 % and 50.0 % of CUR at pH 5.0 and pH 7.4, respectively. To mitigate initial burst release, a coating of the biopolymer sodium alginate (SA) was applied to CUR@Zn-MOF. In vitro CUR release tests indicated that SA/CUR@Zn-MOF outperformed pristine CUR@Zn-MOF. The release of CUR conformed to the Korsmeyer-Peppas model, displaying non-Fickian diffusion. Furthermore, an in vitro cytotoxicity study clearly demonstrated the potent anti-tumor activity of the synthesized CUR@Zn-MOF attributed to its controlled release of CUR. This led to the induction of apoptotic effects and cell death across HeLa, HEK293, and SH-SY5Y cell lines. These findings strongly suggest that the developed pH-sensitive carriers hold remarkable potential as targeted vehicles for drug delivery in cancer therapy.


Asunto(s)
Curcumina , Estructuras Metalorgánicas , Neuroblastoma , Humanos , Curcumina/química , Estructuras Metalorgánicas/química , Preparaciones de Acción Retardada , Alginatos , Células HEK293 , Espectroscopía Infrarroja por Transformada de Fourier , Neuroblastoma/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Zinc , Liberación de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA