Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Nat Prod ; 87(2): 340-348, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38354299

RESUMEN

Norlignans are a rare class of natural products isolated from a diverse range of plant species, many of which have interesting biological activities including antibacterial, antioxidant, phytotoxic, platelet aggregation inhibitory effects, and more. Isolated from Amomum villosum (Amomi Fructus), amovillosumins A (1) and C (3) are norlignans which were of interest to synthesize, due to their interesting bioactivities, specifically their ability to increase stimulation of glucagon-like peptide-1 (GLP-1) secretion. In this research, key intermediate 15 was used to stereoselectively synthesize (7R,8R)-amovillosumins A (1) and C (3). The developed method includes a Mitsunobu coupling, a modified rhodium-catalyzed Miyaura arylation, and an acid-catalyzed cyclization in key bond-forming steps. After synthesis, the structure of 1 was confirmed, but it was revealed that the benzodioxane-containing structure of amovillosumin C (3) that had been proposed in the literature was incorrect. Thus, with further investigation a structure correction of 3 was achieved by synthesis, the correct structure being 8-O-4'-oxynorlignan.


Asunto(s)
Productos Biológicos , Medicamentos Herbarios Chinos , Lignanos , Zingiberaceae , Productos Biológicos/análisis , Ciclización , Medicamentos Herbarios Chinos/química , Frutas/química , Lignanos/química , Estructura Molecular , Zingiberaceae/química
2.
J Chromatogr A ; 1706: 464243, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37567002

RESUMEN

To accurately identify the metabolites is crucial in a number of research fields, and discovery of new compounds from the natural products can benefit the development of new drugs. However, the preferable phytochemistry or liquid chromatography/mass spectrometry approach is time-/labor-extensive or receives unconvincing identifications. Herein, we presented a strategy, by integrating offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), exclusion list-containing high-definition data-dependent acquisition (HDDDA-EL), and quantitative structure-retention relationship (QSRR) prediction of the retention time (tR), to facilitate the in-depth and more reliable identification of herbal components and thus to discover new compounds more efficiently. Using the saponins in Panax quinquefolius flower (PQF) as a case, high orthogonality (0.79) in separating ginsenosides was enabled by configuring the XBridge Amide and CSH C18 columns. HDDDA-EL could improve the coverage in MS2 acquisition by 2.26 folds compared with HDDDA (2933 VS 1298). Utilizing 106 reference compounds, an accurate QSRR prediction model (R2 = 0.9985 for the training set and R2 = 0.88 for the validation set) was developed based on Gradient Boosting Machine (GBM), by which the predicted tR matching could significantly reduce the isomeric candidates identification for unknown ginsenosides. Isolation and establishment of the structures of two malonylginsenosides by NMR partially verified the practicability of the integral strategy. By these efforts, 421 ginsenosides were identified or tentatively characterized, and 284 thereof were not ever reported from the Panax species. The current strategy is thus powerful in the comprehensive metabolites characterization and rapid discovery of new compounds from the natural products.


Asunto(s)
Productos Biológicos , Ginsenósidos , Panax , Ginsenósidos/análisis , Panax/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Cromatografía Liquida , Flores/química , Productos Biológicos/análisis
3.
Molecules ; 28(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36985751

RESUMEN

Plant-based extracts possess biological potential due to their high content of phytochemicals. Nevertheless, photosynthetic pigments (e.g., chlorophylls) that are also present in plant extracts could produce undesirable pro-oxidant activity that might cause a negative impact on their eventual application. Herein, the phenolic content of olive leaf (OLE) and green tea (GTE) extracts was assayed, and their antioxidant and anticancer activities were evaluated before and after the removal of chlorophylls. Regarding phenolic content, OLE was rich in hydroxytyrosol, tyrosol as well as oleuropein, whereas the main compounds present in GTE were gallocatechin, epigallocatechin (EGC), epigallocatechin gallate (EGCG), gallocatechin gallate, and caffeine. Interestingly, fresh extracts' antioxidant ability was dependent on phenolic compounds; however, the elimination of chlorophyll compounds did not modify the antioxidant activity of extracts. In addition, both OLE and GTE had high cytotoxicity against HL-60 leukemic cell line. Of note, the removal of chlorophyll pigments remarkably reduced the cytotoxic effect in both cases. Therefore, our findings emphasize the remarkable antioxidant and anticancer potential of OLE and GTE and suggest that chlorophylls are of paramount importance for the tumor-killing ability of such plant-derived extracts.


Asunto(s)
Productos Biológicos , Catequina , Olea , Antioxidantes/farmacología , Antioxidantes/análisis , Olea/química , Clorofila/análisis , Té/química , Extractos Vegetales/química , Fenoles/análisis , Catequina/química , Productos Biológicos/análisis , Hojas de la Planta/química
4.
Handb Exp Pharmacol ; 277: 117-141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36318326

RESUMEN

Natural products have been the most important source for drug development throughout the human history. Over time, the formulation of drugs has evolved from crude drugs to refined chemicals. In modern drug discovery, conventional natural products lead-finding usually uses a top-down approach, namely bio-guided fractionation. In this approach, the crude extracts are separated by chromatography and resulting fractions are tested for activity. Subsequently, active fractions are further refined until a single active compound is obtained. However, this is a painstakingly slow and expensive process. Among the alternatives that have been developed to improve this situation, metabolomics has proved to yield interesting results having been applied successfully to drug discovery in the last two decades. The metabolomics-based approach in lead-finding comprises two steps: (1) in-depth chemical profiling of target samples, e.g. plant extracts, and bioactivity assessment, (2) correlation of the chemical and biological data by chemometrics. In the first step of this approach, the target samples are chemically profiled in an untargeted manner to detect as many compounds as possible. So far, NMR spectroscopy, LC-MS, GC-MS, and MS/MS spectrometry are the most common profiling tools. The profile data are correlated with the biological activity with the help of various chemometric methods such as multivariate data analysis. This in-silico analysis has a high potential to replace or complement conventional on-silica bioassay-guided fractionation as it will greatly reduce the number of bioassays, and thus time and costs. Moreover, it may reveal synergistic mechanisms, when present, something for which the classical top-down approach is clearly not suited. This chapter aims to give an overview of successful approaches based on the application of chemical profiling with chemometrics in natural products drug discovery.


Asunto(s)
Productos Biológicos , Espectrometría de Masas en Tándem , Humanos , Extractos Vegetales/química , Descubrimiento de Drogas/métodos , Productos Biológicos/análisis , Productos Biológicos/química , Cromatografía Liquida , Metabolómica
5.
Molecules ; 27(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364108

RESUMEN

There is a previously neglected influence of geochemical conditions on plant phytochemistry. In particular, high concentrations of dissolved salts can affect their biosynthesis of natural products. Detoxification is most likely an important aspect for the plant, but additional natural products can also give it an expanded range of bioactivities. During the phytochemical analysis a Palicourea luxurians plant collected in a sulfate-rich environment (near the Río Sucio, Costa Rica) showed an interesting natural product in this regard. The structure of this compound was determined using spectroscopic and computational methods (NMR, MS, UV, IR, CD, optical rotation, quantum chemical calculations) and resulted in a megastigmane sulfate ester possessing a ß-ionone core structure, namely blumenol C sulfate (1, C13H22O5S). The levels of sulfur and sulfate ions in the leaves of the plant were determined using elemental analysis and compared to the corresponding levels in comparable plant leaves from a less sulfate-rich environments. The analyses show the leaves from which we isolated blumenol C sulfate (1) to contain 35% more sulfur and 80% more sulfate than the other samples. Antimicrobial and antioxidant activities of compound 1 were tested against Escherichia coli, E. coli ampR and Bacillus subtilis as well as measured using complementary in vitro FRAP and ATBS assays, respectively. These bioactivities are comparable to those determined for structurally related megastigmanes. The sulfur and sulfate content of the plant leaves from the sulfate-rich environment was significantly higher than that of the other plants. Against this background of salt stress, we discuss a possible biosynthesis of blumenol C sulfate (1). Furthermore, there appears to be no benefit for the plant in terms of extended bioactivities. Hence, the formation of blumenol C sulfate (1) probably primarily serves the plant detoxification process.


Asunto(s)
Productos Biológicos , Rubiaceae , Rubiaceae/química , Norisoprenoides/análisis , Sulfatos/análisis , Escherichia coli , Hojas de la Planta/química , Productos Biológicos/análisis , Azufre/análisis
6.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235155

RESUMEN

Siraitia grosvenorii (Swingle) C. Jeffrey ex Lu et Z. Y. Zhang is a unique economic and medicinal plant of Cucurbitaceae in Southern China. For hundreds of years, Chinese people have used the fruit of S. grosvenorii as an excellent natural sweetener and traditional medicine for lung congestion, sore throat, and constipation. It is one of the first species in China to be classified as a medicinal food homology, which has received considerable attention as a natural product with high development potential. Various natural products, such as triterpenoids, flavonoids, amino acids, and lignans, have been released from this plant by previous phytochemical studies. Phar- macological research of the fruits of S. grosvenorii has attracted extensive attention, and an increasing number of extracts and compounds have been demonstrated to have antitussive, expectorant, antiasthmatic, antioxidant, hypoglycemic, immunologic, hepatoprotective, antibacte- rial, and other activities. In this review, based on a large number of previous studies, we summarized the related research progress of the chemical components and pharmacological effects of S. grosvenorii, which provides theoretical support for further investigation of its biological functions and potential clinical applications.


Asunto(s)
Antiasmáticos , Antitusígenos , Productos Biológicos , Cucurbitaceae , Lignanos , Triterpenos , Aminoácidos/análisis , Antioxidantes/análisis , Antioxidantes/farmacología , Productos Biológicos/análisis , Cucurbitaceae/química , Expectorantes , Flavonoides/análisis , Frutas/química , Humanos , Hipoglucemiantes/farmacología , Lignanos/análisis , Edulcorantes , Triterpenos/química
7.
Molecules ; 27(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163960

RESUMEN

The calyxes and fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino (P. alkekengi), a medicinal and edible plant, are frequently used as heat-clearing and detoxifying agents in thousands of Chinese medicine prescriptions. For thousands of years in China, they have been widely used in clinical practice to treat throat disease, hepatitis, and bacillary dysentery. This systematic review summarizes their structural analysis, quality control, pharmacology, and pharmacokinetics. Furthermore, the possible development trends and perspectives for future research studies on this medicinal plant are discussed. Relevant information on the calyxes and fruits of P. alkekengi was collected from electronic databases, Chinese herbal classics, and Chinese Pharmacopoeia. Moreover, information was collected from ancient documents in China. The components isolated and identified in P. alkekengi include steroids, flavonoids, phenylpropanoids, alkaloids, nucleosides, terpenoids, megastigmane, aliphatic derivatives, organic acids, coumarins, and sucrose esters. Steroids, particularly physalins and flavonoids, are the major characteristic and bioactive ingredients in P. alkekengi. According to the literature, physalins are synthesized by the mevalonate and 2-C-methyl-d-erythritol-4-phosphate pathways, and flavonoids are synthesized by the phenylpropanoid pathway. Since the chemical components and pharmacological effects of P. alkekengi are complex and varied, there are different standards for the evaluation of its quality and efficacy. In most cases, the analysis was performed using high-performance liquid chromatography coupled with ultraviolet detection. A pharmacological study showed that the crude extracts and isolated compounds from P. alkekengi had extensive in vitro and in vivo biological activities (e.g., anti-inflammatory, anti-tumor, immunosuppressive, antibacterial, anti-leishmanial, anti-asthmatic, anti-diabetic, anti-oxidative, anti-malarial, anti-Alzheimer's disease, and vasodilatory). Moreover, the relevant anti-inflammatory and anti-tumor mechanisms were elucidated. The reported activities indicate the great pharmacological potential of P. alkekengi. Similarly, studies on the pharmacokinetics of specific compounds will also contribute to the progress of clinical research in this setting.


Asunto(s)
Productos Biológicos/análisis , Physalis/enzimología , Physalis/metabolismo , Productos Biológicos/farmacología , China , Cromatografía Líquida de Alta Presión/métodos , Ésteres/química , Flavonoides , Flores/efectos de los fármacos , Frutas/efectos de los fármacos , Physalis/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sacarosa/química
8.
Biotechnol Bioeng ; 119(2): 423-434, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34778948

RESUMEN

The application of process analytical technology (PAT) for biotherapeutic development and manufacturing has been employed owing to technological, economic, and regulatory advantages across the industry. Typically, chromatographic, spectroscopic, and/or mass spectrometric sensors are integrated into upstream and downstream unit operations in in-line, on-line, or at-line fashion to enable real-time monitoring and control of the process. Despite the widespread utility of PAT technologies at various unit operations of the bioprocess, a holistic business value assessment of PAT has not been well addressed in biologics. Thus, in this study, we evaluated PAT technologies based on predefined criteria for their technological attributes such as enablement of better process understanding, control, and high-throughput capabilities; as well as for business attributes such as simplicity of implementation, lead time, and cost reduction. The study involved an industry-wide survey, where input from subject matter industry experts on various PAT tools were collected, assessed, and ranked. The survey results demonstrated on-line liquid Chromatography (LC), in-line Raman, and gas analysis techniques are of high business value especially at the production bioreactor unit operation of upstream processing. In-line variable path-length UV/VIS measurements (VPE), on-line LC, multiangle light scattering (MALS), and automated sampling are of high business value in Protein A purification and polishing steps of the downstream process. We also provide insights, based on our experience in clinical and commercial manufacturing of biologics, into the development and implementation of some of the PAT tools. The results presented in this study are intended to be helpful for the current practitioners of PAT as well as those new to the field to gauge, prioritize and steer their projects for success.


Asunto(s)
Productos Biológicos , Biotecnología , Cromatografía/métodos , Análisis Espectral/métodos , Animales , Productos Biológicos/análisis , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Reactores Biológicos , Biotecnología/métodos , Biotecnología/normas , Células CHO , Cricetinae , Cricetulus , Tecnología Farmacéutica
9.
Artículo en Inglés | MEDLINE | ID: mdl-34864425

RESUMEN

Quality control, nutritional value and the monitoring of hazardous residues in honey bee- products have become major topics for both producers and consumers. Due to its potential role in human health, bee-products rich in bioactive compounds are becoming increasingly popular. This review aims to provide an overview of thin-layer chromatography methods used in quality control,authenticity testing and chemical profiling of bee-products in order to help scientists engaged in the field of bee-products chemistry to utilize the advantages of this technique in the detection and elimination of fraudulent practices in bee-product manufacturing. Recently, hyphenation of thin-layer chromatography, image analysis and chemometrics support bee-products analysisbysimultaneousdeterminationofanalytes with different detection principles, identification of individual bioactive compounds as well as structure elucidation of compounds. Highlighted opportunities of thin-layer chromatography could encourage further investigations that would lead to improvements in the detection and elimination of marketing fraudulent practices.


Asunto(s)
Abejas/metabolismo , Productos Biológicos , Cromatografía en Capa Delgada/métodos , Miel , Própolis , Animales , Productos Biológicos/análisis , Productos Biológicos/química , Productos Biológicos/normas , Miel/análisis , Miel/normas , Polen/química , Própolis/análisis , Própolis/química , Própolis/normas , Control de Calidad
10.
Sci Rep ; 11(1): 22796, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815498

RESUMEN

The current severe situation of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not been reversed and posed great threats to global health. Therefore, there is an urgent need to find out effective antiviral drugs. The 3-chymotrypsin-like protease (3CLpro) in SARS-CoV-2 serve as a promising anti-virus target due to its essential role in the regulation of virus reproduction. Here, we report an improved integrated approach to identify effective 3CLpro inhibitors from effective Chinese herbal formulas. With this approach, we identified the 5 natural products (NPs) including narcissoside, kaempferol-3-O-gentiobioside, rutin, vicenin-2 and isoschaftoside as potential anti-SARS-CoV-2 candidates. Subsequent molecular dynamics simulation additionally revealed that these molecules can be tightly bound to 3CLpro and confirmed effectiveness against COVID-19. Moreover, kaempferol-3-o-gentiobioside, vicenin-2 and isoschaftoside were first reported to have SARS-CoV-2 3CLpro inhibitory activity. In summary, this optimized integrated strategy for drug screening can be utilized in the discovery of antiviral drugs to achieve rapid acquisition of drugs with specific effects on antiviral targets.


Asunto(s)
Antivirales/análisis , Evaluación Preclínica de Medicamentos/métodos , SARS-CoV-2/efectos de los fármacos , Productos Biológicos/análisis , Productos Biológicos/farmacología , COVID-19/metabolismo , Biología Computacional/métodos , Proteasas 3C de Coronavirus/efectos de los fármacos , Proteasas 3C de Coronavirus/metabolismo , Descubrimiento de Drogas/métodos , Flavonoles/metabolismo , Flavonoles/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Tratamiento Farmacológico de COVID-19
11.
Viruses ; 13(7)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209556

RESUMEN

Vitis vinifera represents an important and renowned source of compounds with significant biological activity. Wines and winery bioproducts, such as grape pomace, skins, and seeds, are rich in bioactive compounds against a wide range of human pathogens, including bacteria, fungi, and viruses. However, little is known about the biological properties of vine leaves. The aim of this study was the evaluation of phenolic composition and antiviral activity of Vitis vinifera leaf extract against two human viruses: the Herpes simplex virus type 1 (HSV-1) and the pandemic and currently widespread severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). About 40 phenolic compounds were identified in the extract by HPLC-MS/MS analysis: most of them were quercetin derivatives, others included derivatives of luteolin, kaempferol, apigenin, isorhamnetin, myricetin, chrysoeriol, biochanin, isookanin, and scutellarein. Leaf extract was able to inhibit both HSV-1 and SARS-CoV-2 replication in the early stages of infection by directly blocking the proteins enriched on the viral surface, at a very low concentration of 10 µg/mL. These results are very promising and highlight how natural extracts could be used in the design of antiviral drugs and the development of future vaccines.


Asunto(s)
Antivirales/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/química , SARS-CoV-2/efectos de los fármacos , Vitis/química , Células A549 , Animales , Productos Biológicos/análisis , Productos Biológicos/farmacología , Línea Celular , Chlorocebus aethiops , Cromatografía Líquida de Alta Presión , Humanos , Células MCF-7 , Fenoles/farmacología , Extractos Vegetales/análisis , Espectrometría de Masas en Tándem , Células Vero
12.
Aging (Albany NY) ; 13(12): 16620-16636, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34170848

RESUMEN

Dopamine receptor, a polypeptide chain composed of 7 hydrophobic transmembrane regions, is a new and vital drug target, especially Dopamine receptor 2(D2). Targeting dopamine receptors, Dopamine receptor agonists are a class of drugs similar in function and structure to dopamine and can directly act on dopamine receptors and activate it. Clinically, Dopamine receptor agonist drugs have achieved significant therapeutic effects on prolactinoma and Parkinson's Disease. In the study, we virtually screened a series of potential effective agonists of Dopamine receptor by computer techniques. Firstly, we used the Molecular Docking (LibDock) step to screen out some molecules that can dock well with the protein. Then, analysis of toxicity prediction and ADME (adsorption, distribution, metabolism and excretion) were carried out. More precise molecular docking (CDOCKER) and 3-Dimensional Quantitative Structure-Activity Relationship Modeling Study(3D-QSAR) pharmacophore generation were implemented to research and explore these compounds' binding mechanism with Dopamine receptor. Last but not least, to assess compound's binding stabilities, we carried out a molecular dynamic analysis. As the results show, two compounds (ZINC000008860530 and ZINC000004096987) from the small molecule database (ZINC database) were potential effective agonists of Dopamine receptor. These two compounds can combine with Dopamine receptor with higher affinity and proved to be no toxic. The cell experiment showed that two compounds could inhibit the proliferation and PRL secretion of MMQ cells (pituitary tumor cells). Thus, this study provided valuable information about Dopamine receptor agonist-based drug discovery. So, this study will benefit patients with prolactinoma and Parkinson's disease a lot.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Agonistas de Dopamina/química , Agonistas de Dopamina/farmacología , Simulación del Acoplamiento Molecular , Receptores Dopaminérgicos/química , Productos Biológicos/análisis , Productos Biológicos/toxicidad , Bromocriptina/química , Bromocriptina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Agonistas de Dopamina/análisis , Agonistas de Dopamina/toxicidad , Evaluación Preclínica de Medicamentos , Humanos , Enlace de Hidrógeno , Ligandos , Simulación de Dinámica Molecular , Prolactina/metabolismo
13.
Planta Med ; 87(12-13): 1061-1068, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33957699

RESUMEN

The growing use of herbal medicines worldwide requires ensuring their quality, safety, and efficiency to consumers and patients. Quality controls of vegetal extracts are usually undertaken according to pharmacopeial monographs. Analyses may range from simple chemical experiments to more sophisticated but more accurate methods. Nowadays, metabolomic analyses allow a fast characterization of complex mixtures. In the field, besides mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR) has gained importance in the direct identification of natural products in complex herbal extracts. For a decade, automated dereplication processes based on 13C-NMR have been emerging to efficiently identify known major compounds in mixtures. Though less sensitive than MS, 13C-NMR has the advantage of being appropriate to discriminate stereoisomers. Since NMR spectrometers nowadays provide useful datasets in a reasonable time frame, we have recently made available MixONat, a software that processes 13C as well as distortionless enhancement by polarization transfer (DEPT)-135 and -90 data, allowing carbon multiplicity (i.e., CH3, CH2, CH, and C) filtering as a critical step. MixONat requires experimental or predicted chemical shifts (δ C) databases and displays interactive results that can be refined based on the user's phytochemical knowledge. The present article provides step-by-step instructions to use MixONat starting from database creation with freely available and/or marketed δ C datasets. Then, for training purposes, the reader is led through a 30 - 60 min procedure consisting of the 13C-NMR based dereplication of a peppermint essential oil.


Asunto(s)
Productos Biológicos , Productos Biológicos/análisis , Isótopos de Carbono , Espectroscopía de Resonancia Magnética con Carbono-13 , Humanos , Programas Informáticos
14.
Sci Rep ; 11(1): 10665, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021220

RESUMEN

In this contribution, we investigated the role of plants in the prehistoric community of Casale del Dolce (Anagni, FR, central Italy), through microparticles recovered from dental calculus. The finding of a great amount of pollen types, even in form of compact lumps, could indicate use of natural substances, such as honeybee products and/or conifer resins. This plant-microremain record also suggested environmental implications relative to the Neolithic and Chalcolithic period. Additionally, the stability of the tartar microenvironment had preserved starches and other microparticles, such as one epidermal trichome, a sporangium, and fragments of plant tissue, rarely detected in ancient dental calculus. The detection of secondary metabolites in the ancient matrix confirmed the familiarity of this community with plant resources. All these data supply various interesting food for thought and expand the knowledge about the potential of dental calculus in archaeological and archaeobotanical fields with a special focus on palaeoecology.


Asunto(s)
Antropología , Productos Biológicos/análisis , Cálculos Dentales/química , Ambiente , Antropología/métodos , Arqueología , Biodiversidad , Cromatografía de Gases y Espectrometría de Masas , Historia Antigua , Humanos , Italia , Plantas/química
15.
Molecules ; 26(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946338

RESUMEN

The genus Datura (Solanaceae) contains nine species of medicinal plants that have held both curative utility and cultural significance throughout history. This genus' particular bioactivity results from the enormous diversity of alkaloids it contains, making it a valuable study organism for many disciplines. Although Datura contains mostly tropane alkaloids (such as hyoscyamine and scopolamine), indole, beta-carboline, and pyrrolidine alkaloids have also been identified. The tools available to explore specialized metabolism in plants have undergone remarkable advances over the past couple of decades and provide renewed opportunities for discoveries of new compounds and the genetic basis for their biosynthesis. This review provides a comprehensive overview of studies on the alkaloids of Datura that focuses on three questions: How do we find and identify alkaloids? Where do alkaloids come from? What factors affect their presence and abundance? We also address pitfalls and relevant questions applicable to natural products and metabolomics researchers. With both careful perspectives and new advances in instrumentation, the pace of alkaloid discovery-from not just Datura-has the potential to accelerate dramatically in the near future.


Asunto(s)
Alcaloides/química , Productos Biológicos/química , Datura/química , Fitoquímicos/química , Alcaloides/análisis , Alcaloides/aislamiento & purificación , Alcaloides/metabolismo , Productos Biológicos/análisis , Productos Biológicos/aislamiento & purificación , Productos Biológicos/metabolismo , Fraccionamiento Químico , Fenómenos Químicos , Cromatografía Liquida , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , Fitoquímicos/análisis , Fitoquímicos/aislamiento & purificación , Fitoquímicos/metabolismo , Relación Estructura-Actividad
16.
Toxins (Basel) ; 13(4)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808320

RESUMEN

The development of incurred reference materials containing citrinin (CIT) and their successful application in a method validation study (MVS) in order to harmonize CIT determination in food and food supplements are demonstrated. CIT-contaminated materials made of red yeast rice (RYR), wheat flour, and Ginkgo biloba leaves (GBL), as well as food supplements made of red yeast rice (FS-RYR) and Ginkgo biloba leaves (FS-GBL), were manufactured in-house via fungal cultivation on collected raw materials. The homogeneity and stability from randomly selected containers were verified according to the ISO 13528. CIT was found to be homogenously distributed and stable in all contaminated materials, with no significant degradation during the timescale of the MVS when storage was performed up to +4 °C. Next, an MVS was organized with eighteen international laboratories using the provided standard operating procedure and 12 test materials, including three RYRs (blank, <50 µg/kg, <2000 µg/kg), two wheat flours (blank, <50 µg/kg), two GBL powders (blank, <50 µg/kg), three FS-RYRs (blank, <50 µg/kg, <2000 µg/kg), and two FS-GBLs (blank, <50 µg/kg). The results of seven CIT-incurred materials showed acceptable within-laboratory precision (RSDr) varying from 6.4% to 14.6% and between-laboratory precision (RSDR) varying from 10.2% to 37.3%. Evidenced by HorRat values < 2.0, the results of the collaborative trial demonstrated that the applied analytical method could be standardized. Furthermore, the appropriateness of producing CIT reference materials is an important step towards food and feed quality control systems and the organization of proficiency tests.


Asunto(s)
Productos Biológicos/análisis , Cromatografía Liquida/normas , Citrinina/análisis , Suplementos Dietéticos/análisis , Harina/análisis , Contaminación de Alimentos , Ginkgo biloba/química , Espectrometría de Masas en Tándem/normas , Calibración , Humanos , Variaciones Dependientes del Observador , Hojas de la Planta/química , Control de Calidad , Estándares de Referencia , Reproducibilidad de los Resultados
17.
Sci Rep ; 11(1): 6257, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33739020

RESUMEN

We developed a method that can detect each animal species of origin for crude drugs derived from multiple animal species based on massively parallel sequencing analysis of mitochondrial genes. The crude drugs derived from animals investigated in this study were Cervi Parvum Cornu and Trogopterorum feces, which are derived from a mix of different animal species, two chopped cicada sloughs, and two commercial Kampo drugs. The mitochondrial 12S rRNA, 16S rRNA, and cytochrome oxidase subunit I gene regions were amplified and sequenced using MiSeq. The ratios of haplotype to total number of sequences reads were calculated after sequence extraction and trimming. Haplotypes that exceeded the threshold were defined as positive haplotypes, which were compared with all available sequences using BLAST. In the Cervi Parvum Cornu and Trogopterorum feces samples, the haplotype ratios corresponded roughly to the mixture ratios, although there was a slight difference from mixture ratios depending on the gene examined. This method could also roughly estimate the compositions of chopped cicada sloughs and Kampo drugs. This analysis, whereby the sequences of several genes are elucidated, is better for identifying the included animal species. This method should be useful for quality control of crude drugs and Kampo drugs.


Asunto(s)
Productos Biológicos/análisis , Medicamentos Herbarios Chinos/análisis , Cobayas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Medicina Kampo , Rumiantes/genética , Sciuridae/genética , Análisis de Secuencia de ADN/métodos , Animales , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Heces/química , Genes Mitocondriales , Haplotipos , Hemípteros/química , Hemípteros/genética , ARN Ribosómico/genética , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
18.
J Nat Med ; 75(3): 532-539, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33712999

RESUMEN

OGATA Koan (1810-63) was a physician and the director of Tekijuku, and he contributed to Western medicine in the late Edo period. Osaka University preserves two of his medicine chests. One of the chests, which was used in his last years (the second chest) contained 22 glass bottles and 6 wooden cylinders. These bottles and cylinders contained formulated medicines; however, about half cannot be opened because of the long-term storage. It is necessary to comprehend the physical property of both the containers and their contents for investigation of this adequate preservation method; however, destructive analysis is not allowed. To analyze the medicines sealed in the glass bottles, we focused on muonic X-ray analysis, which has high transmittance. First, we certified the analytical methods using a historical medicinal specimen preserved in Osaka University. Thereafter, we applied the method on the bottles stored in the second chest. X-ray fluorescence identified the glass of those bottles to be lead potash glass. Among these bottles, we chose the bottle with the label "," which contains white powdered medication, for muonic X-ray analysis. We identified the contents of the medication in the glass to be Hg2Cl2. Through this study, we first applied muonic X-ray analysis on the medical inheritances and succeeded to detect the elements contained both in the container and in the contents of the sealed bottle. This would be a new method for nondestructive analysis of such cultural properties.


Asunto(s)
Productos Biológicos/análisis , Productos Biológicos/historia , Historia del Siglo XIX , Humanos , Japón , Farmacognosia , Rayos X
19.
Angew Chem Int Ed Engl ; 60(18): 10064-10072, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33599093

RESUMEN

In recent years, extensive sequencing and annotation of bacterial genomes has revealed an unexpectedly large number of secondary metabolite biosynthetic gene clusters whose products are yet to be discovered. For example, cyanobacterial genomes contain a variety of gene clusters that likely incorporate fatty acid derived moieties, but for most cases we lack the knowledge and tools to effectively predict or detect the encoded natural products. Here, we exploit the apparent absence of a functional ß-oxidation pathway in cyanobacteria to achieve efficient stable-isotope-labeling of their fatty acid derived lipidome. We show that supplementation of cyanobacterial cultures with deuterated fatty acids can be used to easily detect natural product signatures in individual strains. The utility of this strategy is demonstrated in two cultured cyanobacteria by uncovering analogues of the multidrug-resistance reverting hapalosin, and novel, cytotoxic, lactylate-nocuolin A hybrids-the nocuolactylates.


Asunto(s)
Productos Biológicos/análisis , Cianobacterias/química , Descubrimiento de Drogas , Ácidos Grasos/análisis , Cianobacterias/genética , Cianobacterias/metabolismo , Marcaje Isotópico , Familia de Multigenes , Oxidación-Reducción
20.
Biomolecules ; 11(2)2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557097

RESUMEN

The COVID-19 pandemic has already taken the lives of more than 2 million people worldwide, causing several political and socio-economic disturbances in our daily life. At the time of publication, there are non-effective pharmacological treatments, and vaccine distribution represents an important challenge for all countries. In this sense, research for novel molecules becomes essential to develop treatments against the SARS-CoV-2 virus. In this context, Mexican natural products have proven to be quite useful for drug development; therefore, in the present study, we perform an in silico screening of 100 compounds isolated from the most commonly used Mexican plants, against the SARS-CoV-2 virus. As results, we identify ten compounds that meet leadlikeness criteria (emodin anthrone, kaempferol, quercetin, aesculin, cichoriin, luteolin, matricin, riolozatrione, monocaffeoyl tartaric acid, aucubin). According to the docking analysis, only three compounds target the key proteins of SARS-CoV-2 (quercetin, riolozatrione and cichoriin), but only one appears to be safe (cichoriin). ADME (absorption, distribution, metabolism and excretion) properties and the physiologically based pharmacokinetic (PBPK) model show that cichoriin reaches higher lung levels (100 mg/Kg, IV); therefore, it may be considered in developing therapeutic tools.


Asunto(s)
Productos Biológicos/análisis , Productos Biológicos/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Simulación por Computador , Evaluación Preclínica de Medicamentos , Medicina de Hierbas , Medicina Tradicional , SARS-CoV-2/fisiología , Productos Biológicos/química , Productos Biológicos/farmacología , Quimioinformática , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA