Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Theranostics ; 13(14): 4802-4820, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771779

RESUMEN

Rationale: Liver resection and transplantation surgeries are accompanied by hepatic ischemia-reperfusion (HIR) injury that hampers the subsequent liver recovery. Given that the liver is the main organ for metabolism and detoxification, ischemia-reperfusion in essence bestows metabolic stress upon the liver and disrupts local metabolic and immune homeostasis. Most of the recent and current research works concerning HIR have been focusing on addressing HIR-induced hepatic injury and inflammation, instead of dealing with the metabolic reprogramming and restoration of redox homeostasis. As our previous work uncovers the importance of 5-aminolevulinate (5-ALA) synthesis during stress adaptation, here we evaluate the effects of supplementing 5-ALA to mitigate HIR injury. Methods: 5-ALA was supplemented into the mice or cultured cells during the ischemic or oxygen-glucose deprivation (OGD) phase. Following reperfusion or reoxygenation, cellular metabolism and energy homeostasis, mitochondrial production of reactive oxygen species (ROS) and transcriptomic changes were evaluated in HIR mouse models or cultured hepatocytes and macrophages. Liver injury, hepatocytic functional tests, and macrophagic M1/M2 polarization were assessed. Results: Dynamic changes in the expression of key enzymes in 5-ALA metabolism were first confirmed in donor and mouse liver samples following HIR. Supplemented 5-ALA modulated mouse hepatic lipid metabolism and reduced ATP production in macrophages following HIR, resulting in elevation of anti-inflammatory M2 polarization. Mechanistically, 5-ALA down-regulates macrophagic chemokine receptor CX3CR1 via the repression of RelA following OGD and reoxygenation (OGD/R). Cx3cr1 KO mice demonstrated milder liver injuries and more macrophage M2 polarization after HIR. M2 macrophage-secreted chitinase-like protein 3 (CHIL3; CHI3L1 in human) is an important HIR-induced effector downstream of CX3CR1 deficiency. Addition of CHIL3/CHI3L1 alone improved hepatocellular metabolism and reduced OGD/R-inflicted injuries in cultured mouse and human hepatocytes. Combined treatment with 5-ALA and CHIL3 during the ischemic phase facilitated lipid metabolism and ATP production in the mouse liver following HIR. Conclusion: Our results reveal that supplementing 5-ALA promotes macrophagic M2 polarization via downregulation of RelA and CX3CR1 in mice following HIR, while M2 macrophage-produced CHIL3/CHI3L1 also manifests beneficial effects to the recovery of hepatic metabolism. 5-ALA and CHIL3/CHI3L1 together mitigate HIR-induced mitochondrial dysfunction and hepatocellular injuries, which may be developed into safe and effective clinical treatments to attenuate HIR injuries.


Asunto(s)
Ácido Aminolevulínico , Daño por Reperfusión , Ratones , Humanos , Animales , Ácido Aminolevulínico/farmacología , Hígado/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia/metabolismo , Adenosina Trifosfato/metabolismo , Proteína 1 Similar a Quitinasa-3/metabolismo
2.
Andrology ; 10(8): 1463-1483, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36040837

RESUMEN

BACKGROUND: Varicocoele is a common risk factor associated with reduced male fertility potential. The current understanding of varicocoele pathophysiology does not completely explain the clinical manifestation of infertility. The present treatment options such as antioxidant supplementation and varicocoelectomy only help ≈35% of men to achieve spontaneous pregnancy. OBJECTIVE: This review aims to summarize the available knowledge on cellular and molecular alterations implicated to varicocoele-associated male infertility and also highlights the new knowledge generated by "omics" technologies. MATERIALS AND METHODS: PubMed, MEDLINE, Cochrane and Google Scholar databases are searched using different combinations of keywords (varicocoele, infertile/fertile men with varicocoele, cellular changes, molecular mechanisms, proteome, epigenome, transcriptome and metabolome). A total of 229 relevant human and animal studies published till 2021 were included in this review. RESULTS: Current understanding advocates oxidative stress (OS) as a major contributory factor to varicocoele-associated male infertility. Excessive OS causes alteration in testicular microenvironment and sperm DNA fragmentation, which further contributes to infertility. Molecular and omics studies have identified several promising biomarkers such as AAMP, SPINT1, MKI67 (genetic markers), sperm quality and function related protein markers, global sperm DNA methylation level (epigenetic marker), Hspa2, Protamine, Gadd7, Dynlt1 and Beclin1 (mRNA markers), PRDX2, HSPA, APOA2, YKL40 (seminal protein markers), total choline and PHGDH (metabolic markers). DISCUSSION: Mature spermatozoa harbours a plethora of molecular information in form of proteome, epigenome and transcriptome, which could provide very important clues regarding pathophysiology of varicocoele-associated infertility. Recent molecular and omics studies in infertile men with varicocoele have identified several promising biomarkers. Upon further validation with larger and well-defined studies, some of these biomarkers could aid in varicocoele management. CONCLUSION: The present evidences suggest that inclusion of OS and sperm DNA fragmentation tests could be useful to the diagnostic workup for men with varicocoele. Furthermore, including precise molecular markers may assist in diagnostics and prognostics of varicocoele-associated male infertility.


Asunto(s)
Infertilidad Masculina , Varicocele , Antioxidantes/metabolismo , Beclina-1/metabolismo , Proteína 1 Similar a Quitinasa-3/metabolismo , Colina/metabolismo , Dineínas/metabolismo , Marcadores Genéticos , Humanos , Infertilidad Masculina/complicaciones , Infertilidad Masculina/genética , Masculino , Protaminas/metabolismo , Proteoma/metabolismo , ARN Mensajero/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Varicocele/complicaciones , Varicocele/genética , Varicocele/metabolismo
3.
Bioengineered ; 13(1): 1746-1757, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35001833

RESUMEN

Achyranthes bidentate is a common traditional Chinese medicine (TCM) used in treating osteoarthritis (OA). The compatibility between effective components has now become a breakthrough in understanding the mechanism of TCM. This study aimed at determining the optimal compatibility and possible mechanism of Achyranthes bidentate for OA treatment. Results showed that the adhesion score of the OA group is higher than NC group, and showed a trend of down-regulation in the intervention group. The CHI3L1 and IL-1ß in joint fluid of the OA group was significantly increased compared to the sham operation group (NC group). Group G, I, and L exhibited significantly down-regulated CHI3L1, while groups C, F, I, K, and L exhibited reduced IL-1ß. Joint adhesion, damage in cartilage, and synovial tissue was found in the OA model, cartilage tissue was found recovered in groups I, J, and L, and synovial tissue was recovered in group G, I, and L. Thus, group I and L were chosen for metabolite analysis, and indole-3-propionic acid was slightly up-regulated, while koeiginequinone A, prostaglandin H2, and 1-hydroxy-3-methoxy-10-methylacridonew were down-regulated in group I and L. According to functional analysis, the arachidonic acid (AA) metabolic pathway is enriched. Down-regulated expression of vital proteins in the AA metabolism pathway, such as PGE2 and COX2 in group I and L were verified. In conclusion, Hydroxyecdysone, Oleanolic acid, Achyranthes bidentata polysaccharide at a compatibility of 0.03-µg/mg, 2.0-µg/mg, 20.0-µg/mg or 0.03-µg/mg, 2.0-µg/mg, 10.0-µg/mg, respectively, may be the optimal compatibility of Achyranthes bidentate.


Asunto(s)
Achyranthes/química , Proteína 1 Similar a Quitinasa-3/metabolismo , Condrocitos/citología , Interleucina-1beta/efectos adversos , Osteoartritis/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Animales , Condrocitos/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-1beta/metabolismo , Masculino , Metabolómica/métodos , Ácido Oleanólico/administración & dosificación , Ácido Oleanólico/farmacología , Osteoartritis/inmunología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polisacáridos/administración & dosificación , Polisacáridos/farmacología , Ratas , Regulación hacia Arriba/efectos de los fármacos
4.
Mol Biol Rep ; 48(10): 6805-6820, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34468912

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is major aliment around the word, with a cumulative rate of mortality. Metformin (MT) was recently approved as anticancer drug against solid tumors, such as CRC. Resistance to MT therapy remains to be a challenging matter facing the development of possible anti-cancer strategy. To circumvent this problem, MT nano-encapsulation has been introduced to sensitize resistant cancer cells. The purpose of the current study is to explore the MT's aptitude encapsulated in lecithin (LC) and chitosan (CS) nanoparticles to inhibit CRC proliferation through modulations of long noncoding RNAs (lncRNAs), micro RNAs (miRNAs), and some biochemical markers. METHODS AND RESULTS: Cytotoxic screenings of the newly synthesized MT-based regimens; MT, MT-LC NPs (NP1), MT-CS NPs (NP2), and MT-LC-CS NPs (NP3) against colorectal cancerous Caco-2 and HCT116 cell lines versus normal WI-38 cells were performed. The epigenetic mechanistic effects of these proposed regimens on lncRNAs and miRNAs were investigated. Additionally, some protein levels were assessed in CRC cells upon treatments; YKL-40, PPARγ, E-cadherin (ECN), and VEGF. We resulted that NP1 recorded the highest significant cytotoxic effect on CRC cells. HCT116 cells were more sensitive to the NP1 compared to Caco-2 cells. Intriguingly, it was suggested that NP1 tackled the CRC cells through down-regulation of the H19, HOTTIP, HULC, LINC00641, miR-200, miR-92a, miR-21, YKL-40, PPARγ, and VEGF expressions, as well as up-regulation of the miR-944 and ECN expressions. CONCLUSIONS: We concluded that the NP1 can potentially be cytotoxic to CRC cells in-vitro by modulating noncoding RNA.


Asunto(s)
Neoplasias Colorrectales/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Lecitinas/química , Metformina/farmacología , Nanopartículas/química , ARN Largo no Codificante/genética , Antineoplásicos/farmacología , Cadherinas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proteína 1 Similar a Quitinasa-3/metabolismo , Neoplasias Colorrectales/patología , Liberación de Fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , MicroARNs/genética , MicroARNs/metabolismo , Nanopartículas/ultraestructura , PPAR gamma/metabolismo , Tamaño de la Partícula , ARN Largo no Codificante/metabolismo , Electricidad Estática , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
J Neuroinflammation ; 17(1): 58, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066474

RESUMEN

BACKGROUND: Chitinase 3-like 1 (CHI3L1), chitinase 3-like 2 (CHI3L2), and neuronal pentraxin II (NPTX2) are inflammatory biomarkers of Alzheimer's disease (AD). Although studies have demonstrated that cerebrospinal fluid levels of these proteins are changed in AD, no studies have undertaken a detailed examination of alterations in protein levels, cellular expression, and interaction with amyloid in the brain during the progression of AD. METHODS: The study evaluated levels of both CHI3L1 and CHI3L2, NPTX2, ionized calcium-binding adapter molecule 1 (Iba1), complement component 1q (C1q), glial fibrillary acidic protein (GFAP), and CD44, in the frontal cortex of people who died with an antemortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), mild/moderate AD (mAD), and severe AD (sAD) using immunoblot and immunohistochemical techniques. RESULTS: CHI3L1-immunoreactive (-ir) astrocyte numbers were increased in the frontal cortex and white matter in sAD compared to NCI. On the other hand, increases in GFAP and Iba1-ir cell numbers were observed in MCI compared to NCI but only in white matter. Western blot analyses revealed significantly lower frontal cortex CHI3L2 levels, whereas CD44 levels were increased in sAD. No significant differences for CHI3L1, GFAP, C1q, and NPTX2 protein levels were detected between clinical groups. Strong significant correlations were found between frontal cortex CHI3L1 and Iba1-ir cell numbers in white matter and CHI3L1 and C1q protein levels in the early stages of the disease. C1q and Iba1, CD44 with CHI3L2, and GFAP protein levels were associated during disease progression. CHI3L1 and Iba1 cell numbers in white matter showed a significant associations with episodic memory and perceptual speed. CONCLUSIONS: White matter CHI3L1 inflammatory response is associated with cognitive impairment early in the onset of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteína C-Reactiva/metabolismo , Proteína 1 Similar a Quitinasa-3/metabolismo , Progresión de la Enfermedad , Lóbulo Frontal/metabolismo , Mediadores de Inflamación/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Proteína C-Reactiva/análisis , Proteína 1 Similar a Quitinasa-3/análisis , Quitinasas/análisis , Quitinasas/metabolismo , Femenino , Lóbulo Frontal/patología , Humanos , Mediadores de Inflamación/análisis , Masculino , Proteínas del Tejido Nervioso/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA