RESUMEN
IMPORTANCE: Mismatch repair (MMR) deficiency (MMRD) and microsatellite instability (MSI) are prognostic for survival in many cancers and for resistance to fluoropyrimidines in early colon cancer. However, the effect of MMRD and MSI in curatively resected gastric cancer treated with perioperative chemotherapy is unknown. OBJECTIVE: To examine the association among MMRD, MSI, and survival in patients with resectable gastroesophageal cancer randomized to surgery alone or perioperative epirubicin, cisplatin, and fluorouracil chemotherapy in the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) trial. DESIGN, SETTING, AND PARTICIPANTS: This secondary post hoc analysis of the MAGIC trial included participants who were treated with surgery alone or perioperative chemotherapy plus surgery for operable gastroesophageal cancer from July 1, 1994, through April 30, 2002. Tumor sections were assessed for expression of the MMR proteins mutL homologue 1, mutS homologue 2, mutS homologue 6, and PMS1 homologue 2. The association among MSI, MMRD, and survival was assessed. MAIN OUTCOMES AND MEASURES: Interaction between MMRD and MSI status and overall survival (OS). RESULTS: Of the 503 study participants, MSI results were available for 303 patients (283 with microsatellite stability or low MSI [median age, 62 years; 219 males (77.4%)] and 20 with high MSI [median age, 66 years; 14 males (70.0%)]). A total of 254 patients had MSI and MMR results available. Patients treated with surgery alone who had high MSI or MMRD had a median OS that was not reached (95% CI, 11.5 months to not reached) compared with a median OS among those who had neither high MSI nor MMRD of 20.5 months (95% CI, 16.7-27.8 months; hazard ratio, 0.42; 95% CI, 0.15-1.15; P = .09). In contrast, patients treated with chemotherapy plus surgery who had either high MSI or MMRD had a median OS of 9.6 months (95% CI, 0.1-22.5 months) compared with a median OS among those who were neither high MSI nor MMRD of 19.5 months (95% CI, 15.4-35.2 months; hazard ratio, 2.18; 95% CI, 1.08-4.42; P = .03). CONCLUSIONS AND RELEVANCE: In the MAGIC trial, MMRD and high MSI were associated with a positive prognostic effect in patients treated with surgery alone and a differentially negative prognostic effect in patients treated with chemotherapy. If independently validated, MSI or MMRD determined by preoperative biopsies could be used to select patients for perioperative chemotherapy.
Asunto(s)
Reparación de la Incompatibilidad de ADN , Inestabilidad de Microsatélites , Neoplasias Gástricas/química , Neoplasias Gástricas/genética , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioterapia Adyuvante , Cisplatino/administración & dosificación , Proteínas de Unión al ADN/análisis , Epirrubicina/administración & dosificación , Femenino , Fluorouracilo/administración & dosificación , Gastrectomía , Humanos , Masculino , Persona de Mediana Edad , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/análisis , Homólogo 1 de la Proteína MutL/análisis , Proteína 2 Homóloga a MutS/análisis , Pronóstico , Neoplasias Gástricas/terapia , Tasa de SupervivenciaRESUMEN
PURPOSE: It is uncertain whether modest benefits from adjuvant chemotherapy in stage II colorectal cancer justify the toxicity, cost, and inconvenience. We investigated the usefulness of defective mismatch repair (dMMR), BRAF, and KRAS mutations in predicting tumor recurrence and sensitivity to chemotherapy. PATIENTS AND METHODS: Immunohistochemistry for dMMR and pyrosequencing for KRAS/BRAF were performed for 1,913 patients randomly assigned between fluorouracil and folinic acid chemotherapy and no chemotherapy in the Quick and Simple and Reliable (QUASAR) trial. RESULTS: Twenty-six percent of 695 right-sided colon, 3% of 685 left-sided colon, and 1% of 407 rectal tumors were dMMR. Similarly, 17% of right colon, 2% of left colon, and 2% of rectal tumors were BRAF mutant. KRAS mutant tumors were more evenly distributed: 40% right colon, 28% left colon, and 36% rectal tumors. Recurrence rate for dMMR tumors was half that for MMR-proficient tumors (11% [25 of 218] v 26% [438 of 1,695] recurred; risk ratio [RR], 0.53; 95% CI, 0.40 to 0.70; P < .001). Risk of recurrence was also significantly higher for KRAS mutant than KRAS wild-type tumors (28% [150 of 542] v 21% [219 of 1,041]; RR, 1.40; 95% CI, 1.12 to 1.74; P = .002) but did not differ significantly between BRAF mutant and wild-type tumors (P = .36). No marker predicted benefit from chemotherapy with efficacy not differing significantly by MMR, KRAS, or BRAF status. The prognostic value of MMR and KRAS was similar in the presence and absence of chemotherapy. CONCLUSION: MMR assays identify patients with a low risk of recurrence. KRAS mutational analysis provides useful additional risk stratification to guide use of chemotherapy.