Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
FEBS J ; 289(5): 1256-1275, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33774927

RESUMEN

PRDF1 and RIZ1 homology domain containing (PRDMs) are a subfamily of Krüppel-like zinc finger proteins controlling key processes in metazoan development and in cancer. PRDMs exhibit unique dualities: (a) PR domain/ZNF arrays-their structure combines a SET-like domain known as a PR domain, typically found in methyltransferases, with a variable array of C2H2 zinc fingers (ZNF) characteristic of DNA-binding transcription factors; (b) transcriptional activators/repressors-their physiological function is context- and cell-dependent; mechanistically, some PRDMs have a PKMT activity and directly catalyze histone lysine methylation, while others are rather pseudomethyltransferases and act by recruiting transcriptional cofactors; (c) oncogenes/tumor suppressors-their pathological function depends on the specific PRDM isoform expressed during tumorigenesis. This duality is well known as the 'Yin and Yang' of PRDMs and involves a complex regulation of alternative splicing or alternative promoter usage, to generate full-length or PR-deficient isoforms with opposing functions in cancer. In conclusion, once their dualities are fully appreciated, PRDMs represent a promising class of targets in oncology by virtue of their widespread upregulation across multiple tumor types and their somatic dispensability, conferring a broad therapeutic window and limited toxic side effects. The recent discovery of a first-in-class compound able to inhibit PRDM9 activity has paved the way for the identification of further small molecular inhibitors able to counteract PRDM oncogenic activity.


Asunto(s)
Epigénesis Genética , Proteína Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Carcinogénesis , Cristalización , ADN/metabolismo , Meiosis , Neoplasias/enzimología , Neoplasias/patología , Oncogenes , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteína Metiltransferasas/química , Proteína Metiltransferasas/genética , Alineación de Secuencia , Transducción de Señal
2.
Microbiology (Reading) ; 166(9): 837-848, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32639227

RESUMEN

Bacterial soft rot caused by the bacteria Dickeya and Pectobacterium is a destructive disease of vegetables, as well as ornamental plants. Several management options exist to help control these pathogens. Because of the limited success of these approaches, there is a need for the development of alternative methods to reduce losses. In this study, we evaluated the effect of potassium tetraborate tetrahydrate (PTB) on the growth of six Dickeya and Pectobacterium spp. Disc diffusion assays showed that Dickeya spp. and Pectobacterium spp. differ in their sensitivity to PTB. Spontaneous PTB-resistant mutants of Pectobacterium were identified and further investigation of the mechanism of PTB resistance was conducted by full genome sequencing. Point mutations in genes cpdB and supK were found in a single Pectobacterium atrosepticum PTB-resistant mutant. Additionally, point mutations in genes prfB (synonym supK) and prmC were found in two independent Pectobacterium brasiliense PTB-resistant mutants. prfB and prmC encode peptide chain release factor 2 and its methyltransferase, respectively. We propose the disruption of translation activity due to PTB leads to Pectobacterium growth inhibition. The P. atrosepticum PTB-resistant mutant showed altered swimming motility. Disease severity was reduced for P. atrosepticum-inoculated potato stems sprayed with PTB. We discuss the potential risk of selecting for bacterial resistance to this chemical.


Asunto(s)
Antibacterianos/farmacología , Boratos/farmacología , Dickeya/efectos de los fármacos , Pectobacterium/efectos de los fármacos , Solanum tuberosum/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dickeya/genética , Dickeya/crecimiento & desarrollo , Dickeya/fisiología , Pruebas Antimicrobianas de Difusión por Disco , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Prueba de Complementación Genética , Movimiento , Pectobacterium/genética , Pectobacterium/crecimiento & desarrollo , Pectobacterium/fisiología , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Enfermedades de las Plantas/microbiología , Mutación Puntual , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo
3.
Annu Rev Microbiol ; 71: 413-439, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28715960

RESUMEN

Histone-modifying enzymes are responsible for regulating transcription, recombination, DNA repair, DNA replication, chromatid cohesion, and chromosome segregation. Fungi are ideally suited for comparative chromatin biology because sequencing of numerous genomes from many clades is coupled to existing rich methodology that allows truly holistic approaches, integrating evolutionary biology with mechanistic molecular biology and ecology, promising applications in medicine or plant pathology. While genome information is rich, mechanistic studies on histone modifications are largely restricted to two yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and one filamentous fungus, Neurospora crassa-three species that arguably are not representative of this diverse kingdom. Here, histone methylation serves as a paradigm to illustrate the roles chromatin modifications may play in more complex fungal life cycles. This review summarizes recent advances in our understanding of histone H3 methylation at two sites associated with active transcription, lysine 4 and lysine 36 (H3K4, H3K36); a site associated with the formation of constitutive heterochromatin, lysine 9 (H3K9); and a site associated with the formation of facultative heterochromatin, lysine 27 (H3K27). Special attention is paid to differences in how methylation marks interact in different taxa.


Asunto(s)
Histonas/metabolismo , Neurospora crassa/enzimología , Dominios PR-SET , Proteína Metiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/enzimología , Schizosaccharomyces/enzimología , Cromosomas Fúngicos/metabolismo , Heterocromatina/metabolismo , Metilación , Neurospora crassa/metabolismo , Proteína Metiltransferasas/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo
4.
Cytokine ; 94: 29-36, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28408068

RESUMEN

Chronic inflammation plays a key role in the pathogenesis of myriad complications associated with diabetes and thus anti-inflammatory therapies may ameliorate these complications. Quercus infectoria (Qi) extract has been shown to downregulate inflammatory processes; however, the molecular mechanisms of this anti-inflammatory activity remain unclear. The hypothesis of our study was that Qi extract exerts its anti-inflammatory effect by downregulating the Set7/NF-κB pathway. Bone marrow-derived macrophages (BMM) were treated with high glucose plus palmitate medium (HG/Pa) to simulate the diabetic environment. Compared with control conditions, HG/Pa elevated expression Set7, expression and activity of NF-κB along with expression of several inflammatory cytokines. These changes were associated with increased levels of intracellular reactive oxygen species (ROS). Moreover, similar alterations were demonstrated in BMM derived from mice fed a high fat diet (HFD) compared to those from lean mice, suggesting that HFD-induced changes in BM progenitors persist throughout differentiation and culture. Importantly, Qi extract dose-dependently reduced Set7, p65 and inflammatory cytokine expression relative to vehicle controls in both HG/Pa-and HFD-treated BMM. Finally, macrophages/monocytes isolated from wounds of diabetic mice that were treated with Qi solution exhibited lower expression of the inflammatory cytokines, IL-1ß and TNF-α, compared with vehicle treated wounds, demonstrating translation to the in vivo diabetic environment. Taken together, data from this study suggests that Qi downregulates diabetes-induced activity of the Set7/NF-kB pathway.


Asunto(s)
Antiinflamatorios/farmacología , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Proteína Metiltransferasas/metabolismo , Quercus/química , Transducción de Señal/efectos de los fármacos , Animales , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus Experimental/inmunología , Dieta Alta en Grasa , Glucosa/farmacología , N-Metiltransferasa de Histona-Lisina , Inflamación , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Ratones , Palmitatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Heridas y Lesiones/inmunología
5.
Chembiochem ; 13(8): 1167-73, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22549896

RESUMEN

Protein methylation is catalyzed by S-adenosyl-L-methionine-dependent protein methyltransferases (MTases), and this posttranslational modification serves diverse cellular functions. Some MTases seem to exhibit broad substrate specificities and comprehensive methods for target profiling are needed. Here we report the synthesis of a new AdoMet analogue for enzymatic transfer of a small propargyl group and labeling of modified proteins through copper-catalyzed azide-alkyne cycloaddition (CuAAC). Replacement of sulfur by selenium strongly enhanced the stability of the progargylic cofactor, leading, in combination with better activation by the selenonium center, to higher enzymatic reactivity. A broad spectrum of wild-type protein MTases acting on lysine, arginine, and glutamine residues accept this cofactor and modified substrates can be efficiently labeled by CuAAC click chemistry.


Asunto(s)
Proteína Metiltransferasas/química , S-Adenosilmetionina/análogos & derivados , Selenio/química , Química Clic/métodos , Proteína Metiltransferasas/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Selenio/metabolismo
6.
J Biol Chem ; 285(43): 32967-32976, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-20716525

RESUMEN

Histone modification is well established as a fundamental mechanism driving the regulation of transcription, replication, and DNA repair through the control of chromatin structure. Likewise, it is apparent that incorrect targeting of histone modifications contributes to misregulated gene expression and hence to developmental disorders and diseases of genomic instability such as cancer. The KMT2 family of SET domain methyltransferases, typified by mixed lineage leukemia protein-1 (MLL1), is responsible for histone H3 lysine 4 methylation, a marker of active genes. To ensure that this modification is correctly targeted, a multiprotein complex associates with the methyltransferase and directs activity. We have identified a novel interaction site on the core complex protein WD repeat protein-5 (WDR5), and we mapped the complementary site on its partner retinoblastoma-binding protein-5 (RbBP5). We have characterized this interaction by x-ray crystallography and show how it is fundamental to the assembly of the complex and to the regulation of methyltransferase activity. We show which region of RbBP5 contributes directly to mixed lineage leukemia activation, and we combine our structural and biochemical data to produce a model to show how WDR5 and RbBP5 act cooperatively to stimulate activity.


Asunto(s)
Histonas/química , Modelos Moleculares , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína Metiltransferasas/química , Proteínas/química , Proteínas de Unión a Retinoblastoma/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Histonas/genética , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Metilación , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Mapeo Peptídico , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo
7.
Mol Cell Biol ; 24(12): 5475-84, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15169908

RESUMEN

Histone H3 tail modifications are among the earliest chromatin changes in the X-chromosome inactivation process. In this study we investigated the relative profiles of two important repressive marks on the X chromosome: methylation of H3 lysine 9 (K9) and 27 (K27). We found that both H3K9 dimethylation and K27 trimethylation characterize the inactive X in somatic cells and that their relative kinetics of enrichment on the X chromosome as it undergoes inactivation are similar. However, dynamic changes of H3K9 and H3K27 methylation on the inactivating X chromosome compared to the rest of the genome are distinct, suggesting that these two modifications play complementary and perhaps nonredundant roles in the establishment and/or maintenance of X inactivation. Furthermore, we show that a hotspot of H3K9 dimethylation 5' to Xist also displays high levels of H3 tri-meK27. However, analysis of this region in G9a mutant embryonic stem cells shows that these two methyl marks are dependent on different histone methyltransferases.


Asunto(s)
Histonas/química , Cromosoma X/química , Animales , Células Cultivadas , Compensación de Dosificación (Genética) , Femenino , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Cinética , Lisina/química , Masculino , Metilación , Ratones , Mutación , Proteína Metiltransferasas , ARN Largo no Codificante , ARN no Traducido/genética , ARN no Traducido/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo
8.
Mol Cell Biol ; 24(6): 2478-86, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14993285

RESUMEN

Methylation of histone H3 at lysine 9 (H3-K9) mediates heterochromatin formation by forming a binding site for HP1 and also participates in silencing gene expression at euchromatic sites. ESET, G9a, SUV39-h1, SUV39-h2, and Eu-HMTase are histone methyltransferases that catalyze H3-K9 methylation in mammalian cells. Previous studies demonstrate that the SUV39-h proteins are preferentially targeted to the pericentric heterochromatin, and mice lacking both Suv39-h genes show cytogenetic abnormalities and an increased incidence of lymphoma. G9a methylates H3-K9 in euchromatin, and G9a null embryos die at 8.5 days postcoitum (dpc). G9a null embryo stem (ES) cells show altered DNA methylation in the Prader-Willi imprinted region and ectopic expression of the Mage genes. So far, an Eu-HMTase mouse knockout has not been reported. ESET catalyzes methylation of H3-K9 and localizes mainly in euchromatin. To investigate the in vivo function of Eset, we have generated an allele that lacks the entire pre- and post-SET domains and that expresses lacZ under the endogenous regulation of the Eset gene. We found that zygotic Eset expression begins at the blastocyst stage and is ubiquitous during postimplantation mouse development, while the maternal Eset transcripts are present in oocytes and persist throughout preimplantation development. The homozygous mutations of Eset resulted in peri-implantation lethality between 3.5 and 5.5 dpc. Blastocysts null for Eset were recovered but in less than Mendelian ratios. Upon culturing, 18 of 24 Eset(-/-) blastocysts showed defective growth of the inner cell mass and, in contrast to the approximately 65% recovery of wild-type and Eset(+/-) ES cells, no Eset(-/-) ES cell lines were obtained. Global H3-K9 trimethylation and DNA methylation at IAP repeats in Eset(-/-) blastocyst outgrowths were not dramatically altered. Together, these results suggest that Eset is required for peri-implantation development and the survival of ES cells.


Asunto(s)
Desarrollo Embrionario y Fetal/fisiología , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/metabolismo , Metiltransferasas/fisiología , Animales , Secuencia de Bases , Blastocisto/citología , Blastocisto/enzimología , Línea Celular , Supervivencia Celular , Metilación de ADN , ADN Complementario/genética , Desarrollo Embrionario y Fetal/genética , Femenino , Muerte Fetal/enzimología , Muerte Fetal/genética , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Lisina/química , Metiltransferasas/deficiencia , Metiltransferasas/genética , Ratones , Ratones Noqueados , Fenotipo , Embarazo , Proteína Metiltransferasas
9.
Mol Cell ; 13(3): 427-34, 2004 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-14967149

RESUMEN

Methylation of cytosines silences transposable elements and selected cellular genes in mammals, plants, and some fungi. Recent findings have revealed mechanistic connections between DNA methylation and features of specialized condensed chromatin, "heterochromatin." In Neurospora crassa, DNA methylation depends on trimethylation of Lys9 in histone H3 by DIM-5. Heterochromatin protein HP1 binds methylated Lys9 in vitro. We therefore investigated the possibility that a Neurospora HP1 homolog reads the methyl-Lys9 mark to signal DNA methylation. We identified an HP1 homolog and showed that it is essential for DNA methylation, is localized to heterochromatic foci, and that this localization is dependent on the catalytic activity of DIM-5. We conclude that HP1 serves as an adaptor between methylated H3 Lys9 and the DNA methylation machinery. Unlike mutants that lack DNA methyltransferase, mutants with defects in the HP1 gene hpo exhibit severe growth defects, suggesting that HP1 is required for processes besides DNA methylation.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN , Proteínas Fúngicas/metabolismo , N-Metiltransferasa de Histona-Lisina , Neurospora crassa/enzimología , Dominio Catalítico/genética , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/aislamiento & purificación , ADN/metabolismo , ADN Complementario/análisis , ADN Complementario/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Heterocromatina/genética , Histona Metiltransferasas , Lisina/metabolismo , Metiltransferasas/genética , Datos de Secuencia Molecular , Neurospora crassa/genética , Proteína Metiltransferasas , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
10.
Mol Cell Biol ; 21(24): 8289-300, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11713266

RESUMEN

snRNPs, integral components of the pre-mRNA splicing machinery, consist of seven Sm proteins which assemble in the cytoplasm as a ring structure on the snRNAs U1, U2, U4, and U5. The survival motor neuron (SMN) protein, the spinal muscular atrophy disease gene product, is crucial for snRNP core particle assembly in vivo. SMN binds preferentially and directly to the symmetrical dimethylarginine (sDMA)-modified arginine- and glycine-rich (RG-rich) domains of SmD1 and SmD3. We found that the unmodified, but not the sDMA-modified, RG domains of SmD1 and SmD3 associate with a 20S methyltransferase complex, termed the methylosome, that contains the methyltransferase JBP1 and a JBP1-interacting protein, pICln. JBP1 binds SmD1 and SmD3 via their RG domains, while pICln binds the Sm domains. JBP1 produces sDMAs in the RG domain-containing Sm proteins. We further demonstrate the existence of a 6S complex that contains pICln, SmD1, and SmD3 but not JBP1. SmD3 from the methylosome, but not that from the 6S complex, can be transferred to the SMN complex in vitro. Together with previous results, these data indicate that methylation of Sm proteins by the methylosome directs Sm proteins to the SMN complex for assembly into snRNP core particles and suggest that the methylosome can regulate snRNP assembly.


Asunto(s)
Arginina/análogos & derivados , Arginina/metabolismo , Proteínas Portadoras/biosíntesis , Proteína Metiltransferasas/metabolismo , Western Blotting , Proteínas Portadoras/química , Supervivencia Celular , Células Cultivadas , Citoplasma/metabolismo , ADN/metabolismo , ADN Complementario/metabolismo , Electroforesis en Gel de Poliacrilamida , Inhibidores Enzimáticos/farmacología , Epítopos , Glutatión Transferasa/metabolismo , Humanos , Espectrometría de Masas , Metilación , Metiltransferasas/metabolismo , Modelos Biológicos , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Proteína-Arginina N-Metiltransferasas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Sacarosa/metabolismo , Transfección
11.
Mol Cell ; 8(6): 1207-17, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11779497

RESUMEN

Methylation of histone H3 at lysine 9 by SUV39H1 and subsequent recruitment of the heterochromatin protein HP1 has recently been linked to gene silencing. In addition to lysine 9, histone H3 methylation also occurs at lysines 4, 27, and 36. Here, we report the purification, molecular identification, and functional characterization of an H3-lysine 4-specific methyltransferase (H3-K4-HMTase), SET7. We demonstrate that SET7 methylates H3-K4 in vitro and in vivo. In addition, we found that methylation of H3-K4 and H3-K9 inhibit each other. Furthermore, H3-K4 and H3-K9 methylation by SET7 and SUV39H1, respectively, have differential effects on subsequent histone acetylation by p300. Thus, our study provides a molecular explanation to the differential effects of H3-K4 and H3-K9 methylation on transcription.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Metiltransferasas/metabolismo , Acetilación , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Proteínas de Ciclo Celular/metabolismo , ADN Complementario/genética , Silenciador del Gen , Células HeLa , Heterocromatina/química , Heterocromatina/metabolismo , Histona Acetiltransferasas , Histona Metiltransferasas , Humanos , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/aislamiento & purificación , Ratones , Datos de Secuencia Molecular , Peso Molecular , Nucleosomas/química , Nucleosomas/metabolismo , Proteína Metiltransferasas , Estructura Terciaria de Proteína , Especificidad por Sustrato , Factores de Transcripción , Factores de Transcripción p300-CBP
12.
J Biol Chem ; 273(21): 12909-13, 1998 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-9582322

RESUMEN

The widely distributed protein-L-isoaspartyl, D-aspartyl carboxylmethyltransferase (EC 2.1.1.77) is hypothesized to play a role in the repair or metabolism of deamidated and isomerized proteins that are spontaneously generated during the aging of proteins in cells. The yeast two-hybrid system was used to identify proteins that potentially interact with the methyltransferase in a cellular processing pathway. Two cDNAs, both encoding calmodulin, were isolated from a human fetal brain cDNA library using the human methyltransferase as the bait. Enzymatic assays with purified components revealed a complex set of interactions between the methyltransferase and calmodulin. Calmodulin weakly stimulated protein carboxylmethyltransferase activity in vitro at concentrations of the two proteins reflecting their representation in mammalian brain. Calmodulin stimulation of methyltransferase was observed in both the presence and absence of calcium, although the effect was greater in the presence of calcium. Native calmodulin was not a substrate for the carboxylmethyltransferase, but deamidated variants of calmodulin act as substrates for the methyltransferase, with calculated Km values of 3.6 and 8.6 microM for calcium-liganded and unliganded calmodulin, respectively. Both the effector and substrate interactions of calmodulin with the protein isoaspartyl methyltransferase likely contributed to the positive results obtained with the two-hybrid system.


Asunto(s)
Calmodulina/metabolismo , Proteína Metiltransferasas/metabolismo , Saccharomyces cerevisiae/genética , Calmodulina/genética , ADN Complementario , Activación Enzimática , Humanos , Unión Proteica , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Plant Physiol ; 115(4): 1481-9, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9414558

RESUMEN

Protein L-isoaspartate (D-aspartate) O-methyltransferases (MTs; EC 2.1.1.77) can initiate the conversion of detrimental L-isoaspartyl residues in spontaneously damaged proteins to normal L-aspartyl residues. We detected this enzyme in 45 species from 23 families representing most of the divisions of the plant kingdom. MT activity is often localized in seeds, suggesting that it has a role in their maturation, quiescence, and germination. The relationship among MT activity, the accumulation of abnormal protein L-isoaspartyl residues, and seed viability was explored in barley (Hordeum vulgare cultivar Himalaya) seeds, which contain high levels of MT. Natural aging of barley seeds for 17 years resulted in a significant reduction in MT activity and in seed viability, coupled with increased levels of "unrepaired" L-isoaspartyl residues. In seeds heated to accelerate aging, we found no reduction of MT activity, but we did observe decreased seed viability and the accumulation of isoaspartyl residues. Among populations of accelerated aged seed, those possessing the highest levels of L-isoaspartyl-containing proteins had the lowest germination percentages. These results suggest that the MT present in seeds cannot efficiently repair all spontaneously damaged proteins containing altered aspartyl residues, and their accumulation during aging may contribute to the loss of seed viability.


Asunto(s)
Extractos Vegetales/farmacología , Plantas/enzimología , Proteína Metiltransferasas/análisis , Proteína Metiltransferasas/metabolismo , Semillas/enzimología , Brassica , Citosol/enzimología , Hordeum , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa , Proteína Metiltransferasas/antagonistas & inhibidores , Semillas/fisiología , Especificidad de la Especie , Árboles
14.
J Bacteriol ; 178(2): 484-9, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8550470

RESUMEN

An expressed sequence tag homologous to cheA was previously isolated by random sequencing of Thermotoga maritima cDNA clones (C. W. Kim, P. Markiewicz, J. J. Lee, C. F. Schierle, and J. H. Miller, J. Mol. Biol. 231: 960-981, 1993). Oligonucleotides complementary to this sequence tag were synthesized and used to identify a clone from a T. maritima lambda library by using PCR. Two partially overlapping restriction fragments were subcloned from the lambda clone and sequenced. The resulting 5,251-bp sequence contained five open reading frames, including cheA, cheW, and cheY. In addition to the chemotaxis genes, the fragment also encodes a putative protein isoaspartyl methyltransferase and an open reading frame of unknown function. Both the cheW and cheY genes were individually cloned into inducible Escherichia coli expression vectors. Upon induction, both proteins were synthesized at high levels. T. maritima CheW and CheY were both soluble and were easily purified from the bulk of the endogenous E. coli protein by heat treatment at 80 degrees C for 10 min. CheY prepared in this way was shown to be active by the demonstration of Mg(2+)-dependent autophosphorylation with [32P]acetyl phosphate. In E. coli, CheW mediates the physical coupling of the receptors to the kinase CheA. The availability of a thermostable homolog of CheW opens the possibility of structural characterization of this small coupling protein, which is among the least well characterized proteins in the bacterial chemotaxis signal transduction pathway.


Asunto(s)
Proteínas Bacterianas , Quimiotaxis/genética , Bacterias Anaerobias Gramnegativas/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Escherichia coli/genética , Proteínas de Escherichia coli , Genes Bacterianos/genética , Bacterias Anaerobias Gramnegativas/genética , Histidina Quinasa , Magnesio , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Organofosfatos/metabolismo , Fosforilación , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa , Proteína Metiltransferasas/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Solubilidad
15.
Oncol Res ; 8(9): 363-9, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-8979270

RESUMEN

The human nucleolar protein p120 is highly expressed in human cancers. Its high expression in breast cancer correlates with a poor prognosis, and its overexpression in 3T3 mouse fibroblasts causes malignant transformation. This study reports that a combination of monoclonal anti-p 120 antibody (MAbp120), liposomes (Lipo), and hyperthermia (HT) resulted in enhanced antitumor effects in cultured human breast adenocarcinoma (MCF-7) and human amelanotic melanoma (LOX) cells. Monoclonal antibody uptake and intracellular localization of the protein p120 were monitored by double labeling indirect immunofluorescence. Cell growth inhibition by the combination of MAbp120 + Lipo + HT was 65% for MCF-7 cells and 96% for LOX cells. When tested on LOX cells, monoclonal antibodies (MAbB23, MAbC23) to other nucleolar proteins (B23, C23) produced only slight cytotoxicity with similar treatment protocols.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Neoplasias de la Mama/terapia , Hipertermia Inducida , Melanoma Amelanótico/terapia , Proteínas Nucleares/inmunología , Anticuerpos Monoclonales/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , División Celular , Supervivencia Celular , Terapia Combinada , Humanos , Liposomas , Melanoma Amelanótico/metabolismo , Melanoma Amelanótico/patología , Proteína Metiltransferasas , Células Tumorales Cultivadas , ARNt Metiltransferasas
16.
Protein Expr Purif ; 6(3): 312-8, 1995 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-7663167

RESUMEN

Protein L-isoaspartyl methyltransferase (PIMT) methylates isoaspartyl residues in peptides and proteins using S-adenosyl-L-methionine as the methyl donor. A cloned source of this enzyme should be useful in the identification of cellular substrates and for quantitation and localization of isoaspartyl sites in purified proteins, including recombinant proteins used as pharmaceuticals. Rat brain PIMT cDNA was amplified using the polymerase chain reaction. The reaction product was directionally cloned into the expression vector p delta blue (M. E. Brandt and L. E. Vickery, Arch. Biochem. 294, 735-740, 1992). The vector contains the strong promoter lambda pL and allows for the direct expression of cloned genes. After transformation, Escherichia coli cells containing the plasmid constitutively produced recombinant rat brain PIMT (rrPIMT) at levels between 2 and 3% of total soluble protein. Recombinant enzyme was purified to homogeneity by ammonium sulfate precipitation of the crude extract followed by anion-exchange chromatography. The specific activity was 14,000 pmol methyl groups transferred/min/mg protein at 30 degrees C using bovine gamma-globulin as the methyl acceptor. A typical yield was 12 mg of purified rrPIMT per liter of bacterial culture. Subsequent dye ligand chromatography increased the specific activity of the preparation to 16,800 pmol methyl groups transferred/min/mg protein with an overall yield of 5 mg per liter of bacterial culture. Using isoaspartyl delta sleep-inducing peptide as the methyl acceptor, rrPIMT exhibited normal Michaelis-Menten kinetics that yielded the following constants: Km (S-adenosyl-L-methionine) = 1.1 microM, Km (peptide) = 16 microM, Vmax = 60,000 pmol/min/mg.


Asunto(s)
Encéfalo/enzimología , Proteína Metiltransferasas/biosíntesis , Secuencia de Aminoácidos , Animales , Clonación Molecular , ADN Complementario/genética , Péptido Inductor del Sueño Delta/metabolismo , Escherichia coli/genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa , Proteína Metiltransferasas/genética , Ratas , Proteínas Recombinantes/biosíntesis , S-Adenosilmetionina/metabolismo
17.
J Biol Chem ; 262(21): 10398-403, 1987 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-3611066

RESUMEN

A protein methyltransferase which recognizes racemized and isomerized aspartyl residues in proteins has been identified in both the cytoplasm and nucleus of Xenopus laevis oocytes by enzymatic and immunochemical assays. The methyltransferase activity is maintained at a constant concentration of approximately 0.2 microM throughout vitellogenesis. Two forms of the enzyme can be identified on immunoblots by their cross-reactivity with an antibody prepared against the purified enzyme from bovine brain. Although both forms, with molecular weights of 27,000 and 34,000, are present in the cytoplasm, only the smaller form is found in the oocyte nucleus. A heterogeneous group of endogenous methyl-accepting proteins has been identified following the addition of S-adenosyl-L-[methyl-3H]methionine to oocyte extracts. The subcellular distribution of these methyl-accepting proteins, i.e. those proteins with unmodified or unmetabolized D- and L-isoaspartyl residues, is complementary to that of the methyltransferase. Very low levels of methyl-accepting activity are associated with nuclear proteins, which are actively methylated by the methyltransferase in vivo (O'Connor, C. M., and Germain, B. J. (1987) J. Biol. Chem. 262, 10404-10411). Yolk platelet proteins, which are inaccessible to the methyltransferase in vivo, are readily methylated by the enzyme in vitro. The specific methyl-accepting activity of the yolk proteins increases severalfold during the months required for the development of an early-to-late vitellogenic oocyte, suggesting that derivatized aspartyl residues accumulate with time in proteins which are inaccessible to the methyltransferase. The results support the hypothesis that the methyltransferase initiates either the repair or metabolism of cellular proteins which have been damaged by spontaneous racemization and deamidation processes (Clarke, S. (1985) Annu. Rev. Biochem. 54, 479-506).


Asunto(s)
Ácido Aspártico/metabolismo , Oocitos/enzimología , Proteína Metiltransferasas/metabolismo , Animales , Sitios de Unión , Femenino , Peso Molecular , Oogénesis , Distribución Tisular , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA