Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 111(4): 394-8, 2005 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-15687125

RESUMEN

BACKGROUND: Cardiac conduction occurs in an electrical syncytium of excitable cells connected by gap junctions. Disruption of these electrophysiological properties causes conduction slowing or block. Depending on the location of affected cells within the heart, this has the potential to result in clinical syndromes such as atrioventricular block. With a view to developing gene therapy strategies for repairing cardiac conduction defects, we sought to establish whether the phenotype of fibroblasts can be modified by gene transfer to produce cells capable of electrical excitation and coupling. METHODS AND RESULTS: High-titer lentiviral vectors encoding MyoD, a myogenic transcription factor, and connexin43, a gap junction protein, were produced by established methods. Human dermal fibroblasts (HDFs) were efficiently (>80%) transduced at a multiplicity of infection of 50. HDFs transduced with the MyoD-encoding vector underwent myogenic conversion, as evidenced by myotube formation and detection of muscle-specific proteins. Importantly, calcium transients indicative of membrane excitability were observed in MyoD-induced myotubes after loading with a calcium-sensitive dye and electrical stimulation. Transients from adjacent myotubes displayed different excitation thresholds, indicating an absence of coupling between cells, consistent with skeletal muscle biology. In contrast, simultaneous transduction of HDFs with MyoD and connexin43-encoding vectors resulted in the appearance of transients in adjacent myotubes with identical thresholds, indicative of electrical coupling. Notably, dye transfer studies confirmed gap junctional intercellular communication. CONCLUSIONS: Fibroblasts can be genetically modified to produce excitable cells capable of electrical coupling. These observations strengthen the prospect of developing gene-based strategies for repairing cardiac conduction defects.


Asunto(s)
Sistema de Conducción Cardíaco/citología , Animales , Señalización del Calcio , Comunicación Celular , Diferenciación Celular , Células Cultivadas/citología , Células Cultivadas/fisiología , Colorantes/análisis , Conexina 43/genética , Conexina 43/fisiología , ADN Complementario/genética , Fibroblastos/citología , Fibroblastos/fisiología , Uniones Comunicantes/fisiología , Uniones Comunicantes/ultraestructura , Terapia Genética , Vectores Genéticos/genética , Células Gigantes/fisiología , Células HeLa/citología , Sistema de Conducción Cardíaco/fisiología , Humanos , Lentivirus/genética , Proteína MioD/genética , Proteína MioD/fisiología , Ratas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/fisiología , Piel/citología , Transducción Genética
2.
Development ; 125(4): 777-90, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9435297

RESUMEN

In the avian embryo, previous work has demonstrated that the notochord provides inductive signals to activate myoD and pax1 regulatory genes, which are expressed in the dorsal and ventral somite cells that give rise to myotomal and sclerotomal lineages. Here, we present bead implantation and antisense inhibition experiments that show that Sonic hedgehog is both a sufficient and essential notochord signal molecule for myoD and pax1 activation in somites. Furthermore, we show that genes of the Sonic hedgehog signal response pathway, specifically patched, the Sonic hedgehog receptor, and gli and gli2/4, zinc-finger transcription factors, are activated in coordination with somite formation, establishing that Sonic hedgehog response genes play a regulatory role in coordinating the response of somites to the constitutive notochord Sonic hedgehog signal. Furthermore, the expression of patched, gli and gli2/4 is differentially patterned in the somite, providing mechanisms for differentially transducing the Sonic hedgehog signal to the myotomal and sclerotomal lineages. Finally, we show that the activation of gli2/4 is controlled by the process of somite formation and signals from the surface ectoderm, whereas upregulation of patched and activation of gli is controlled by the process of somite formation and a Sonic hedgehog signal. The Sonic hedgehog signal response genes, therefore, have important functions in regulating the initiation of the Sonic hedgehog response in newly forming somites and in regulating the patterned expression of myoD and pax1 in the myotomal and sclerotomal lineages following somite formation.


Asunto(s)
Proteínas/genética , Proteínas/fisiología , Codorniz/embriología , Codorniz/genética , Transactivadores , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Embrión de Pollo , ADN Complementario/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Hibridación in Situ , Factores de Transcripción de Tipo Kruppel , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Proteína MioD/genética , Proteína MioD/fisiología , Notocorda/embriología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/fisiología , Factores de Transcripción Paired Box , Receptores Patched , Receptores de Superficie Celular , Homología de Secuencia de Aminoácido , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Proteína con Dedos de Zinc GLI1 , Proteína Gli2 con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA