Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Comp Neurol ; 529(5): 929-956, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32678476

RESUMEN

As stressful environment is a potent modulator of feeding, we seek in the present work to decipher the neuroanatomical basis for an interplay between stress and feeding behaviors. For this, we combined anterograde and retrograde tracing with immunohistochemical approaches to investigate the patterns of projections between the dorsomedial division of the bed nucleus of the stria terminalis (BNST), well connected to the amygdala, and hypothalamic structures such as the paraventricular (PVH) and dorsomedial (DMH), the arcuate (ARH) nuclei and the lateral hypothalamic areas (LHA) known to control feeding and motivated behaviors. We particularly focused our study on afferences to proopiomelanocortin (POMC), agouti-related peptide (AgRP), melanin-concentrating-hormone (MCH) and orexin (ORX) neurons characteristics of the ARH and the LHA, respectively. We found light to intense innervation of all these hypothalamic nuclei. We particularly showed an innervation of POMC, AgRP, MCH and ORX neurons by the dorsomedial and dorsolateral divisions of the BNST. Therefore, these results lay the foundation for a better understanding of the neuroanatomical basis of the stress-related feeding behaviors.


Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Hipotálamo/anatomía & histología , Ratones/anatomía & histología , Vías Nerviosas/anatomía & histología , Núcleos Septales/anatomía & histología , Proteína Relacionada con Agouti/análisis , Animales , Transporte Axonal , Conducta Alimentaria/fisiología , Conducta Alimentaria/psicología , Hormonas Hipotalámicas/análisis , Proteínas Luminiscentes/análisis , Masculino , Melaninas/análisis , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/análisis , Neuronas/química , Neuronas/clasificación , Neuronas/ultraestructura , Orexinas/análisis , Fitohemaglutininas/análisis , Hormonas Hipofisarias/análisis , Proproteína Convertasas/análisis , Virus de la Rabia , Especificidad de la Especie , Tirosina 3-Monooxigenasa/análisis , Proteína Fluorescente Roja
2.
Int J Obes (Lond) ; 43(11): 2143-2150, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30718818

RESUMEN

OBJECTIVES: Dieting often fails because weight loss triggers strong counter-regulatory biological responses such as increased hunger and hypometabolism that are thought to be critically dependent on the master fuel sensor in the mediobasal hypothalamus (MBH). Because prolonged starvation has been shown to increase AgRP and NPY, the expression level of these two orexigenic genes has been taken as an experimental readout for the presence or absence of hunger. Roux-en-Y gastric bypass (RYGB) surgery leads to a significant weight loss without inducing the associated hunger, indicating possible changes in hypothalamic neuropeptides and/or signaling. Our goal was to assess key genes in the MBH involved in regulating body weight, appetite, and inflammation/oxidative stress after RYGB surgery in mice. METHODS: Obese mice on a high-fat diet were subjected to either sham or RYGB surgery, or caloric restriction to match the weight of RYGB group. Chow-fed mice without surgery served as an additional control group. After 2 or 12 weeks post-surgery, hypothalamic genes were analyzed by real-time qPCR. RESULTS: During the rapid weight loss phase at 2 weeks after RYGB surgery, hypothalamic AgRP and NPY gene expression was not increased compared to mice with sham surgery, indicating that the mice are not hungry. In contrast, the same weight loss induced by caloric restriction promptly triggered increased AgRP and NPY expression. This differential effect of RYGB and caloric restriction was no longer observed during the weight-maintenance phase at 12 weeks after surgery. A similar differential effect was observed for ObRb, but not for POMC and CART expression. Furthermore, RAGE and IBA-1, two markers for inflammation/oxidative stress, were significantly suppressed after RYGB compared to caloric restriction at 2 weeks post-surgery. CONCLUSIONS: These findings suggest that RYGB prevents the biologically adaptive hunger response triggered by undernutrition and weight loss, and suppresses weight loss-induced hypothalamic inflammation markers.


Asunto(s)
Proteína Relacionada con Agouti/análisis , Restricción Calórica , Dieta Alta en Grasa , Derivación Gástrica , Hipotálamo/química , Neuropéptido Y/análisis , Animales , Ratones
3.
Sci Rep ; 7(1): 17984, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269733

RESUMEN

The ability to regulate food intake is critical to survival. The hypothalamus is central to this regulation, integrating peripheral signals of energy availability. Although our understanding of hunger in rodents is advanced, an equivalent understanding in birds is lacking. In particular, the relationship between peripheral energy indices and hypothalamic 'hunger' peptides, agouti-related protein (AgRP), pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) is poorly understood. Here, we compare AgRP, POMC and NPY RNA levels in the hypothalamus of Red Junglefowl chicks raised under ad libitum, chronic restriction and intermittent feeding regimens. Hypothalamic gene expression differed between chronically and intermittently restricted birds, confirming that different restriction regimens elicit different patterns of hunger. By assessing the relationship between hypothalamic gene expression and carcass traits, we show for the first time in birds that AgRP and POMC are responsive to fat-related measures and therefore represent long-term energy status. Chronically restricted birds, having lower indices of fat, show elevated hunger according to AgRP and POMC. NPY was elevated in intermittently fasted birds during fasting, suggesting a role as a short-term index of hunger. The different physiological and neuroendocrine responses to quantitative versus temporal feed restriction provide novel insights into the divergent roles of avian hunger neuropeptides.


Asunto(s)
Pollos/fisiología , Hambre/fisiología , Proteína Relacionada con Agouti/análisis , Proteína Relacionada con Agouti/fisiología , Animales , Metabolismo Energético/fisiología , Femenino , Privación de Alimentos/fisiología , Hipotálamo/química , Hipotálamo/fisiología , Masculino , Neuropéptido Y/análisis , Neuropéptido Y/fisiología , Proopiomelanocortina/análisis , Proopiomelanocortina/fisiología
4.
J Endocrinol ; 234(1): 41-56, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28455431

RESUMEN

Early life diet influences metabolic programming, increasing the risk for long-lasting metabolic ill health. Neonatally overfed rats have an early increase in leptin that is maintained long term and is associated with a corresponding elevation in body weight. However, the immediate and long-term effects of neonatal overfeeding on hypothalamic anorexigenic pro-opiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP)/neuropeptide Y (NPY) circuitry, and if these are directly mediated by leptin, have not yet been examined. Here, we examined the effects of neonatal overfeeding on leptin-mediated development of hypothalamic POMC and AgRP/NPY neurons and whether these effects can be normalised by neonatal leptin antagonism in male Wistar rats. Neonatal overfeeding led to an acute (neonatal) resistance of hypothalamic neurons to exogenous leptin, but this leptin resistance was resolved by adulthood. While there were no effects of neonatal overfeeding on POMC immunoreactivity in neonates or adults, the neonatal overfeeding-induced early increase in arcuate nucleus (ARC) AgRP/NPY fibres was reversed by adulthood so that neonatally overfed adults had reduced NPY immunoreactivity in the ARC compared with controls, with no further differences in AgRP immunoreactivity. Short-term neonatal leptin antagonism did not reverse the excess body weight or hyperleptinaemia in the neonatally overfed, suggesting factors other than leptin may also contribute to the phenotype. Our findings show that changes in the availability of leptin during early life period influence the development of hypothalamic connectivity short term, but this is partly resolved by adulthood indicating an adaptation to the metabolic mal-programming effects of neonatal overfeeding.


Asunto(s)
Animales Recién Nacidos/fisiología , Dieta , Hipotálamo/fisiología , Leptina/fisiología , Hipernutrición , Proteína Relacionada con Agouti/análisis , Proteína Relacionada con Agouti/fisiología , Animales , Núcleo Arqueado del Hipotálamo/química , Resistencia a Medicamentos , Femenino , Hipotálamo/química , Leptina/antagonistas & inhibidores , Leptina/farmacología , Tamaño de la Camada , Masculino , Neuronas/fisiología , Neuropéptido Y/análisis , Neuropéptido Y/fisiología , Proopiomelanocortina/análisis , Proopiomelanocortina/fisiología , Ratas , Ratas Wistar
5.
Elife ; 42015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26329458

RESUMEN

Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. Agouti related protein (AGRP)-expressing neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed Proopiomelanocortin (POMC)-expressing neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders.


Asunto(s)
Perfilación de la Expresión Génica , Hipotálamo/fisiología , Células Receptoras Sensoriales/fisiología , Pérdida de Peso , Proteína Relacionada con Agouti/análisis , Animales , Hipotálamo/citología , Ratones , Proopiomelanocortina/análisis , Células Receptoras Sensoriales/química
6.
Br J Nutr ; 108(12): 2286-95, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22874082

RESUMEN

The interruption of lactation for a short period, without the use of pharmacological substances or maternal separation, causes offspring malnutrition and hypoleptinaemia and programmes for metabolic disorders such as higher body weight and adiposity, hyperphagia, hyperleptinaemia and central leptin resistance in adulthood. Here, in order to clarify the mechanisms underlying the phenotype observed in adult early-weaned (EW) rats, we studied the expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) in different hypothalamic nuclei by immunohistochemistry and Western blot. In the EW group, the teats of lactating rats were blocked with a bandage to interrupt lactation during the last 3 d, while control pups had free access to milk throughout the entire lactation period. At age 180 d, EW offspring showed higher NPY staining in the paraventricular nucleus (PVN), as well as NPY protein content (+68 %) in total hypothalamus than control ones. AgRP showed no changes in staining or Western blot. POMC content was not affected; however, its distribution pattern was altered. CART-positive cells of EW offspring had lower immunoreactivity associated with reduced cell number in the PVN and lower protein content ( - 38 %) in total hypothalamus. The present data indicate that precocious weaning can imprint the neuronal circuitry, especially in the PVN, and cause a long-term effect on the expression of specific orexigenic and anorexigenic neuropeptides, such as NPY and CART, that can be caused by leptin resistance and are coherent with the hyperphagia observed in these animals.


Asunto(s)
Proteína Relacionada con Agouti/análisis , Expresión Génica , Proteínas del Tejido Nervioso/análisis , Neuropéptido Y/análisis , Núcleo Hipotalámico Paraventricular/química , Destete , Factores de Edad , Animales , Western Blotting , Femenino , Hipotálamo/química , Inmunohistoquímica , Lactancia , Masculino , Proopiomelanocortina/análisis , Ratas , Ratas Wistar
7.
Exp Biol Med (Maywood) ; 235(7): 833-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20558837

RESUMEN

The aim of the study was to evaluate the impact of carbohydrate-to-fat ratio on body weight and appetite regulation in Wistar rats. Twenty-four Wistar rats were randomized to three dietary groups (n = 8): normal carbohydrate diet (NC), low-carbohydrate diet (LC) and high-carbohydrate diet (HC) for 12 weeks. Body weight and food intake were recorded. Circulating leptin and insulin levels were measured by radioimmunoassay method. The expression levels of leptin receptor, insulin receptor, orexin, neuropeptide Y (NPY), agouti-related protein (AgRP) and melanocortin-4 receptor (MC-4R) in the hypothalamus were also measured by realtime polymerase chain reaction (PCR). In the LC group, food intake reduced while body weight increased significantly compared with the NC and HC groups. Plasma leptin levels increased in the LC (18.5 +/- 8.2 ng/mL) group compared with the NC (8.6 +/- 3.8 ng/mL, P < 0.001) and HC (6.6 +/- 1.9 ng/mL, P < 0.001) groups. Realtime reverse transcription-PCR revealed a decrease in the hypothalamic expression level of only leptin receptor in the LC (0.764, 0.471-4.648 copy/mL) and HC (0.357, 0.129-0.781 copy/mL) groups compared with the NC (1.323, 0.616-2.392 copy/mL; P = 0.01) group, and that there was no significant change in those of insulin receptor, AgRP, Orexin, NPY and MC-4R. Low-carbohydrate, high-fat diet raised body weight, which led to a rising of circulating leptin levels and a reduced expression of leptin receptor in the hypothalamus.


Asunto(s)
Regulación del Apetito/fisiología , Peso Corporal/fisiología , Carbohidratos de la Dieta/farmacología , Grasas de la Dieta/farmacología , Proteína Relacionada con Agouti/análisis , Animales , Ingestión de Alimentos/fisiología , Hipotálamo/química , Insulina/sangre , Péptidos y Proteínas de Señalización Intracelular/análisis , Leptina/sangre , Masculino , Neuropéptido Y/análisis , Neuropéptidos/análisis , Orexinas , Reacción en Cadena de la Polimerasa , Ratas , Ratas Wistar/metabolismo , Ratas Wistar/fisiología , Receptor de Insulina/análisis , Receptor de Melanocortina Tipo 4/análisis , Receptores de Leptina/análisis
8.
Endocrinology ; 151(2): 702-13, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20016030

RESUMEN

Nutritional programming, taking place in utero or early after birth, is closely linked with metabolic and appetite disorders in adulthood. Following the hypothesis that nutritional programming impacts hypothalamic neuronal organization, we report on discrepancies of multiple molecular and cellular early events that take place in the hypothalamus of rats submitted to intrauterine growth restriction (IUGR). Expression screening performed on hypothalami from IUGR rats at birth and at postnatal d 12 identified changes in gene expression of neurodevelopmental process (cell differentiation and cytoskeleton organization). Additionally, a slight reduction of agouti-related protein and a strong reduction of alpha-MSH-immunoreactive efferent fibers were demonstrated in the paraventricular nucleus of IUGR rats. Rapid catch-up growth of IUGR rats, 5 d after birth, had a positive effect on neurodevelopmental factors and on neuronal projections emanating from the arcuate nucleus. The molecular and cellular anomalies detected in IUGR rats can be related to the reduced and delayed plasma leptin surge from d 0-16 when compared with control and IUGR rats with catch-up growth. However, the ability of leptin to activate intracellular signaling in arcuate nucleus neurons was not reduced in IUGR rats. Other mechanism such as epigenetic regulation of the major appetite-regulating neuropeptides genes was analyzed in parallel with their mRNA expression during postnatal development. This study reveals the importance of an early catch-up growth that reduces abnormal organization of hypothalamic pathways involved in energy homeostasis, whereas protein restriction, maintained during postnatal development leads to an important immaturity of the hypothalamus.


Asunto(s)
Retardo del Crecimiento Fetal/fisiopatología , Hipotálamo/fisiología , Leptina/farmacología , Proteína Relacionada con Agouti/análisis , Proteína Relacionada con Agouti/genética , Animales , Núcleo Arqueado del Hipotálamo/fisiopatología , Peso Corporal/genética , Peso Corporal/fisiología , ADN/genética , ADN/aislamiento & purificación , Metilación de ADN , Ingestión de Energía , Femenino , Retardo del Crecimiento Fetal/genética , Regulación de la Expresión Génica , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiopatología , Masculino , Fibras Nerviosas/fisiología , Fibras Nerviosas/ultraestructura , Proteínas del Tejido Nervioso/genética , Neuropéptido Y/genética , Núcleo Hipotalámico Paraventricular/fisiopatología , Proopiomelanocortina/genética , ARN/genética , ARN/aislamiento & purificación , Ratas , Valores de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , alfa-MSH/análisis
9.
Int J Obes (Lond) ; 33(1): 115-22, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18982008

RESUMEN

OBJECTIVE: Key appetite regulators and their receptors are already present in the fetal hypothalamus, and may respond to hormones such as leptin. Intrauterine food restriction or hyperglycemia can reprogram these circuits, possibly predisposing individuals to adverse health outcomes in adulthood. Given the global obesity epidemic, maternal overweight and obesity is becoming more prevalent. Earlier, we observed rapid growth of pups from obese dams during the suckling period. However, it is unclear whether this is because of alterations in leptin and hypothalamic appetite regulators at birth. DESIGN: Female Sprague-Dawley rats were fed palatable high-fat diet (HFD) or chow for 5 weeks to induce obesity before mating. The same diet continued during gestation. At day 1, after birth, plasma and hypothalamus were collected from male and female pups. MEASUREMENTS: Body weight and organ mass were recorded. Leptin and insulin levels were measured in the plasma by radioimmunoassay. Hypothalamic mRNA expression of neuropeptide-Y (NPY), pro-opiomelanocortin, leptin receptor and its downstream signal, STAT3 (signal transducer and activator of transcription 3), were measured using real-time PCR. RESULTS: Body and organ weights of pups from obese dams were similar to those from lean dams, across both genders. However, plasma leptin levels were significantly lower in offspring from obese dams (male: 0.53+/-0.13 vs 1.05+/-0.21 ng ml(-1); female: 0.33+/-0.09 vs 2.12+/-0.57 ng ml(-1), respectively; both P<0.05). Hypothalamic mRNA expression of NPY, pro-opiomelanocortin, leptin receptor and STAT3 were also significantly lower in pups from obese dams. CONCLUSION: Long-term maternal obesity, together with lower leptin levels in pups from obese dams may contribute to the lower expression of key appetite regulators on day 1 of life, suggesting altered intrauterine neuron development in response to intrauterine overnutrition, which may contribute to eating disorders later in life.


Asunto(s)
Animales Recién Nacidos/metabolismo , Regulación del Apetito , Hipotálamo/metabolismo , Leptina/sangre , Fenómenos Fisiologicos Nutricionales Maternos , Obesidad/metabolismo , Proteína Relacionada con Agouti/análisis , Proteína Relacionada con Agouti/genética , Animales , Biomarcadores/análisis , Femenino , Hipotálamo/química , Insulina/sangre , Masculino , Neuropéptido Y/análisis , Neuropéptido Y/genética , Embarazo , Proopiomelanocortina/análisis , Proopiomelanocortina/genética , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Receptores de Leptina/análisis , Factor de Transcripción STAT3/análisis , Factor de Transcripción STAT3/genética , Transducción de Señal/fisiología
10.
Alcohol Clin Exp Res ; 32(2): 266-76, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18162070

RESUMEN

BACKGROUND: The melanocortin (MC) system is composed of peptides that are cleaved from the polypeptide precursor proopiomelanocortin (POMC). Recent pharmacologic and genetic evidence suggests that MC receptor (MCR) signaling modulates neurobiologic responses to ethanol and ethanol intake. Because ethanol decreases POMC mRNA levels, we determined if exposure to an ethanol-containing diet (ED) would significantly reduce central immunoreactivity of the MC peptide alpha-MSH in rats. We also determined if ethanol exposure would alter the immunoreactivity of agouti-related protein (AgRP), an endogenous MCR antagonist. METHODS: Male Sprague-Dawley rats were given 18 days of access to normal rodent chow or a control diet (CD), or short-term (4 days) or long-term (18 days) access to an ED. At the end of the study, rats were perfused with 4% paraformaldehyde and their brains were sectioned into two sets for processing with alpha-MSH or AgRP immunohistochemistry. RESULTS: Rats exposed to an ED showed significant reductions of central alpha-MSH immunoreactivity relative to rats exposed to a control diet (CD) or normal rodent chow. Ethanol-induced reductions of alpha-MSH immunoreactivity were site-specific and were noted in regions of the hypothalamus and extended amygdala, as well as the paraventricular nucleus of the thalamus. Because there were no differences in body weights or caloric intake between the CD and ED groups, reductions of alpha-MSH immunoreactivity in ED-treated rats are best explained by ethanol exposure rather than altered energy balance. No significant ethanol-induced alterations in hypothalamic AgRP immunoreactivity were detected. CONCLUSIONS: The present study shows that ethanol site specifically reduces alpha-MSH immunoreactivity in rat brain. These observations, in tandem with recent pharmacologic and genetic studies, suggest that the endogenous MC system modulates neurobiologic responses to ethanol. Thus, compounds which target MCRs may prove to have therapeutic value in the treatment of excessive ethanol consumption and/or the symptoms associated with ethanol withdrawal.


Asunto(s)
Alcoholismo/patología , Encéfalo/patología , alfa-MSH/análisis , Proteína Relacionada con Agouti/análisis , Amígdala del Cerebelo/patología , Animales , Peso Corporal/fisiología , Mapeo Encefálico , Recuento de Células , Hipotálamo/patología , Técnicas para Inmunoenzimas , Masculino , Motivación , Neuronas/patología , Sustancia Gris Periacueductal/patología , Ratas , Ratas Sprague-Dawley , Valores de Referencia , Núcleos Septales/patología , Transducción de Señal/fisiología , Tálamo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA