Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell Endocrinol ; 514: 110876, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32473184

RESUMEN

Seasonal rhythms in energy balance are well documented across temperate and equatorial zones animals. The long-term regulated changes in seasonal physiology consists of a rheostatic system that is essential to successful time annual cycles in reproduction, hibernation, torpor, and migration. Most animals use the annual change in photoperiod as a reliable and robust environmental cue to entrain endogenous (i.e. circannual) rhythms. Research over the past few decades has predominantly examined the role of first order neuroendocrine peptides for the rheostatic changes in energy balance. These anorexigenic and orexigenic neuropeptides in the arcuate nucleus include neuropeptide y (Npy), agouti-related peptide (Agrp), cocaine and amphetamine related transcript (Cart) and pro-opiomelanocortin (Pomc). Recent studies also indicate that VGF nerve growth factor inducible (Vgf) in the arcuate nucleus is involved in the seasonal regulation of energy balance. In situ hybridization, qPCR and RNA-sequencing studies have identified that Pomc expression across fish, avian and mammalian species, is a neuroendocrine marker that reflects seasonal energetic states. Here we highlight that long-term changes in arcuate Pomc and Vgf expression is conserved across species and may provide rheostatic regulation of seasonal energy balance.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Factores de Crecimiento Nervioso/farmacología , Neuropéptidos/metabolismo , Proopiomelanocortina/farmacología , Proteína Relacionada con Agouti/farmacología , Proteína Relacionada con Agouti/fisiología , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Energético/fisiología , Humanos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/farmacología , Proteínas del Tejido Nervioso/fisiología , Neuropéptido Y/farmacología , Neuropéptido Y/fisiología , Neuropéptidos/efectos de los fármacos , Sistemas Neurosecretores/efectos de los fármacos , Sistemas Neurosecretores/metabolismo
2.
Sci Rep ; 7(1): 17984, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269733

RESUMEN

The ability to regulate food intake is critical to survival. The hypothalamus is central to this regulation, integrating peripheral signals of energy availability. Although our understanding of hunger in rodents is advanced, an equivalent understanding in birds is lacking. In particular, the relationship between peripheral energy indices and hypothalamic 'hunger' peptides, agouti-related protein (AgRP), pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) is poorly understood. Here, we compare AgRP, POMC and NPY RNA levels in the hypothalamus of Red Junglefowl chicks raised under ad libitum, chronic restriction and intermittent feeding regimens. Hypothalamic gene expression differed between chronically and intermittently restricted birds, confirming that different restriction regimens elicit different patterns of hunger. By assessing the relationship between hypothalamic gene expression and carcass traits, we show for the first time in birds that AgRP and POMC are responsive to fat-related measures and therefore represent long-term energy status. Chronically restricted birds, having lower indices of fat, show elevated hunger according to AgRP and POMC. NPY was elevated in intermittently fasted birds during fasting, suggesting a role as a short-term index of hunger. The different physiological and neuroendocrine responses to quantitative versus temporal feed restriction provide novel insights into the divergent roles of avian hunger neuropeptides.


Asunto(s)
Pollos/fisiología , Hambre/fisiología , Proteína Relacionada con Agouti/análisis , Proteína Relacionada con Agouti/fisiología , Animales , Metabolismo Energético/fisiología , Femenino , Privación de Alimentos/fisiología , Hipotálamo/química , Hipotálamo/fisiología , Masculino , Neuropéptido Y/análisis , Neuropéptido Y/fisiología , Proopiomelanocortina/análisis , Proopiomelanocortina/fisiología
3.
J Endocrinol ; 234(1): 41-56, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28455431

RESUMEN

Early life diet influences metabolic programming, increasing the risk for long-lasting metabolic ill health. Neonatally overfed rats have an early increase in leptin that is maintained long term and is associated with a corresponding elevation in body weight. However, the immediate and long-term effects of neonatal overfeeding on hypothalamic anorexigenic pro-opiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP)/neuropeptide Y (NPY) circuitry, and if these are directly mediated by leptin, have not yet been examined. Here, we examined the effects of neonatal overfeeding on leptin-mediated development of hypothalamic POMC and AgRP/NPY neurons and whether these effects can be normalised by neonatal leptin antagonism in male Wistar rats. Neonatal overfeeding led to an acute (neonatal) resistance of hypothalamic neurons to exogenous leptin, but this leptin resistance was resolved by adulthood. While there were no effects of neonatal overfeeding on POMC immunoreactivity in neonates or adults, the neonatal overfeeding-induced early increase in arcuate nucleus (ARC) AgRP/NPY fibres was reversed by adulthood so that neonatally overfed adults had reduced NPY immunoreactivity in the ARC compared with controls, with no further differences in AgRP immunoreactivity. Short-term neonatal leptin antagonism did not reverse the excess body weight or hyperleptinaemia in the neonatally overfed, suggesting factors other than leptin may also contribute to the phenotype. Our findings show that changes in the availability of leptin during early life period influence the development of hypothalamic connectivity short term, but this is partly resolved by adulthood indicating an adaptation to the metabolic mal-programming effects of neonatal overfeeding.


Asunto(s)
Animales Recién Nacidos/fisiología , Dieta , Hipotálamo/fisiología , Leptina/fisiología , Hipernutrición , Proteína Relacionada con Agouti/análisis , Proteína Relacionada con Agouti/fisiología , Animales , Núcleo Arqueado del Hipotálamo/química , Resistencia a Medicamentos , Femenino , Hipotálamo/química , Leptina/antagonistas & inhibidores , Leptina/farmacología , Tamaño de la Camada , Masculino , Neuronas/fisiología , Neuropéptido Y/análisis , Neuropéptido Y/fisiología , Proopiomelanocortina/análisis , Proopiomelanocortina/fisiología , Ratas , Ratas Wistar
4.
Artículo en Inglés | MEDLINE | ID: mdl-27387442

RESUMEN

Maintaining adaptive control of behavior and physiology is the main strategy used by animals in responding to changes of food resources. To investigate the effects of random food deprivation (FD) and refeeding on energy metabolism and behavior in Apodemus chevrieri, we acclimated adult males to FD for 4weeks, then refed them ad libitum for 4weeks (FD-Re group). During the period of FD, animals were fed ad libitum for 4 randomly assigned days each week, and deprived of food the other 3days. A control group was fed ad libitum for 8weeks. At 4 and 8weeks we measured body mass, thermogenesis, serum leptin levels, body composition, gastrointestinal tract morphology, behavior and hypothalamic neuropeptide expression. At 4weeks, food intake, gastrointestinal mass, neuropeptide Y (NPY) and agouti-related protein (AgRP) mRNA expressions increased and thermogenesis, leptin levels, pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) expressions decreased in FD compared with controls. FD also showed more resting behavior and less activity than the controls on ad libitum day. There were no differences between FD-Re and controls at 8weeks, indicating significant plasticity. These results suggested that animals can compensate for unpredictable reduction in food availability by increasing food intake and reducing energy expended through thermogenesis and activity. Leptin levels, NPY, AgRP, POMC, and CART mRNA levels may also regulate energy metabolism. Significant plasticity in energy metabolism and behavior was shown by A. chevrieri over a short timescale, allowing them to adapt to food shortages in nutritionally unpredictable environments.


Asunto(s)
Privación de Alimentos/fisiología , Hipotálamo/fisiología , Murinae/fisiología , Neuropéptidos/fisiología , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/fisiología , Animales , Metabolismo Basal/genética , Metabolismo Basal/fisiología , Conducta Animal/fisiología , Composición Corporal , Peso Corporal , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Metabolismo Energético , Leptina/sangre , Masculino , Murinae/genética , Murinae/psicología , Proteínas del Tejido Nervioso/genética , Neuropéptido Y/genética , Neuropéptido Y/fisiología , Neuropéptidos/genética , Proopiomelanocortina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Termogénesis/genética , Termogénesis/fisiología
5.
Med Hypotheses ; 93: 30-3, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27372853

RESUMEN

Over the past decades, life-styles changing have led to exacerbated food and caloric intake and a reduction in energy expenditure. Obesity, main outcome of these changes, increases the risk for developing type 2 diabetes, cardiovascular disease and metabolic syndrome, the leading cause of death in adult and middle age population. Body weight and energy homeostasis are maintained via complex interactions between orexigenic and anorexigenic neuropeptides that take place predominantly in the hypothalamus. Overeating may disrupt the mechanisms of feeding control, by decreasing the expression of proopiomelanocortin (POMC) and α-melanocyte stimulating hormone (α-MSH) and increasing orexigenic neuropeptide Y (NPY) and agouti-related peptide (AgRP), which leads to a disturbance in appetite control and energy balance. Studies have shown that regular physical exercise might decrease body-weight, food intake and improve the metabolic profile, however until the currently there is no consensus about its effects on the expression of orexigenic/anorexigenic neuropeptides expression. Therefore, we propose that the type and length of physical exercise affect POMC/αMSH and NPY/AgRP systems differently and plays an important role in feeding behavior. Moreover, based on the present reports, we hypothesize that increased POMC/αMSH overcome NPY/AgRP expression decreasing food intake in long term physical exercise and that results in amelioration of several conditions related to overweight and obesity.


Asunto(s)
Regulación del Apetito , Ejercicio Físico , Hipotálamo/fisiología , Neuropéptidos/fisiología , Proteína Relacionada con Agouti/fisiología , Animales , Peso Corporal , Ingestión de Alimentos , Metabolismo Energético , Conducta Alimentaria , Humanos , Modelos Teóricos , Neuropéptido Y/fisiología , Obesidad , Sobrepeso , Proopiomelanocortina/fisiología , alfa-MSH/fisiología
6.
Nat Neurosci ; 19(5): 734-741, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27019015

RESUMEN

In the face of starvation, animals will engage in high-risk behaviors that would normally be considered maladaptive. Starving rodents, for example, will forage in areas that are more susceptible to predators and will also modulate aggressive behavior within a territory of limited or depleted nutrients. The neural basis of these adaptive behaviors likely involves circuits that link innate feeding, aggression and fear. Hypothalamic agouti-related peptide (AgRP)-expressing neurons are critically important for driving feeding and project axons to brain regions implicated in aggression and fear. Using circuit-mapping techniques in mice, we define a disynaptic network originating from a subset of AgRP neurons that project to the medial nucleus of the amygdala and then to the principal bed nucleus of the stria terminalis, which suppresses territorial aggression and reduces contextual fear. We propose that AgRP neurons serve as a master switch capable of coordinating behavioral decisions relative to internal state and environmental cues.


Asunto(s)
Agresión/fisiología , Proteína Relacionada con Agouti/fisiología , Amígdala del Cerebelo/fisiología , Miedo/fisiología , Hipotálamo/fisiología , Fragmentos de Péptidos/fisiología , Núcleos Septales/fisiología , Inanición/fisiopatología , Proteína Relacionada con Agouti/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Técnicas de Sustitución del Gen , Hipotálamo/metabolismo , Masculino , Ratones , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Neuronas/fisiología , Fragmentos de Péptidos/metabolismo , Núcleos Septales/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(13): 3645-50, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976589

RESUMEN

Currently available inducible Cre/loxP systems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-targeting system by introducing an in-frame nonsense mutation into the coding sequence of Cre recombinase (nsCre). Mutant mRNAs transcribed from nsCre transgene can be efficiently translated into full-length, functional Cre recombinase in the presence of nonsense suppressors such as aminoglycosides. In a proof-of-concept model, GABA signaling from hypothalamic neurons expressing agouti-related peptide (AgRP) was genetically inactivated within 4 d after treatment with a synthetic aminoglycoside. Disruption of GABA synthesis in AgRP neurons in young adult mice led to a dramatic loss of body weight due to reduced food intake and elevated energy expenditure; they also manifested glucose intolerance. In contrast, older mice with genetic inactivation of GABA signaling by AgRP neurons had only transient reduction of feeding and body weight; their energy expenditure and glucose tolerance were unaffected. These results indicate that GABAergic signaling from AgRP neurons plays a key role in the control of feeding and metabolism through an age-dependent mechanism. This new genetic technique will augment current tools used to elucidate mechanisms underlying many physiological and neurological processes.


Asunto(s)
Metabolismo Energético/genética , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Ácido gamma-Aminobutírico/fisiología , Proteína Relacionada con Agouti/deficiencia , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/fisiología , Animales , Ingeniería Genética , Glutamato Descarboxilasa/deficiencia , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/fisiología , Hipotálamo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal
8.
Mol Psychiatry ; 19(7): 752-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24732669

RESUMEN

The brain receives and integrates environmental and metabolic information, transforms these signals into adequate neuronal circuit activities, and generates physiological behaviors to promote energy homeostasis. The responsible neuronal circuitries show lifetime plasticity and guaranty metabolic health and survival. However, this highly evolved organization has become challenged nowadays by chronic overload with nutrients and reduced physical activity, which results in an ever-increasing number of obese individuals worldwide. Research within the last two decades has aimed to decipher the responsible molecular and cellular mechanisms for regulation of the hypothalamic melanocortin neurons, which have a key role in the control of food intake and energy metabolism. This review maps the central connections of the melanocortin system and highlights its global position and divergent character in physiological and pathological metabolic events. Moreover, recently uncovered molecular and cellular processes in hypothalamic neurons and glial cells that drive plastic morphological and physiological changes in these cells, and account for regulation of food intake and energy metabolism, are brought into focus. Finally, potential functional interactions between metabolic disorders and psychiatric diseases are discussed.


Asunto(s)
Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Hipotálamo/fisiología , Melanocortinas/fisiología , Proopiomelanocortina/fisiología , Proteína Relacionada con Agouti/fisiología , Animales , Humanos , Hipotálamo/fisiopatología , Trastornos Mentales/fisiopatología , Modelos Neurológicos , Neuroglía/fisiología , Neuronas/fisiología , Neuropéptido Y/fisiología , Orgánulos/fisiología
9.
Neuron ; 77(5): 810-24, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23473313

RESUMEN

Neural processes that direct an animal's actions toward environmental goals are critical elements for understanding behavior. The hypothalamus is closely associated with motivated behaviors required for survival and reproduction. Intense feeding, drinking, aggressive, and sexual behaviors can be produced by a simple neuronal stimulus applied to discrete hypothalamic regions. What can these "evoked behaviors" teach us about the neural processes that determine behavioral intent and intensity? Small populations of neurons sufficient to evoke a complex motivated behavior may be used as entry points to identify circuits that energize and direct behavior to specific goals. Here, I review recent applications of molecular genetic, optogenetic, and pharmacogenetic approaches that overcome previous limitations for analyzing anatomically complex hypothalamic circuits and their interactions with the rest of the brain. These new tools have the potential to bridge the gaps between neurobiological and psychological thinking about the mechanisms of complex motivated behavior.


Asunto(s)
Conducta/fisiología , Hipotálamo/fisiología , Red Nerviosa/fisiología , Agresión , Proteína Relacionada con Agouti/fisiología , Animales , Anorexia/fisiopatología , Conducta Alimentaria/fisiología , Femenino , Humanos , Hambre/fisiología , Masculino , Motivación , Neuronas/fisiología , Conducta Sexual/fisiología
10.
Front Biosci (Landmark Ed) ; 18(2): 740-7, 2013 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-23276958

RESUMEN

Homeobox genes contribute to the regionalization, patterning and cell differentiation during embryogenesis and organ development. During mammalian embryonic development, homeobox genes, including orthopedia (Otp), a brain-specific homeobox transcription factor (Bsx) and a thyroid transcription factor-1 (TTF-1), are expressed in the hypothalamus. The genetic ablation of these genes indicated that Otp and TTF-1 are essential for the normal morphological development of the hypothalamus, including the arcuate nucleus (ARC), whereas Bsx is not required. In the adult stage, Bsx and TTF-1 continue to be expressed in the hypothalamus, including the ARC, and serve as transcription factors of neuropeptide Y and agouti-related protein. The expression of hypothalamic Bsx and TTF-1 can be altered by the feeding state and appetite regulatory hormones such as ghrelin and leptin. Although Bsx and TTF-1 are essential for normal feeding behavior in adult mice, they exert different effects on the expression of hypothalamic pro-opiomelanocortin (POMC) and body weight homeostasis. Thus, the hypothalamic homeobox genes may contribute to the dissociation of food intake and body weight via AgRP-POMC neurons.


Asunto(s)
Proteínas de Unión al ADN/genética , Genes Homeobox/fisiología , Proteínas de Homeodominio/genética , Hipotálamo/embriología , Hipotálamo/fisiología , Proteínas del Tejido Nervioso/genética , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/fisiología , Animales , Núcleo Arqueado del Hipotálamo/embriología , Ingestión de Alimentos/fisiología , Metabolismo Energético/genética , Ghrelina/fisiología , Proteínas de Homeodominio/biosíntesis , Leptina/fisiología , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Neuropéptido Y/genética , Neuropéptido Y/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Proopiomelanocortina/genética , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética , Factores de Transcripción/fisiología
11.
Nat Neurosci ; 15(10): 1391-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22941110

RESUMEN

Leptin regulates energy balance. However, knowledge of the critical intracellular transducers of leptin signaling remains incomplete. We found that Rho-kinase 1 (ROCK1) regulates leptin action on body weight homeostasis by activating JAK2, an initial trigger of leptin receptor signaling. Leptin promoted the physical interaction of JAK2 and ROCK1, thereby increasing phosphorylation of JAK2 and downstream activation of Stat3 and FOXO1. Mice lacking ROCK1 in either pro-opiomelanocortin (POMC) or agouti-related protein neurons, mediators of leptin action, displayed obesity and impaired leptin sensitivity. In addition, deletion of ROCK1 in the arcuate nucleus markedly enhanced food intake, resulting in severe obesity. Notably, ROCK1 was a specific mediator of leptin, but not insulin, regulation of POMC neuronal activity. Our data identify ROCK1 as a key regulator of leptin action on energy homeostasis.


Asunto(s)
Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Leptina/fisiología , Receptores de Leptina/fisiología , Quinasas Asociadas a rho/fisiología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Proteína Relacionada con Agouti/fisiología , Animales , Regulación del Apetito/genética , Regulación del Apetito/fisiología , Núcleo Arqueado del Hipotálamo/metabolismo , Células Cultivadas , Ingestión de Alimentos , Janus Quinasa 2/metabolismo , Leptina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Neuronas/metabolismo , Obesidad/genética , Fosforilación , Proopiomelanocortina/metabolismo , Receptores de Leptina/agonistas , Receptores de Leptina/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Quinasas Asociadas a rho/genética
12.
Nat Neurosci ; 15(10): 1336-42, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23007188

RESUMEN

Maintaining energy balance is of paramount importance for metabolic health and survival. It is achieved through the coordinated regulation of neuronal circuits that control a wide range of physiological processes affecting energy intake and expenditure, such as feeding, metabolic rate, locomotor activity, arousal, growth and reproduction. Neuronal populations distributed throughout the CNS but highly enriched in the mediobasal hypothalamus, sense hormonal, nutrient and neuronal signals of systemic energy status and relay this information to secondary neurons that integrate the information and regulate distinct physiological parameters in a manner that promotes energy homeostasis. To achieve this, it is critical that neuronal circuits provide information about short-term changes in nutrient availability in the larger context of long-term energy status. For example, the same signals lead to different cellular and physiological responses if delivered under fasted versus fed conditions. Thus, there is a clear need to have mechanisms that rapidly and reversibly adjust responsiveness of hypothalamic circuits to acute changes in nutrient availability.


Asunto(s)
Encéfalo/fisiología , Metabolismo Energético/fisiología , Hipotálamo/fisiología , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Proteína Relacionada con Agouti/fisiología , Animales , Melanocortinas/fisiología , Modelos Neurológicos , Vías Nerviosas/fisiología , Neuropéptido Y/fisiología , Proopiomelanocortina/fisiología
13.
J Biol Regul Homeost Agents ; 26(2): 295-302, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22824756

RESUMEN

Visfatin, also known as pre-B cell colony enhancing factor (PBEF) or nicotinamide phosphoribosyltransferase (NAMPT), is a cytokine that is produced by adipose tissue, skeletal muscle, liver and immune cells. We studied the effects of visfatin/PBEF/NAMPT on feeding behavior, hypothalamic steady state concentrations of aminergic neurotransmitters and hypothalamic mRNA levels of anorexigenic peptides, such as cocaine- and amphetamine-regulated transcript (CART) peptide, corticotropin-releasing hormone (CRH), proopiomelanocortin (POMC), and orexigenic peptides, such as agouti-related peptide (AgRP) and neuropeptide Y (NPY). Forty-eight rats were injected in the arcuate nucleus (ARC) of the hypothalamus with either saline or visfatin/PBEF/NAMPT (3 microg). Food intake was recorded 1, 2 and 24 h following injection, and either dopamine (DA), norepinephrine (NE), serotonin (5-hydroxytryptamine, 5-HT) or peptide gene expression were evaluated 2 and 24 h after visfatin/PBEF/NAMPT administration. Compared to vehicle, visfatin/PBEF/NAMPT significantly increased food intake, as evaluated 1, 2 and 24 h post-injection. Visfatin/PBEF/NAMPT treatment led to a significant decrease of DA steady state concentration, CART and CRH mRNA levels. Consequently, visfatin/PBEF/NAMPT could play an orexigenic role in the ARC, and the effect could be mediated by modulation of DA, CART and CRH activity in the hypothalamus.


Asunto(s)
Conducta Alimentaria/efectos de los fármacos , Hipotálamo/fisiología , Neurotransmisores/fisiología , Nicotinamida Fosforribosiltransferasa/farmacología , Proteína Relacionada con Agouti/fisiología , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/fisiología , Hormona Liberadora de Corticotropina/fisiología , Dopamina/fisiología , Hipotálamo/efectos de los fármacos , Masculino , Proteínas del Tejido Nervioso/fisiología , Proopiomelanocortina/fisiología , Ratas , Ratas Wistar
14.
Endocrinology ; 152(12): 4672-82, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21933869

RESUMEN

Progranulin (PGRN) is a secreted glycoprotein with multiple biological functions, including modulation of wound healing and inflammation. Hypothalamic PGRN has been implicated in the development of sexual dimorphism. In the present study, a potential role for PGRN in the hypothalamic regulation of appetite and body weight was investigated. In adult rodents, PGRN was highly expressed in periventricular tanycytes and in hypothalamic neurons, which are known to contain glucose-sensing machinery. Hypothalamic PGRN expression levels were decreased under low-energy conditions (starvation and 2-deoxy-D-glucose administration) but increased under high-energy condition (postprandially). Intracerebrovetricular administration of PGRN significantly suppressed nocturnal feeding as well as hyperphagia induced by 2-deoxyglucose, neuropeptide Y, and Agouti-related peptide. Moreover, the inhibition of hypothalamic PGRN expression or action increased food intake and promoted weight gain, suggesting that endogenous PGRN functions as an appetite suppressor in the hypothalamus. Investigation of the mechanism of action revealed that PGRN diminished orexigenic neuropeptide Y and Agouti-related peptide production but stimulated anorexigenic proopiomelanocortin production, at least in part through the regulation of hypothalamic AMP-activated protein kinase. Notably, PGRN was also expressed in hypothalamic microglia. In diet-induced obese mice, microglial PGRN expression was increased, and the anorectic response to PGRN was blunted. These findings highlight a physiological role for PGRN in hypothalamic glucose-sensing and appetite regulation. Alterations in hypothalamic PGRN production or action may be linked to appetite dysregulation in obesity.


Asunto(s)
Regulación del Apetito , Glucosa/metabolismo , Hipotálamo/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteína Relacionada con Agouti/fisiología , Animales , Peso Corporal , Ingestión de Alimentos , Granulinas , Ratones , Microglía/metabolismo , Neuropéptido Y/metabolismo , Neuropéptido Y/fisiología , Obesidad , Progranulinas
15.
Domest Anim Endocrinol ; 40(3): 165-72, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21194875

RESUMEN

Syndyphalin-33 (SD-33) increases feed intake in sheep and recently weaned pigs. To assess the effects of SD-33 on hypothalamic gene expression, hypothalami were collected from unweaned pigs (n=19; 21±3 d of age) on day 0. Remaining pigs received an intramuscular injection of 0.5 µmole/kg SD-33 (SD) or saline (VEH) and weaned into individual pens. On days 1, 4, and 7 after weaning, hypothalami were collected from subsets of pigs (n=8 or 9) within each treatment group. Expression of µ-opioid receptor (MOR) was less in SD pigs than in VEH pigs on day 1 and day 4, suggesting down-regulation of the receptor by SD-33. Expression of hypothalamic melanocortin 4 receptor (MC4R) at 1 d after weaning was increased in VEH pigs (but not SD pigs) relative to levels before weaning. Expression of AGRP was not significantly altered by weaning or treatment at 1 d after weaning. At 4 d after weaning, expression of AGRP was greater in SD pigs than in VEH pigs, but at day 7 expression was less in SD pigs than in VEH pigs. A strong positive correlation was noted between expression levels of MOR and MC4R across treatment and time. Treatment with SD-33 appeared to partially abrogate the effects of weaning on expression of two key appetite-regulating genes within 24 h. Effects of SD-33 appear to be mediated at least in part by the µ-opioid receptor and include actions on the melanocortinergic pathway.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hipotálamo/fisiología , Oligopéptidos/farmacología , Porcinos/fisiología , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/fisiología , Animales , Animales Lactantes , Ingestión de Alimentos/fisiología , Femenino , Masculino , ARN Mensajero/química , ARN Mensajero/genética , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/fisiología , Receptores Opioides mu/genética , Receptores Opioides mu/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Destete
16.
Neuroendocrinology ; 93(1): 48-57, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21124019

RESUMEN

Ghrelin plays an important role in energy metabolism by regulating food intake, body weight and glucose homeostasis. In this review, we highlight recent developments describing how ghrelin stimulates neuropeptide Y (NPY) neurons, but not pro-opiomelanocortin neurons, to regulate food intake. We describe a novel signaling modality, in which ghrelin activates NPY/agouti-related protein (AgRP) neurons through fatty acid oxidation, reactive oxygen species buffering and mitochondrial function. We hypothesize that this unique system may serve to maintain NPY/AgRP cell function during prolonged negative energy balance. We discuss the idea that the metabolic status plays a key role in ghrelin function. For example, our recent studies illustrate that diet-induced obesity causes ghrelin resistance in arcuate NPY/AgRP neurons. On the other side of the metabolic coin, ghrelin and GOAT knockout models show that ghrelin is required to maintain blood glucose during severe calorie restriction. We propose the hypothesis that ghrelin primarily functions during negative energy balance to maintain whole-body energy homeostasis.


Asunto(s)
Metabolismo Energético/fisiología , Ghrelina/fisiología , Homeostasis/fisiología , Aciltransferasas/genética , Aciltransferasas/fisiología , Proteína Relacionada con Agouti/fisiología , Animales , Glucemia/metabolismo , Peso Corporal/fisiología , Restricción Calórica , Dieta/efectos adversos , Ingestión de Alimentos/fisiología , Ghrelina/genética , Hipotálamo/fisiología , Proteínas de la Membrana , Ratones , Ratones Noqueados , Modelos Neurológicos , Neuronas/fisiología , Neuropéptido Y/fisiología
17.
Endocr J ; 57(11): 939-46, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21048357

RESUMEN

The hypothalamus is the center of controlling food intake and energy expenditure by integrating information on energy status, i.e. adiposity and nutrient signals. Especially, two types of neurons in the arcuate nucleus of the hypothalamus, anorexigenic proopiomelanocortin (POMC) neurons and orexigenic agouti-related peptide (AgRP) neurons, play vital roles in regulating feeding and energy expenditure. On the other hand, insulin and leptin are hormones that control food intake via regulating POMC and AgRP expression. FoxO1 is a downstream effecter of insulin signaling and Sirt1 is an NAD(+)-dependent deacetylase, both of which have been reported to play important roles in the regulation of metabolism in various organs including liver, pancreas, muscle, adipose tissue and hypothalamus. Histological analyses revealed that FoxO1 and Sirt1 are expressed in both AgRP and POMC neurons where FoxO1 localizes to the nucleus in the fasted, while to the cytoplasm in the refed condition. In contrast, hypothalamic Sirt1 protein is decreased in the fasted condition due to increased ubiquitination of Sirt1. In rodents, overexpression of FoxO1 in the hypothalamus by adenovirus microinjection induces hyperphagia and body weight gain, and simultaneous overexpression of Sirt1 suppresses these phenotypes. FoxO1 and the transcription factor Stat3 exert opposing actions on the expression of AgRP and POMC through transcriptional squelching, and Sirt1 suppresses AgRP expression. In conclusion, we propose that FoxO1 and Sirt1 in hypothalamus are key regulators of energy homeostasis and are molecular targets for the development of new strategy of treating obesity.


Asunto(s)
Ingestión de Alimentos/fisiología , Factores de Transcripción Forkhead/fisiología , Hipotálamo/fisiología , Sirtuina 1/fisiología , Proteína Relacionada con Agouti/fisiología , Animales , Peso Corporal/fisiología , Metabolismo Energético , Proteína Forkhead Box O1 , Humanos , Ratones , Proopiomelanocortina/fisiología , Transducción de Señal
18.
Front Horm Res ; 38: 196-205, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20616512

RESUMEN

Ghrelin, a peptide hormone first discovered as the endogenous ligand of the growth hormone secretagogue receptor (GHS-R), is predominantly produced and released into the circulation by ghrelin cells (X/A-like) of the stomach fundus cells. Ghrelin has multiple actions in multiple tissues. In particular, it is the most potent known endogenous orexigenic peptide, and plays a significant role in glucose homeostasis: deletion of the genes encoding ghrelin and/or its receptor prevents high-fat diet from inducing obesity, increases insulin levels, enhances glucose-stimulated insulin secretion and improves peripheral insulin sensitivity. In addition to its already mentioned roles, ghrelin has other activities including stimulation of pituitary hormones secretion, regulation of gastric and pancreatic activity, modulation of fatty acid metabolism via specific control of AMP-activated protein kinase (AMPK), and cardiovascular and hemodynamic activities. In addition, modulation of cartilage and bone homeostasis, sleep and behavioral influences, and modulation of the immune system, as well as effects on cell proliferation, are other relevant actions of ghrelin. In this review, we summarize several aspects of ghrelin effects at hypothalamic level and their implications in the control of food intake and energy balance.


Asunto(s)
Ghrelina/fisiología , Proteína Relacionada con Agouti/fisiología , Animales , Peso Corporal , Ingestión de Alimentos , Proteínas de Homeodominio/fisiología , Humanos , Hipotálamo/metabolismo , Metabolismo de los Lípidos , Neuropéptido Y/fisiología , Receptores de Ghrelina/fisiología
19.
Proc Natl Acad Sci U S A ; 106(37): 15932-7, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19805233

RESUMEN

In female mammals including rodents and humans, feeding decreases during the periovulatory period of the ovarian cycle, which coincides with a surge in circulating estrogen levels. Ovariectomy increases food intake, which can be normalized by estrogen treatment at a dose and frequency mimicking those during the estrous cycle. Furthermore, administration of estrogen to rodents potently inhibits food intake. Despite these well-known effects of estrogen, neuronal subtypes that mediate estrogen's anorexigenic effects have not been identified. In this study, we show that changes in hypothalamic expression of agouti-related protein (Agrp) and neuropeptide Y (Npy) coincide with the cyclic changes in feeding across the estrous cycle. These cyclic changes in feeding are abolished in mice with degenerated AgRP neurons even though these mice cycle normally. Central administration of 17beta-estradiol (E2) decreases food intake in controls but not in mice lacking the AgRP neurons. Furthermore, E2 treatment suppresses fasting-induced c-Fos activation in AgRP and NPY neurons and blunts the refeeding response. Surprisingly, although estrogen receptor alpha (ERalpha) is the key mediator of estrogen's anorexigenic effects, we find that expression of ERalpha is completely excluded from AgRP and NPY neurons in the mouse hypothalamus, suggesting that estrogen may regulate these neurons indirectly via presynaptic neurons that express ERalpha. This study indicates that neurons coexpressing AgRP and NPY are functionally required for the cyclic changes in feeding across estrous cycle and that AgRP and NPY neurons are essential mediators of estrogen's anorexigenic function.


Asunto(s)
Proteína Relacionada con Agouti/fisiología , Regulación del Apetito/fisiología , Ciclo Estral/fisiología , Neuropéptido Y/fisiología , Proteína Relacionada con Agouti/deficiencia , Proteína Relacionada con Agouti/genética , Animales , Regulación del Apetito/efectos de los fármacos , Peso Corporal/genética , Peso Corporal/fisiología , Estradiol/farmacología , Receptor alfa de Estrógeno/metabolismo , Ciclo Estral/genética , Femenino , Expresión Génica , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuropéptido Y/deficiencia , Neuropéptido Y/genética , Ovariectomía , Ovario/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
J Endocrinol ; 202(1): 35-41, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19403567

RESUMEN

Agouti-related protein (AGRP) is a homolog of the agouti protein and acts as an antagonist of peptides derived from propiomelanocortin through melanocortin receptors. This peptide is produced mainly in the hypothalamus, particularly during negative energy balance and influences increased food intake. In the hypothalamus, this peptide is co-expressed in arcuate nuclei with neuropeptide Y, another important peptide that regulates energy metabolisms. In our study, we analyzed changes in the Agrp mRNA level in the hypothalamus as well as mRNA and protein levels in placenta during different stages of rat pregnancy. We also investigated the AGRP level in the blood serum. In this study, we found the AGRP level in serum increased, while its gene expression in the hypothalamus increased only up to the 13th day of pregnancy, and decreased on the 18th day. This study demonstrates that AGRP is expressed during late pregnancy in placenta. Moreover, we found that AGRP expression is higher on the 18th than on the 13th day of pregnancy. Our results indicate that AGRP may play an important role during pregnancy in the mother's and, possibly, also in the fetus's energy balance.


Asunto(s)
Proteína Relacionada con Agouti/sangre , Proteína Relacionada con Agouti/metabolismo , Hipotálamo/metabolismo , Placenta/metabolismo , Embarazo/sangre , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/fisiología , Animales , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Femenino , Regulación de la Expresión Génica , Edad Gestacional , Intercambio Materno-Fetal/genética , Intercambio Materno-Fetal/fisiología , Embarazo/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA