Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 551
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurorehabil Neural Repair ; 38(5): 350-363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491852

RESUMEN

BACKGROUND: Yi-Qi-Tong-Luo Granules (YQTLs) is a natural compound of Traditional Chinese Medicine authorized by China Food and Drug Administration (CFDA). These granules are employed in the convalescent stage of cerebral infarction and render notable clinical efficacy. This study aims to uncover the underlying mechanisms of YQTLs on remyelination after cerebral ischemia injury. MATERIALS AND METHODS: We established cerebral ischemia model in rats using microsphere-induced multiple cerebral infarction (MCI). We evaluated the pharmacological effects of YQTLs on MCI rats, through Morri's water maze test, open field test, hematoxylin and eosin staining, and glycine silver immersion. We employed liquid chromatography mass spectrometry metabolomics to identify differential metabolites. Enzyme-linked immunosorbent assay was utilized to measure the release of neurotrophins, while immunofluorescence staining was used to assess oligodendrocyte precursor cells differences and myelin regeneration. We used Western blotting to validate the protein expression of remyelination-associated signaling pathways. RESULTS: YQTLs significantly improves cognitive function following cerebral ischemia injury. Pathological tissue staining revealed that YQTLs administration inhibits neuronal denaturation and neurofibrillary tangles. We identified 141 differential metabolites among the sham, MCI, and YQTLs-treated MCI groups. Among these metabolites, neurotransmitters were identified, and notably, gamma-aminobutyric acid (GABA) showed marked improvement in the YQTLs group. The induction of neurotrophins, such as brain-derived neurotrophic factor (BDNF) and PDGFAA, upregulation of olig2 and MBP expression, and promotion of remyelination were evident in YQTLs-treated MCI groups. Gamma-aminobutyric acid B receptors (GABABR), pERK/extracellular regulated MAP kinase, pAKT/protein kinase B, and pCREB/cAMP response element-binding were upregulated following YQTLs treatment. CONCLUSION: YQTLs enhance the binding of GABA to GABABR, thereby activating the pCREB/BDNF signaling pathway, which in turn increases the expression of downstream myelin-associated proteins and promotes remyelination and cognitive function.


Asunto(s)
Isquemia Encefálica , Factor Neurotrófico Derivado del Encéfalo , Metabolómica , Ratas Sprague-Dawley , Remielinización , Transducción de Señal , Animales , Remielinización/efectos de los fármacos , Remielinización/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Ratas , Masculino , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos
2.
Zhen Ci Yan Jiu ; 49(3): 265-273, 2024 Mar 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500323

RESUMEN

OBJECTIVES: To observe the effects of electroacupuncture (EA) on the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/cAMP response element binding protein (CREB) signaling pathway-related proteins and hippocampal neuron apoptosis in diabetic cognitive impairment (DCI) rats, and to explore the mechanisms of EA in treating DCI. METHODS: Adult male SD rats were randomly divided into normal, model, and EA groups, with 12 rats in each group. The animal model of DCI was replicated using a high-fat, high-sugar diet combined with low-dose streptozotocin. The EA group received EA stimulation at "Yishu" (EX-B6), "Zusanli" (ST36), "Baihui" (GV20), and "Dazhui" (GV14). Blood glucose contents of the rats in each group were measured. The Morris water maze test was used to assess the learning and memory abilities of rats. Transmission electron microscopy was used to observe the ultrastructure of hippocampal CA1 neurons. Nissl staining was used to observe the pathological changes in hippocampal CA1 neurons. TUNEL staining was used to detect the apoptosis in hippocampal CA1 neurons. Western blot was used to detect the protein expression levels of p-PI3K/PI3K and p-Akt/Akt, as well as CREB, p-CREB, cysteine aspartate pro-tease (Caspase)-3, B-cell lymphoma-2 (Bcl-2), and Bcl-2 related X protein (Bax) in the hippocampal tissue of rats. RESULTS: Compared with the normal group, the rats' random blood glucose contents were significantly increased (P<0.01), the escape latency prolonged (P<0.01), and the original platform crossing counts reduced (P<0.01) in the model group. Significant damage to hippocampal CA1 neurons, a significantly increased neuronal apoptosis index (P<0.01), decreased ratio of p-PI3K/PI3K and p-Akt/Akt and expression of CREB, p-CREB and Bcl-2 proteins, increased expression of Caspase-3 and Bax proteins (P<0.01) were observed in the hippocampal tissue of rats in the model group. Compared with the model group, the rats in the EA group showed decreased random blood glucose content (P<0.01), shortened escape latency (P<0.01), increased original platform crossing counts (P<0.01), improved quantity and pathological morphology and ultrastructure of hippocampal CA1 neurons, reduced neuronal apoptosis index (P<0.01), increased ratio of p-PI3K/PI3K and p-Akt/Akt, and expression of CREB, p-CREB and Bcl-2 proteins (P<0.05, P<0.01) in the hippocampal tissue, and decreased expression of Caspase-3 and Bax proteins (P<0.01). CONCLUSIONS: EA can improve the learning and memory abilities of rats with DCI, and the mechanism may be related to the regulation of the expression of PI3K/Akt/CREB signaling pathway-related proteins, which attenuates the neuronal apoptosis in the hippocampus of rats, and improves the neural function.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus , Electroacupuntura , Ratas , Masculino , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Fosfatidilinositol 3-Quinasas/genética , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Glucemia , Transducción de Señal , Hipocampo/metabolismo , Apoptosis , Disfunción Cognitiva/genética , Disfunción Cognitiva/terapia
3.
J Nat Med ; 78(1): 208-215, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38063995

RESUMEN

Recently, the number of patients diagnosed with dementia has increased. The World Health Organization (WHO) estimates that 50 million patients suffer from dementia. Although several therapeutic strategies have been proposed, currently, there is no curative approach for treating dementia. Neurodegeneration is an irreversible process. As this disease gradually progresses over 15-20 years, a low-cost and sustainable method for preventing these diseases is desired. Cacao nib is consumed in many countries, and a recent clinical study indicated that cocoa intake upregulates brain-derived neurotrophic factor (BDNF), which plays a significant role in memory formation and neuronal cell survival. In the present study, neural cells were treated with cacao nib extract or the 17 characteristic components of cacao nib. Treatment with Cacao nib extract upregulates BDNF mRNA expression. In addition, cacao nib extract elicits the phosphorylation of cAMP-response-element-binding protein (CREB), which regulates the transcription of BDNF. Among the 17 species screened, isovaleraldehyde (IVA), also known as an aroma component of cacao nibs extract, improved BDNF mRNA expression without SH-SY5Y cell toxicity. IVA also promoted CREB phosphorylation through a cAMP-dependent protein kinase (PKA)-dependent mechanism. In conclusion, IVA could be responsible for the BDNF upregulation effect of cacao nib, and IVA upregulated BDNF expression via the PKA-CREB axis.


Asunto(s)
Aldehídos , Factor Neurotrófico Derivado del Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Fármacos Neuroprotectores , Regulación hacia Arriba , Fármacos Neuroprotectores/farmacología , Aldehídos/farmacología , Regulación hacia Arriba/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/genética , Humanos , Línea Celular Tumoral , Cacao/química , Extractos Vegetales/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Transducción de Señal/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo
4.
J Ethnopharmacol ; 321: 117462, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37981117

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In the ancient book "Shen Nong's Herbal Classic," Panax ginseng CA Mey was believed to have multiple benefits, including calming nerves, improving cognitive function, and promoting longevity. Ginsenosides are the main active ingredients of ginseng. Ginsenoside RK3 (RK3), a rare ginsenoside extracted from ginseng, displays strong pharmacological potential. However, its effect on neurogenesis remains insufficiently investigated. AIM OF THE STUDY: This study aims to investigate whether RK3 improves learning and memory by promoting neurogenesis, and to explore the mechanism of RK3 action. MATERIALS AND METHODS: The therapeutic effect of RK3 on learning and memory was determined by the Morris water maze (MWM) and novel object recognition test (NORT). The pathogenesis and protective effect of RK3 on primary neurons and animal models were detected by immunofluorescence and western blotting. Protein expression of cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway was detected by western blotting. RESULTS: Our results showed that RK3 treatment significantly improved cognitive function in APPswe/PSEN1dE9 (APP/PS1) mice and C57BL/6 (C57) mice. RK3 promotes neurogenesis and synaptogenesis in the mouse hippocampus. In vitro, RK3 prevents Aß-induced injury in primary cultured neurons and promotes the proliferation of PC12 as well as the expression of synapse-associated proteins. Mechanically, the positve role of RK3 on neurogenesis was combined with the activation of CREB/BDNF pathway. Inhibition of CREB/BDNF pathway attenuated the effect of RK3. CONCLUSION: In conclusion, this study demonstrated that RK3 promotes learning and cognition in APP/PS1 and C57 mice by promoting neurogenesis and synaptogenesis through the CREB/BDNF signaling pathway. Therefore, RK3 is expected to be further developed into a potential drug candidate for the treatment of Alzheimer's disease (AD).


Asunto(s)
Enfermedad de Alzheimer , Ginsenósidos , Ratones , Animales , Enfermedad de Alzheimer/patología , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Ginsenósidos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratones Endogámicos C57BL , Neurogénesis , Modelos Animales de Enfermedad , Hipocampo
5.
Behav Brain Res ; 461: 114836, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38145873

RESUMEN

Alzheimer's disease (AD) is characterized by cognitive impairment. It is common in the elderly. Etiologically, dysfunction of cholinergic neurotransmitter system is prominent in AD. However, disease modifying drug for AD is still unavailable. We hypothesized that krill oil and modified krill oil containing 20 % lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA, LPC20K) could play a crucial role in AD by improving cognitive functions measured by several behavioral tests. We found that LPC20K could ameliorate short-term, long-term, spatial, and object recognition memory under cholinergic hypofunction states. To find the underlying mechanism involved in the effect of LPC20K on cognitive function, we investigated changes of signaling molecules using Western blotting. Expression levels of protein kinase C zeta (PKCζ) and postsynaptic density protein 95 (PSD-95), and phosphorylation levels of extracellular signal-regulated kinase (ERK), Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ), and cAMP response element-binding protein (CREB) were significantly increased in LPC20K-administered group compared to those in the memory impairment group. Moreover, the expression levels of BDNF were temporally increased especially 6 or 9 h after administration of LPC20K compared with the control group. These results suggest that LPC20K could ameliorate memory impairment caused by hypocholinergic state by enhancing the expression levels of PKCζ and PSD-95, and phosphorylation levels of ERK, CaMKⅡ and CREB and increasing BDNF expression levels. Therefore, LPC20K could be used as a dietary supplement against cognitive impairment observed in diseases such as AD with a hypocholinergic state.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Euphausiacea , Humanos , Animales , Anciano , Escopolamina/farmacología , Euphausiacea/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Aprendizaje por Laberinto , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Colinérgicos/farmacología , Hipocampo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo
6.
Brain Behav ; 13(12): e3310, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37948105

RESUMEN

BACKGROUND: Chronic inflammatory pain (CIP) frequently coincides with depression among patients. The onset and development of pain and depression are associated with altered neural synaptic plasticity. Electroacupuncture (EA) can effectively relieve CIP and depression. However, the underlying mechanisms have not been fully illustrated. OBJECTIVE: To explore whether EA can relieve CIP and depression by regulating hippocampal synaptic plasticity, and the present study offers foundational evidence for the efficacy of EA in treating CIP-related depression (CIPD). METHODS: Rats were divided into four groups: 0.9% normal saline group, complete Freund's adjuvant (CFA) group, CFA + duloxetine group, and CFA + EA group. Pain hypersensitivity was detected by mechanical withdrawal threshold and thermal paw withdrawal latency, and the depression level was gauged using the open field test, the sucrose preference test, and the forced swimming test. The morphology of the hippocampal neurons was observed using Nissl staining. The protein expression levels of synuclein (Syn), postsynaptic density protein-95 (PSD-95), brain-derived neurotrophic factors (BDNFs), tyrosine-protein kinase B (TrKB), p-TrkB, cAMP response element binding protein (CREB), and p-CREB were measured by western blotting and immunofluorescence staining. BDNF and TrkB mRNA expression were detected using quantitative real-time polymerase chain reaction (PCR) (qRT-PCR). The content of 5-hydroxytryptamine (5-HT) and γ-aminobutyric acid (GABA) was detected using enzyme-linked immunosorbent assay, and the glutamic acid (Glu) content was determined using the ultraviolet colorimetry method. The hippocampal neuron ultrastructure was observed using transmission electron microscopy. RESULTS: EA could alleviate CIP and related depressive behaviors as well as protect the hippocampal neuronal structure from damage and regulate 5-HT/GABA/Glu levels in the hippocampus. Additionally, EA could significantly increase the expression of synapse-associated proteins such as PSD-95 and Syn by activating the BDNF/TrKB/CREB signaling pathway. CONCLUSION: EA improves pain and depressive behaviors in CIPD rats, and the mechanism may be related to synaptic plasticity mediated by the BDNF/TrKB/CREB signaling pathway.


Asunto(s)
Dolor Crónico , Electroacupuntura , Humanos , Ratas , Animales , Depresión/terapia , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Electroacupuntura/métodos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Serotonina/metabolismo , Transducción de Señal/fisiología , Plasticidad Neuronal , Ácido gamma-Aminobutírico/metabolismo , Hipocampo/metabolismo
7.
Res Vet Sci ; 164: 105044, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806098

RESUMEN

Cadmium (Cd) is toxic non-essential heavy metal that precipitates adverse health effects in humans and animals, but the effect of Cd on lymph node toxicity of piglets is still unclear. In order to explore the possible molecular mechanism of Cd toxicity to lymph nodes of piglets, ten 6-week-old male weaned piglets were randomly divided into two groups, C group and Cd group. Group C was fed with basal diet, while group Cd was fed with basal diet supplemented with CdCl2 (20 mg/kg) for 40 days, the pigs were euthanized and the mesenteric, inguinal and submandibular lymph nodes (MLN, ILN, SLN) were collected. The results indicated that Cd could induce the inflammatory cell infiltration, microvascular hemorrhage, microthrombosis and cell necrosis in MLN, ILN and SLN of piglets, induced Cytochrome P450 proteins (CYP1A1、CYP2E1、CYP2A1 and CYP3A2) mRNA levels and the protein levels of Vitamin D receptor (VDR) and cAMP response element binding protein 1 (CREB1). In addition, Cd exposure upregulated the mRNA and protein levels of dynamin-related protein 1 (DRP1), receptor-interacting protein kinase 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), and increased tumor necrosis factor-α (TNFα), interferon-γ (IFNγ), interleukin-2 (IL-2), interleukin-4 (IL-4), cyclooxygenase 2 (COX-2) protein levels, and the damage degree of three kinds of lymph nodes was similar after Cd exposure. In general, these results manifest that Cd exposure regulates VDR/CREB1 pathway, activates CYP450s, induces necroptosis of lymph nodes, and leads to inflammation.


Asunto(s)
Cadmio , Enfermedades de los Porcinos , Porcinos , Animales , Masculino , Cadmio/toxicidad , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Inflamación/inducido químicamente , Inflamación/veterinaria , Necroptosis , Receptores de Calcitriol/metabolismo , ARN Mensajero/metabolismo , Enfermedades de los Porcinos/inducido químicamente , Ganglios Linfáticos/patología
8.
J Bone Miner Metab ; 41(6): 772-784, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37898986

RESUMEN

INTRODUCTION: CCN1 is an immediate-early gene product pivotal for arthritis progression. We have previously shown that sirtuin 6 (SIRT6) inhibited hypoxia-induced CCN1 expression in osteoblasts. Herein we examined the contribution of cyclic AMP-responsive element binding protein (CREB)/CRE to this suppressive action and the influence of CCN1 on cyclooxygenase (COX) 2 synthesis. MATERIALS AND METHODS: MC3T3-E1 murine osteoblasts were cultured under normoxia (21% oxygen) or hypoxia (2% oxygen). Expressions of CCN1, phospho-CREB (Ser133), COX2 and relevant kinases were assessed by Western blot. SIRT6 was overexpressed in cultured osteoblasts and arthritic joints by a lentiviral-based technique. Activities of CCN1 gene promoter constructs were examined by luciferase reporter assay. Interaction between CREB and CCN1 promoter was assessed by chromatin immunoprecipitation (ChIP). Collagen-induced arthritis (CIA) was established in 20 rats to evaluate the effects of SIRT6 therapy on osteoblastic expressions of phospho-CREB, CCN1 and COX2. RESULTS: SIRT6 suppressed hypoxia-enhanced CCN1 expression and CREB phosphorylation. Attenuation of calcium/calmodulin-dependent protein kinase II (CaMKII) may be responsible for SIRT6-induced CREB inhibition. CRE at - 286 bp upstream of the ATG start codon was essential for CCN1 expression under hypoxia and SIRT6 reduced hypoxia-stimulated CREB/CRE interaction. Forced expression of CREB rescued SIRT6-suppressed CCN1 synthesis. CCN1 induced COX2 expression in osteoblasts. In rat CIA, the therapeutic effect of SIRT6 was accompanied by decreases in osteoblastic expressions of phospho-CREB, CCN1 and COX2. CONCLUSION: Our study indicated that the benefits of SIRT6 to inflammatory arthritis and bone resorption are at least partially derived from its modulation of CREB/CCN1/COX2 pathway in osteoblasts.


Asunto(s)
Artritis Experimental , Sirtuinas , Ratas , Ratones , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/farmacología , Osteoblastos/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/farmacología , Hipoxia , Artritis Experimental/genética , Artritis Experimental/metabolismo , Fosforilación , Oxígeno/metabolismo , Oxígeno/farmacología , Sirtuinas/metabolismo , Sirtuinas/farmacología , AMP Cíclico/metabolismo , AMP Cíclico/farmacología
9.
Brain Res Bull ; 203: 110768, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739234

RESUMEN

BACKGROUND: Stellaria dichotoma L. var. lanceolata Bge. is renowned for its efficacy in "clearing deficiency heat" and represents a significant traditional Chinese medicine (TCM) resource. Modern pharmacology has demonstrated the anti-anxiety effects of Stellaria dichotoma L. var. lanceolata Bge. polysaccharides (SDPs). SDPs are one of the active constituents of Stellaria dichotoma L. var. lanceolata Bge. This study presents the first extraction of SDPs and investigates their potential molecular mechanisms and anxiolytic effects that are not previously reported. METHODS: First, SDPs were obtained by water extraction and alcohol precipitation and analyzed for their monosaccharide composition by high performance liquid chromatography (HPLC). Male SD rats were subjected to a two-week indeterminate empty bottle stress procedure and a three-day acute restraint stress procedure, during which diazepam (DZP) (1 mg/kg) and SDPs (50, 100 and 200 mg/kg, intragastrically) were administered. A number of behavioral tests, including the elevated plus maze test (EPM), the open field test (OFT) and the light/dark box test (LDB), were used to assess the anti-anxiety potential of SDPs. Serum levels of Corticosterone (CORT) and Adrenocorticotropic hormone (ACTH), as well as the levels of Dopamine (DA) and serotonin (5-HT) found in the hippocampus and frontal cortex, were quantified using commercially available enzyme-linked immunosorbent assay (ELISA) kits. In addition, protein levels of key proteins cAMP-response element binding protein (CREB), phospho-CREB (p-CREB), brain-derived neurotrophic factor (BDNF), ERK½, p-ERK½, and GAPDH expression in rat hippocampus were measured by Western blot analysis, and modulation of the endocannabinoid system was assessed by immunohistochemistry. RESULTS: Following administration of SDPs (50, 100, 200 mg/kg) and diazepam 1 mg/kg, anxiolytic activity was exhibited through an increase in the percentage of arm opening times and arm opening time of rats in the elevated plus maze. Additionally, there was an increase in the number of times and time spent in the open field center, percentage of time spent in the open box, and shuttle times in the LDB. Furthermore, tissue levels of DA and 5-HT were increased in the hippocampus and frontal cortex of rats after treatment with SDPs. In addition, SDPs significantly decreased serum levels of CORT and ACTH in rats. SDPs also effectively regulated the phosphorylation of the extracellular regulated protein kinases (ERK) and CREB-BDNF pathway in the hippocampus. Moreover, the expression levels of CB1 and CB2 proteins were heightened due to SDPs treatment in rats. CONCLUSIONS: The study verified that SDPs alleviate anxiety in the EBS and ARS. The neuroregulatory behavior is accomplished by regulating the Monoamine neurotransmitter, HPA axis, and ECB-ERK-CREB-BDNF signaling pathway.


Asunto(s)
Ansiolíticos , Ratas , Masculino , Animales , Ansiolíticos/farmacología , Ansiolíticos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas Sprague-Dawley , Proteínas Quinasas/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Serotonina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Transducción de Señal , Hipocampo/metabolismo , Dopamina/metabolismo , Hormona Adrenocorticotrópica , Diazepam/farmacología , Neurotransmisores/metabolismo
10.
Brain Behav ; 13(10): e3177, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37548586

RESUMEN

BACKGROUND: Central sensitization is one of the important mechanisms underlying neuropathic and radicular pain due to cervical spondylotic radiculopathy (CSR). Recent studies have shown that the calmodulin-dependent protein kinase II (CaMKII)/cAMP-response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway mediates central sensitization through its involvement in spinal cord synaptic plasticity. Our group has previously found that electroacupuncture (EA) has a good analgesic effect on CSR. However, the central analgesic mechanism of EA for CSR is not yet clear. METHODS: The rats were randomly divided into Blank group, Sham-operated group, CSR group, and EA group. We prepared the CSR rat model using the fish wire extrusion method. The behavioral and mechanical pain thresholds of the rats in each group were measured 5 days after successful modeling and 7 days after the intervention. The first intervention was started 5 days after successful modeling, and the EA group was treated by acupuncture at the bilateral LI4 and LR3 points on the same side as one group, connected to a G6805-I electroacupuncture apparatus with continuous waves at 1.5 Hz. The remaining groups were not subjected to EA intervention. The treatment was administered once a day for 7 consecutive days and then executed. We used WB, immunofluorescence, and qRT-PCR to detect the expression of CaMKII/CREB/BDNF signaling pathway-related factors in the synaptic of rat spinal cord in each group. RESULTS: EA improved pain threshold and motor function in CSR rats, inhibited the expression of BDNF, P-TrkB, CAMKII, and P-CREB in spinal cord synapses, reduced the expression of pain factor c-fos and postsynaptic membrane protein molecule neuroligin2, exerted a modulating effect on spinal cord synaptic plasticity in CSR rats, and suppressed the overactive synaptic efficacy. CONCLUSION: EA mediates central sensitization and exerts analgesic effects on CSR by modulating spinal synaptic plasticity, which may be related to the inhibition of CaMKII/CREB/BDNF signaling pathway.


Asunto(s)
Electroacupuntura , Radiculopatía , Ratas , Animales , Ratas Sprague-Dawley , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Radiculopatía/metabolismo , Electroacupuntura/métodos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Transducción de Señal , Médula Espinal , Umbral del Dolor , Plasticidad Neuronal , Analgésicos
11.
Brain Res Bull ; 202: 110724, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543295

RESUMEN

BACKGROUND: Ketamine, despite its efficacy in treating depression, raises concerns regarding safety due to potential abuse, cognitive impairment, and bladder toxicity. Ketamine can affect the locus coeruleus (LC) norepinephrine and attention networks. This study explored the protective effects of electroacupuncture (EA) on the LC of rats exposed to repeated administration of ketamine while investigating the potential role of the Calcium CaM-dependent protein kinase II (CAMK II)/ cAMP response element binding protein (CREB) pathway in mediating EA's impact on ketamine-induced neuronal injury in LC. METHODS: Rats were repeatedly injected intraperitoneally with ketamine hydrochloride (50 mg/kg) once daily for seven days. Subsequently, EA was performed at the acupoints "Zusanli" (ST36) and "Sanyinjiao" (SP-6) once daily following ketamine administration. The Morris water maze test was employed to assess behavioral changes in the rats. Neuronal injury was examined using Nissl staining, and the expression of CAMK II, CREB, and phospho-CREB (p-CREB) was evaluated through immunohistochemistry and western blotting. RESULTS: EA mitigated the cognitive and exploratory impairments and attenuated neuronal injury in the LC induced by repeated administration of ketamine. The expression of CAMK II and p-CREB proteins in the LC increased following 7 days of ketamine administration. However, EA treatment led to a downregulation of CAMK II and p-CREB expression. CONCLUSION: Repeated administration of ketamine in male rats can lead to neuronal injury and neurobehavioral dysfunction. However, EA was found to ameliorate neurodegeneration in the LC and enhance neurobehavioral symptoms. This therapeutic effect of EA may be attributed to its modulation of the CAMKII/CREB pathway, thereby mitigating the aforementioned adverse effects.


Asunto(s)
Electroacupuntura , Ketamina , Ratas , Masculino , Animales , Locus Coeruleus/metabolismo , Ratas Sprague-Dawley , Ketamina/toxicidad , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo
12.
Phytomedicine ; 116: 154888, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37257329

RESUMEN

BACKGROUND: Zhi-Zi-Chi-Tang (ZZCT) is an effective traditional Chinese medicinal formula. ZZCT has been used for the treatment of depression for centuries. Its clinical efficacy in relieving depression has been confirmed. However, the molecular mechanisms of ZZCT regarding neuroplasticity in the pathogenesis of depression have not yet been elucidated. PURPOSE: The present study aimed to examine the effects of ZZCT on neuroplasticity in mice exposed to chronic unpredictable mild stress (CUMS), and to explore the underlying molecular mechanisms. METHODS: For this purpose, a murine model of depression was established using the CUMS procedure. Following the intragastric administration of ZZCT or fluoxetine, classic behavioral experiments were performed to observe the efficacy of ZZCT as an antidepressant. Immunofluorescence was used to label and quantify microtubule-associated protein (MAP2) and postsynaptic density protein (PSD95) in the hippocampus. Golgi staining was applied to visualize the dendritic spine density of neurons in the hippocampi. Isolated hippocampal slices were prepared to induce long-term potentiation (LTP) in the CA1 area. The hippocampal protein expression levels of glycogen synthase kinase-3ß (GSK-3ß), p-GSK-3ß (Ser9), cAMP response element binding protein (CREB), p-CREB (Ser133), brain-derived neurotrophic factor (BDNF) and 14-3-3ζ were detected using western blot analysis. The interaction of 14-3-3ζ and p-GSK-3ß (Ser9) was examined using co-immunoprecipitation. LV-shRNA was used to knockdown 14-3-3ζ by an intracerebroventricular injection. RESULTS: ZZCT (6 g/kg) and fluoxetine (20 mg/kg) alleviated depressive-like behavior, restored hippocampal MAP2+ PSD95+ intensity, and reversed the dendritic spine density of hippocampal neurons and LTP in the CA1 region of mice exposed to CUMS. Both low and high doses of ZZCT (3 and 6 g/kg) significantly promoted the binding of 14-3-3ζ to p-GSK-3ß (Ser9) in the hippocampus, and ZZCT (6 g/kg) significantly promoted the phosphorylation of GSK-3ß Ser9 and CREB Ser133 in the hippocampus. ZZCT (3 and 6 g/kg) upregulated hippocampal BDNF expression in mice exposed to CUMS. LV-sh14-3-3ξ reduced the antidepressant effects of ZZCT. CONCLUSION: ZZCT exerted antidepressant effects against CUMS-stimulated depressive-like behavior mice. The knockdown of 14-3-3ζ using lentivirus confirmed that 14-3-3ζ was involved in the ZZCT-mediated antidepressant effects through GSK-3ß/CREB/BDNF signaling. On the whole, these results suggest that the antidepressant effects of ZZCT are attributed to restoring damage by neuroplasticity enhancement via the 14-3-3ζ/GSK-3ß/CREB/BDNF signaling pathway.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Fluoxetina , Ratones , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fluoxetina/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/farmacología , Antidepresivos/farmacología , Plasticidad Neuronal/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipocampo , Estrés Psicológico/tratamiento farmacológico , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad
13.
Mol Med ; 28(1): 139, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435759

RESUMEN

BACKGROUND: Neuroinflammation is a major mechanism in neurodegenerative diseases such as Alzheimer's disease (AD), which is a major healthcare problem. Notwithstanding of ample researches figured out possible molecular mechanisms underlying the pathophysiology of AD, there is no definitive therapeutics that aid in neuroprotection. Therefore, searching for new agents and potential targets is a critical demand. We aimed to investigate the neuroprotective effect of verapamil (VRP) against lipopolysaccharide (LPS)-induced neuroinflammation in mice and whether the time of VRP administration could affect its efficacy. METHODS: Forty male albino mice were used and were divided into normal control, LPS only, morning VRP, and evening VRP. Y-maze and pole climbing test were performed as behavioral tests. Hematoxylin and eosin together with Bielschowsky silver staining were done to visualize neuroinflammation and phosphorylated tau protein (pTAU); respectively. Additionally, the state of mitochondria, the levels of microglia-activation markers, inflammatory cytokines, intracellular Ca2+, pTAU, and Ca2+-dependent genes involving Ca2+/ calmodulin dependent kinase II (CAMKII) isoforms, protein kinase A (PKA), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF), with the level of VRP in the brain tissue were measured. RESULTS: LPS successfully induced neuroinflammation and hyperphosphorylation of tau protein, which was indicated by elevated levels of microglia markers, inflammatory cytokines, and intracellular Ca2+ with compromised mitochondria and downregulated CAMKII isoforms, PKA, CREB and BDNF. Pretreatment with VRP showed significant enhancement in the architecture of the brain and in the behavioral tests as indicated by the measured parameters. Moreover, morning VRP exhibited better neuroprotective profile compared to the evening therapy. CONCLUSIONS: VRP highlighted a multilevel of neuroprotection through anti-inflammatory activity, Ca2+ blockage, and regulation of Ca2+-dependent genes. Furthermore, chronotherapy of VRP administration should be consider to achieve best therapeutic efficacy.


Asunto(s)
Lipopolisacáridos , Fármacos Neuroprotectores , Animales , Ratones , Masculino , Lipopolisacáridos/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio , Proteínas tau , Verapamilo/farmacología , Enfermedades Neuroinflamatorias , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cronoterapia de Medicamentos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico , Citocinas
14.
Neurotox Res ; 40(6): 1869-1881, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36435923

RESUMEN

Deposition of aggregated amyloid beta (Aß) protein is considered to be a major causative factor that is associated with the development of oxidative stress and neuroinflammation in the pathogenesis of Alzheimer's disease (AD). Selenium nanoparticles (SeNPs) have been experimentally using for treatment of neurological disease due to their low toxicity, high bioavailability, and multiple bioactivities. This study was conducted to investigate the protective effects of biogenic SeNPs by Lactobacillus casei ATCC 393 against Aß25-35-induced toxicity in PC12 cells and its association with oxidative stress and inflammation. The results showed that SeNPs had no cytotoxicity on PC12 cells. Moreover, SeNPs entered cells through cellular endocytosis, which effectively attenuated Aß25-35-induced toxicity in PC12 cells. In addition, compared with Aß25-35 model group, SeNP pretreatment significantly enhanced the antioxidant capacity, inhibited the overproduction of reactive oxygen species (ROS), effectively regulated the inflammatory response, decreased the activity of acetylcholinesterase, significantly reduced the expression level of caspase-1 and the ratio of Bcl-2/Bax, and upregulated the expression level of p53. Furthermore, compared with Aß25-35 model group, SeNPs effectively promoted the phosphorylation of Akt and cAMP-response element-binding protein (CREB), and upregulated the expression level of brain-derived neurotrophic factor (BDNF). In addition, the Akt inhibitor (AKT inhibitor VIII, AKTi-1/2) could reverse the protective effects of SeNPs on PC12 cells. The Akt agonist (SC79) had a similar effect on PC12 cells as that of SeNPs. Overall, this study demonstrated that biogenic SeNPs can effectively alleviate the Aß25-35-induced toxicity in PC12 cells via Akt/CREB/BDNF signaling pathway.


Asunto(s)
Nanopartículas , Selenio , Ratas , Animales , Péptidos beta-Amiloides/toxicidad , Células PC12 , Selenio/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Acetilcolinesterasa/metabolismo , Transducción de Señal , Fragmentos de Péptidos/toxicidad , Apoptosis
15.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36232612

RESUMEN

Alzheimer's disease (AD) has pathological hallmarks including amyloid beta (Aß) plaque formation. Currently approved single-target drugs cannot effectively ameliorate AD. Medicinal herbs and their derived ingredients (MHDIs) have multitarget and multichannel properties, engendering exceptional AD treatment outcomes. This review delineates how in in vivo models MHDIs suppress Aß deposition by downregulating ß- and γ-secretase activities; inhibit oxidative stress by enhancing the antioxidant activities and reducing lipid peroxidation; prevent tau hyperphosphorylation by upregulating protein phosphatase 2A expression and downregulating glycogen synthase kinase-3ß expression; reduce inflammatory mediators partly by upregulating brain-derived neurotrophic factor/extracellular signal-regulated protein kinase 1/2-mediated signaling and downregulating p38 mitogen-activated protein kinase (p38 MAPK)/c-Jun N-terminal kinase (JNK)-mediated signaling; attenuate synaptic dysfunction by increasing presynaptic protein, postsynaptic protein, and acetylcholine levels and preventing acetylcholinesterase activity; and protect against neuronal apoptosis mainly by upregulating Akt/cyclic AMP response element-binding protein/B-cell lymphoma 2 (Bcl-2)-mediated anti-apoptotic signaling and downregulating p38 MAPK/JNK/Bcl-2-associated x protein (Bax)/caspase-3-, Bax/apoptosis-inducing factor-, C/EBP homologous protein/glucose-regulated protein 78-, and autophagy-mediated apoptotic signaling. Therefore, MHDIs listed in this review protect against Aß-induced cognitive decline by inhibiting Aß accumulation, oxidative stress, tau hyperphosphorylation, inflammation, synaptic damage, and neuronal apoptosis in the cortex and hippocampus during the early and late AD phases.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Plantas Medicinales , Acetilcolina , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Antioxidantes/uso terapéutico , Factor Inductor de la Apoptosis/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Caspasa 3/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Glucosa/efectos adversos , Glucógeno Sintasa Quinasas , Humanos , Mediadores de Inflamación/uso terapéutico , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Plantas Medicinales/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Neurochem Res ; 47(12): 3761-3776, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36222958

RESUMEN

Depression has become an important disease threatening human health. In recent years, the efficacy of Traditional Chinese Medicine (TCM) in treating the disease has become increasingly prominent, so it is meaningful to find new antidepressant TCM. Mahonia fortune (Lindl.) Fedde is a primary drug in traditional formulas for the treatment of depression, and alkaloids are the main components of it. However, the detailed mechanism of Mahonia alkaloids (MA) on depression remains unclear. This study aimed to investigate the effect of MA on gap junction function in depression via the miR-205/Cx43 axis. The antidepressant effects of MA were observed by a rat model of reserpine-induced depression and a model of corticosterone (CORT)-induced astrocytes. The concentrations of neurotransmitters were measured by ELISA, the expression of Connexin 43 (Cx43) protein was measured by Immunohistochemistry and western-blot, brain derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB) proteins were measured by western-blot, the pathological changes of prefrontal cortex were observed by hematoxylin-eosin (H&E) staining. Luciferase reporter assay was performed to verify the binding of miR-205 and Cx43. The regulation effect of Cx43 on CREB was verified by interference experiment. Gap junction dysfunction was detected by fluorescent yellow staining. The results confirmed that MA remarkably decreased miR-205 expression and increased Cx43, BDNF, CREB expression in depression rat and CORT-induced astrocytes. In addition, after overexpression of miR-205 in vitro, the decreased expression of Cx43, BDNF and CREB could be reversed by MA. Moreover, after interfering with Cx43, the decreased expression of CREB and BDNF could be reversed by MA. Thus, MA may ameliorate depressive behavior through CREB/BDNF pathway regulated by miR-205/Cx43 axis.


Asunto(s)
Alcaloides , Conexina 43 , Uniones Comunicantes , Mahonia , MicroARNs , Animales , Ratas , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Conexina 43/metabolismo , Corticosterona , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Depresión/metabolismo , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Hipocampo/metabolismo , Mahonia/química , MicroARNs/metabolismo , Reserpina , Alcaloides/farmacología , Alcaloides/uso terapéutico
17.
Pharm Biol ; 60(1): 1790-1800, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36102587

RESUMEN

CONTEXT: Jing-an oral liquid (JA) is a Chinese herbal formula used in the treatment of Tourette syndrome (TS); however, its mechanism is unclear. OBJECTIVE: To investigate the effects of JA on amino acid neurotransmitters and microglia activation in vivo and in vitro. MATERIALS AND METHODS: Sixty male Sprague-Dawley rats were divided into a control group and 5 TS groups. TS was induced in rats with intraperitoneal injection of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (1 mg/kg) and in BV2 cells with lipopolysaccharide. Control and model rats were administered saline, whereas treatment groups were administered JA (5.18, 10.36, or 20.72 g/kg) or tiapride (a benzamide, 23.5 mg/kg) by gavage once daily for 21 days. Stereotypic behaviour was tested. The levels of N-methyl-d-aspartate receptor (NMDAR)/mitogen-activated protein kinase/cAMP response element-binding protein (CREB)-related proteins in striatum and BV2 cells were measured via western blots. CD11b and IBa1 levels were also measured. Ultra-high-performance liquid-chromatography was used to determine γ-aminobutyric acid (GABA), glutamic acid (Glu), and aspartic acid (ASP) levels. RESULTS: JA markedly alleviated the stereotype behaviour (25.92 ± 0.35 to 13.78 ± 0.47) in rats. It also increased NMDAR1 (0.48 ± 0.09 to 0.67 ± 0.08; 0.54 ± 0.07 to 1.19 ± 0.18) expression and down-regulated the expression of p-ERK, p-JNK, p-P38, and p-CREB in BV2 cells and rat striatum. Additionally, Glu, ASP, GABA, CD11b, and IBa1 levels were significantly decreased by JA. DISCUSSION AND CONCLUSIONS: JA suppressed microglia activation and regulated the levels of amino acid neurotransmitters, indicating that it could be a promising therapeutic agent for TS.


Asunto(s)
Síndrome de Tourette , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ácido Glutámico , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Síndrome de Tourette/tratamiento farmacológico , Síndrome de Tourette/metabolismo , Ácido gamma-Aminobutírico
18.
Pharm Biol ; 60(1): 1739-1750, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36089851

RESUMEN

CONTEXT: The traditional Chinese medicine formula Tao-Hong-Si-Wu decoction (TSD), used for treating ischaemic stroke, has the potential to treat depressive disorder (DD). OBJECTIVE: To explore the effective targets of TSD on DD animal models. MATERIALS AND METHODS: Sprague-Dawley (SD) rats were modelled by inducing chronic unpredictable mild stress (CUMS) during 35 days and treated with three dosages of TSD (2.5, 5 and 10 g/kg) or fluoxetine (10 mg/kg) by oral gavage for 14 days. Bodyweight measurements and behavioural tests were performed to observe the effect of TSD on the CUMS animals. A gas chromatography coupled with mass spectrometry (GC-MS)-based metabolomic analysis was conducted to reveal the metabolic characteristics related to the curative effect of TSD. Levels of the proteins associated with the feature metabolites were analysed. RESULTS: Reduced immobile duration and crossed squares in the behavioural tests were raised by 48.6% and 32.9%, on average, respectively, by TSD treatment (ED50=3.2 g/kg). Antidepressant effects of TSD were associated with 13 decreased metabolites and the restorations of ornithine and urea in the serum. TSD (5 g/kg) raised serum serotonin by 54.1 mg/dL but suppressed arginase I (Arg I) by 47.8 mg/dL in the CUMS rats. Proteins on the brain-derived neurotrophic factor (BDNF)-cAMP response element-binding protein (CREB) axis that modulate the inhibition of Arg I were suppressed in the CUMS rats but reversed by the TSD intervention. DISCUSSION AND CONCLUSIONS: TSD improves depression-like symptoms in CUMS rats. Further study will focus on the antidepressant-like effects of effective compounds contained in TSD.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Animales , Antidepresivos/farmacología , Arginasa/metabolismo , Arginasa/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Medicamentos Herbarios Chinos , Hipocampo , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo
19.
Zhongguo Zhen Jiu ; 42(8): 907-13, 2022 Aug 12.
Artículo en Chino | MEDLINE | ID: mdl-35938334

RESUMEN

OBJECTIVE: To observe the regulative effect of Tongdu Tiaoshen acupuncture on the depression-like behavior and cAMP-response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF)/tyrosine protein kinase B (TrkB) signaling pathway of hippocampus in rats with post-stroke depression (PSD), and to explore its possible mechanism on improving PSD. METHODS: A total of 36 SPF SD rats were randomized into a sham operation group, a model group and a Tongdu Tiaoshen group, 12 rats in each group. The compound method of Zea Longa suture-occlusion and chronic unpredictable mild stress (CUMS) was used to establish the PSD model in rats of the model group and the Tongdu Tiaoshen group. On the 4th day after modeling, acupuncture was applied at "Dazhui" (GV 14), "Shuigou" (GV 26), "Baihui" (GV 20) and "Shenting" (GV 24) in the Tongdu Tiaoshen group, 40 min every time, once a day, 6 times a week for 4 weeks consecutively. On the 2nd day after PSD modeling and after 4-week intervention, Zea Longa neurobehavioral score was evaluated, sucrose water consumption test and open-field test were performed; biochemical method was used to detect the SOD, CAT activity and MDA level in hippocampal CA1 area; ELISA method was used to detect the serum level of BDNF; real-time PCR was used to detect the mRNA expression of BDNF, TrkB and CREB in hippocampal CA1 area; Western blot was used to detect the protein expression of BDNF, TrkB, CREB and p-CREB in hippocampal CA1 area. RESULTS: Compared with the sham operation group, Zea Longa neurobehavioral scores were increased (P<0.05), percentage of sucrose water consumption, horizontal motion and vertical motion scores of open-field test were decreased after modeling and intervention in the model group and after modeling in the Tongdu Tiaoshen group (P<0.05). Compared with the model group, Zea Longa neurobehavioral score was decreased (P<0.05), percentage of sucrose water consumption, horizontal motion and vertical motion scores of open-field test were increased after intervention in the Tongdu Tiaoshen group (P<0.05). Compared with the sham operation group, the SOD and CAT activity in hippocampal CA1 area and serum level of BDNF were decreased (P<0.05), MDA level in hippocampal CA1 area was increased in the model group (P<0.05); compared with the model group, the SOD and CAT activity in hippocampal CA1 area and serum level of BDNF were increased (P<0.05), MDA level was decreased in the Tongdu Tiaoshen group (P<0.05). Compared with the sham operation group, the mRNA expression of BDNF, TrkB and CREB as well as the protein expression of BDNF, TrkB, CREB and p-CREB were decreased in hippocampal CA1 area in the model group (P<0.05); compared with the model group, the mRNA expression of BDNF, TrkB and CREB, the protein expression of BDNF, TrkB and p-CREB as well as the ratio of p-CREB/CREB were increased in the Tongdu Tiaoshen group (P<0.05). CONCLUSION: Tongdu Tiaoshen acupuncture can improve the depression-like behavior in PSD rats, the mechanism may be related to the inhibition of oxidative stress in hippocampal tissues and the enhanced activity of CREB/BDNF/TrkB signaling pathway.


Asunto(s)
Terapia por Acupuntura , Accidente Cerebrovascular , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Depresión/etiología , Depresión/terapia , Hipocampo/metabolismo , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Accidente Cerebrovascular/complicaciones , Sacarosa , Superóxido Dismutasa
20.
Exp Brain Res ; 240(10): 2687-2699, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35984483

RESUMEN

Individuals with diabetes mellitus (DM) tend to manifest anxiety and depression, which could be related to changes in the expression of calcium/calmodulin-dependent protein kinase IV (CaMKIV), transcription factor cyclic AMP-responsive element binding protein (CREB), phosphorylated CREB (pCREB) and brain-derived neurotrophic factor (BDNF) in different brain regions. The objective of this study was to determine whether mice with type 1 diabetes (T1DM) induced with streptozotocin show a profile of anxious-type behaviors and alterations in the expression/activity of CaMKIV, CREB, pCREB and BDNF in different regions of the brain (prefrontal cortex, amygdala, hippocampus and hypothalamus) in comparison to non-diabetic mice (NDB). Mice with 3 months of chronic DM showed an anxious-like behavioral profile in two anxiety tests (Open Field and Elevated Plus Maze), when compared to NDB. There were significant differences in the expression of cell signaling proteins: diabetic mice had a lower expression of CaMKIV in the hippocampus, a greater expression of CREB in the amygdala and hypothalamus, as well as a lower pCREB/CREB in hypothalamus than NDB mice (P < 0.05). This is the first study evaluating the expression of CaMKIV in the brain of animals with DM, who presented lower expression of this protein in the hippocampus. In addition, it is the first time that CREB was evaluated in amygdala and hypothalamus of animals with DM, who presented a higher expression. Further research is necessary to determine the possible link between expression of CaMKIV and CREB, and the behavioral profile of anxiety in diabetic animals.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Diabetes Mellitus , Amígdala del Cerebelo , Animales , Ansiedad/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Diabetes Mellitus/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Ratones , Corteza Prefrontal/metabolismo , Transducción de Señal , Estreptozocina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA