Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Microbiology (Reading) ; 167(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33459585

RESUMEN

Some microbes display pleomorphism, showing variable cell shapes in a single culture, whereas others differentiate to adapt to changed environmental conditions. The pleomorphic archaeon Haloferax volcanii commonly forms discoid-shaped ('plate') cells in culture, but may also be present as rods, and can develop into motile rods in soft agar, or longer filaments in certain biofilms. Here we report improvement of H. volcanii growth in both semi-defined and complex media by supplementing with eight trace element micronutrients. With these supplemented media, transient development of plate cells into uniformly shaped rods was clearly observed during the early log phase of growth; cells then reverted to plates for the late log and stationary phases. In media prepared with high-purity water and reagents, without supplemental trace elements, rods and other complex elongated morphologies ('pleomorphic rods') were observed at all growth stages of the culture; the highly elongated cells sometimes displayed a substantial tubule at one or less frequently both poles, as well as unusual tapered and highly curved forms. Polar tubules were observed forming by initial mid-cell narrowing or tubulation, causing a dumbbell-like shape, followed by cell division towards one end. Formation of the uniform early log-phase rods, as well as the pleomorphic rods and tubules were dependent on the function of the tubulin-like cytoskeletal protein, CetZ1. Our results reveal the remarkable morphological plasticity of H. volcanii cells in response to multiple culture conditions, and should facilitate the use of this species in further studies of archaeal biology.


Asunto(s)
Haloferax volcanii/citología , Haloferax volcanii/crecimiento & desarrollo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Medios de Cultivo/química , Citoesqueleto/genética , Citoesqueleto/metabolismo , Haloferax volcanii/metabolismo , Nutrientes/análisis , Oligoelementos/análisis
2.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32978128

RESUMEN

Lipoic acid is a sulfur-containing cofactor and a component of the glycine cleavage system (GCS) involved in C1 compound metabolism and the 2-oxoacid dehydrogenases that catalyze the oxidative decarboxylation of 2-oxoacids. Lipoic acid is found in all domains of life and is generally synthesized as a lipoyl group on the H-protein of the GCS or the E2 subunit of 2-oxoacid dehydrogenases. Lipoyl synthase catalyzes the insertion of two sulfur atoms to the C-6 and C-8 carbon atoms of the octanoyl moiety on the octanoyl-H-protein or octanoyl-E2 subunit. Although the hyperthermophilic archaeon Thermococcus kodakarensis seemed able to synthesize lipoic acid, a classical lipoyl synthase (LipA) gene homolog cannot be found on the genome. In this study, we aimed to identify the lipoyl synthase in this organism. Genome information analysis suggested that the TK2109 and TK2248 genes, which had been annotated as biotin synthase (BioB), are both involved in lipoic acid metabolism. Based on the chemical reaction catalyzed by BioB, we predicted that the genes encode proteins that catalyze the lipoyl synthase reaction. Genetic analysis of TK2109 and TK2248 provided evidence that these genes are involved in lipoic acid biosynthesis. The purified TK2109 and TK2248 recombinant proteins exhibited lipoyl synthase activity toward a chemically synthesized octanoyl-octapeptide. These in vivo and in vitro analyses indicated that the TK2109 and TK2248 genes encode a structurally novel lipoyl synthase. TK2109 and TK2248 homologs are widely distributed among the archaeal genomes, suggesting that in addition to the LipA homologs, the two proteins represent a new group of lipoyl synthases in archaea.IMPORTANCE Lipoic acid is an essential cofactor for GCS and 2-oxoacid dehydrogenases, and α-lipoic acid has been utilized as a medicine and attracted attention as a supplement due to its antioxidant activity. The biosynthesis pathways of lipoic acid have been established in Bacteria and Eucarya but not in Archaea Although some archaeal species, including Sulfolobus, possess a classical lipoyl synthase (LipA) gene homolog, many archaeal species, including T. kodakarensis, do not. In addition, the biosynthesis mechanism of the octanoyl moiety, a precursor for lipoyl group biosynthesis, is also unknown for many archaea. As the enzyme identified in T. kodakarensis most likely represents a new group of lipoyl synthases in Archaea, the results obtained in this study provide an important step in understanding how lipoic acid is synthesized in this domain and how the two structurally distinct lipoyl synthases evolved in nature.


Asunto(s)
Proteínas Arqueales/genética , Sulfurtransferasas/genética , Thermococcus/genética , Ácido Tióctico/biosíntesis , Aminoácido Oxidorreductasas , Proteínas Arqueales/metabolismo , Complejos Multienzimáticos , Proteínas Recombinantes , Sulfurtransferasas/metabolismo , Thermococcus/enzimología , Transferasas
3.
Sci Rep ; 10(1): 10946, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616801

RESUMEN

Mononuclear molybdoenzymes of the dimethyl sulfoxide reductase (DMSOR) family catalyze a number of reactions essential to the carbon, nitrogen, sulfur, arsenic, and selenium biogeochemical cycles. These enzymes are also ancient, with many lineages likely predating the divergence of the last universal common ancestor into the Bacteria and Archaea domains. We have constructed rooted phylogenies for over 1,550 representatives of the DMSOR family using maximum likelihood methods to investigate the evolution of the arsenic biogeochemical cycle. The phylogenetic analysis provides compelling evidence that formylmethanofuran dehydrogenase B subunits, which catalyze the reduction of CO2 to formate during hydrogenotrophic methanogenesis, constitutes the most ancient lineage. Our analysis also provides robust support for selenocysteine as the ancestral ligand for the Mo/W atom. Finally, we demonstrate that anaerobic arsenite oxidase and respiratory arsenate reductase catalytic subunits represent a more ancient lineage of DMSORs compared to aerobic arsenite oxidase catalytic subunits, which evolved from the assimilatory nitrate reductase lineage. This provides substantial support for an active arsenic biogeochemical cycle on the anoxic Archean Earth. Our work emphasizes that the use of chalcophilic elements as substrates as well as the Mo/W ligand in DMSORs has indelibly shaped the diversification of these enzymes through deep time.


Asunto(s)
Archaea/enzimología , Proteínas Arqueales/metabolismo , Arsénico/metabolismo , Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Metano/metabolismo , Oxidorreductasas/metabolismo , Selenio/metabolismo , Evolución Molecular , Filogenia
4.
J Proteomics ; 191: 143-152, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29501848

RESUMEN

Inorganic polyphosphates (polyP) are present in all living cells and several important functions have been described for them. They are involved in the response to stress conditions, such as nutrient depletion, oxidative stress and toxic metals amongst others. A recombinant strain of Sulfolobus solfataricus unable to accumulate polyP was designed by the overexpression of its endogenous ppx gene. The overall impact of the lack of polyP on this S. solfataricus polyP (-) strain was analyzed by using quantitative proteomics (isotope-coded protein label, ICPL). Stress-related proteins, such as peroxiredoxins and heat shock proteins, proteins involved in metabolism and several others were produced at higher levels in the ppx expression strain. The polyP deficient strain showed an increased copper sensitivity and an earlier transcriptional up-regulation of copA gene coding for the P-type copper-exporting ATPase. This implies a complementary function of both copper resistance systems. These results strongly suggests that the lack of polyP makes this hyperthermophilic archaeon more sensitive to toxic conditions, such as an exposure to metals or other harmful stimuli, emphasizing the importance of this inorganic phosphate polymers in the adaptations to live in the environmental conditions in which thermoacidophilic archaea thrive. SIGNIFICANCE: Inorganic polyphosphate (polyP) are ubiquitous molecules with many functions in living organisms. Few studies related to these polymers have been made in archaea. The construction of a polyP deficient recombinant strain of Sulfolobus solfataricus allowed the study of the global changes in the proteome of this thermoacidophilic archaeon in the absence of polyP compared with the wild type strain. The results obtained using quantitative proteomics suggest an important participation of polyP in the oxidative stress response of the cells and as having a possible metabolic role in the cell, as previously described in bacteria. The polyP deficient strain also showed an increased copper sensitivity and an earlier transcriptional up-regulation of copA, implying a complementary role of both copper resistance systems.


Asunto(s)
Extremófilos/química , Polifosfatos/farmacología , Sulfolobus solfataricus/química , Adaptación Fisiológica , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Cobre/metabolismo , Extremófilos/genética , Regulación de la Expresión Génica Arqueal/efectos de los fármacos , Estrés Oxidativo , Polifosfatos/metabolismo , Proteómica/métodos , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/fisiología
5.
Funct Integr Genomics ; 19(1): 123-136, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30159724

RESUMEN

Ubiquitous nature of prolamin proteins dubbed gluten from wheat and allied cereals imposes a major challenge in the treatment of celiac disease, an autoimmune disorder with no known treatment other than abstinence diet. Administration of hydrolytic glutenases as food supplement is an alternative to deliver the therapeutic agents directly to the small intestine, where sensitization of immune system and downstream reactions take place. The aim of the present research was to evaluate the capacity of wheat grain to express and store hydrolytic enzymes capable of gluten detoxification. For this purpose, wheat scutellar calli were biolistically transformed to generate plants expressing a combination of glutenase genes for prolamin detoxification. Digestion of prolamins with barley endoprotease B2 (EP-HvB2) combined with Flavobacterium meningosepticum prolyl endopeptidase (PE-FmPep) or Pyrococcus furiosus prolyl endopeptidase (PE-PfuPep) significantly reduced (up to 67%) the amount of the indigestible gluten peptides of all prolamin families tested. Seven of the 168 generated lines showed inheritance of transgene to the T2 generation. Reversed phase high-performance liquid chromatography of gluten extracts under simulated gastrointestinal conditions allowed the identification of five T2 lines that contained significantly reduced amounts of immunogenic, celiac disease-provoking gliadin peptides. These findings were complemented by the R5 ELISA test results where up to 72% reduction was observed in the content of immunogenic peptides. The developed wheat genotypes open new horizons for treating celiac disease by an intraluminal enzyme therapy without compromising their agronomical performance.


Asunto(s)
Proteínas Arqueales/genética , Proteínas Bacterianas/genética , Glútenes/metabolismo , Péptido Hidrolasas/genética , Proteínas de Plantas/genética , Triticum/genética , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/metabolismo , Biolística , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/inmunología , Chryseobacterium/enzimología , Chryseobacterium/genética , Expresión Génica , Ingeniería Genética/métodos , Gliadina/inmunología , Gliadina/aislamiento & purificación , Gliadina/metabolismo , Gliadina/farmacología , Glútenes/química , Glútenes/inmunología , Hordeum/enzimología , Hordeum/genética , Humanos , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Péptido Hidrolasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteolisis , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/genética , Transgenes , Triticum/enzimología
6.
Sci Rep ; 7(1): 7752, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798309

RESUMEN

A comprehensive understanding of how microbial associated with nitrogen (N) cycling respond to artificial vegetation restoration is still lacking, particularly in arid to semi-arid degraded ecosystems. We compared soil net N mineralization rates and the abundance of bacteria, archaea, and eleven N microbial genes on the northern Loess Plateau of China during the process of artificial vegetation restoration. The quantitative relationships between net N mineralization rates and N microbial genes were determined. We observed a significant difference of net transformation rates of NH4+-N (Ra), NO3--N (Rd), and total mineralization (Rm), which rapidly decreased in 10-year soils and steadily increased in the 10-30-year soils. Different N functional microbial groups responded to artificial vegetation restoration distinctly and differentially, especially for denitrifying bacteria. Stepwise regression analysis suggested that Ra was collectively controlled by AOA-amoA and Archaea; Rd was jointly governed by narG, napA, nxrA, and bacreria; and Rm was jointly controlled by napA, narG, nirK, nirS, norB, nosZ, and nxrA.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Microbiota/genética , Ciclo del Nitrógeno , Microbiología del Suelo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Robinia/crecimiento & desarrollo , Suelo/química
7.
Environ Microbiol ; 19(7): 2831-2842, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28585353

RESUMEN

When abruptly exposed to toxic levels of hexavalent uranium, the extremely thermoacidophilic archaeon Metallosphaera prunae, originally isolated from an abandoned uranium mine, ceased to grow, and concomitantly exhibited heightened levels of cytosolic ribonuclease activity that corresponded to substantial degradation of cellular RNA. The M. prunae transcriptome during 'uranium-shock' implicated VapC toxins as possible causative agents of the observed RNA degradation. Identifiable VapC toxins and PIN-domain proteins encoded in the M. prunae genome were produced and characterized, three of which (VapC4, VapC7, VapC8) substantially degraded M. prunae rRNA in vitro. RNA cleavage specificity for these VapCs mapped to motifs within M. prunae rRNA. Furthermore, based on frequency of cleavage sequences, putative target mRNAs for these VapCs were identified; these were closely associated with translation, transcription, and replication. It is interesting to note that Metallosphaera sedula, a member of the same genus and which has a nearly identical genome sequence but not isolated from a uranium-rich biotope, showed no evidence of dormancy when exposed to this metal. M. prunae utilizes VapC toxins for post-transcriptional regulation under uranium stress to enter a cellular dormant state, thereby providing an adaptive response to what would otherwise be a deleterious environmental perturbation.


Asunto(s)
Proteínas Arqueales/metabolismo , Toxinas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Sulfolobaceae/crecimiento & desarrollo , Sulfolobaceae/metabolismo , Uranio/metabolismo , Proteínas Arqueales/genética , Toxinas Bacterianas/genética , Estabilidad del ARN/fisiología , Sulfolobaceae/genética , Transcriptoma
8.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28600316

RESUMEN

We developed an in vitro enzyme system to produce myo-inositol from starch. Four enzymes were used, maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase (MIPS), and inositol monophosphatase (IMPase). The enzymes were thermostable: MalP and PGM from the hyperthermophilic archaeon Thermococcus kodakarensis, MIPS from the hyperthermophilic archaeon Archaeoglobus fulgidus, and IMPase from the hyperthermophilic bacterium Thermotoga maritima The enzymes were individually produced in Escherichia coli and partially purified by subjecting cell extracts to heat treatment and removing denatured proteins. The four enzyme samples were incubated at 90°C with amylose, phosphate, and NAD+, resulting in the production of myo-inositol with a yield of over 90% at 2 h. The effects of varying the concentrations of reaction components were examined. When the system volume was increased and NAD+ was added every 2 h, we observed the production of 2.9 g myo-inositol from 2.9 g amylose after 7 h, achieving gram-scale production with a molar conversion of approximately 96%. We further integrated the pullulanase from T. maritima into the system and observed myo-inositol production from soluble starch and raw potato with yields of 73% and 57 to 61%, respectively.IMPORTANCEmyo-Inositol is an important nutrient for human health and provides a wide variety of benefits as a dietary supplement. This study demonstrates an alternative method to produce myo-inositol from starch with an in vitro enzyme system using thermostable maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase, and myo-inositol monophosphatase. By utilizing MalP and PGM to generate glucose 6-phosphate, we can avoid the addition of phosphate donors such as ATP, the use of which would not be practical for scaled-up production of myo-inositol. myo-Inositol was produced from amylose on the gram scale with yields exceeding 90%. Conversion rates were also high, producing over 2 g of myo-inositol within 4 h in a 200-ml reaction mixture. By adding a thermostable pullulanase, we produced myo-inositol from raw potato with yields of 57 to 61% (wt/wt). The system developed here should provide an attractive alternative to conventional methods that rely on extraction or microbial production of myo-inositol.


Asunto(s)
Proteínas Arqueales/química , Archaeoglobus fulgidus/enzimología , Inositol/química , Liasas Intramoleculares/química , Monoéster Fosfórico Hidrolasas/química , Almidón/química , Thermococcus/enzimología , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Estabilidad de Enzimas , Inositol/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , NAD/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Almidón/metabolismo
9.
J Proteome Res ; 16(7): 2370-2383, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28514846

RESUMEN

The thermoacidophilic crenarchaeon Sulfolobus solfataricus has been widely used as a model organism for archaeal systems biology research. Investigation using its spontaneous mutant PBL2025 provides an effective metabolic baseline to study subsequent mutagenesis-induced functional process shifts as well as changes in feedback inhibitions. Here, an untargeted metabolic investigation using quantitative proteomics and metabolomics was performed to correlate changes in S. solfataricus strains P2 against PBL2025 and under both glucose and tryptone. The study is combined with pathway enrichment analysis to identify prominent proteins with differential stoichiometry. Proteome level quantification reveals that over 20% of the observed overlapping proteome is differentially expressed under these conditions. Metabolic-induced differential expressions are observed along the central carbon metabolism, along with 12 other significantly regulated pathways. Current findings suggest that PBL2025 is able to compensate through the induction of carbon metabolism, as well as other anabolic pathways such as Val, Leu and iso-Leu biosynthesis. Studying protein abundance changes after changes in carbon sources also reveals distinct differences in metabolic strategies employed by both strains, whereby a clear down-regulation of carbohydrate and nucleotide metabolism is observed for P2, while a mixed response through down-regulation of energy formation and up-regulation of glycolysis is observed for PBL2025. This study contributes, to date, the most comprehensive network of changes in carbohydrate and amino acid pathways using the complementary systems biology observations at the protein and metabolite levels. Current findings provide a unique insight into molecular processing changes through natural (spontaneous) metabolic rewiring, as well as a systems biology understanding of the metabolic elasticity of thermoacidophiles to environmental carbon source change, potentially guiding more efficient directed mutagenesis in archaea.


Asunto(s)
Proteínas Arqueales/genética , Carbono/metabolismo , Regulación de la Expresión Génica Arqueal , Mutagénesis , Proteoma/genética , Sulfolobus solfataricus/genética , Aminoácidos/biosíntesis , Proteínas Arqueales/metabolismo , Retroalimentación Fisiológica , Glucosa/metabolismo , Glucosa/farmacología , Redes y Vías Metabólicas/genética , Metaboloma/genética , Peptonas/metabolismo , Peptonas/farmacología , Proteoma/metabolismo , Proteómica/métodos , Sulfolobus solfataricus/efectos de los fármacos , Sulfolobus solfataricus/metabolismo
10.
J Bacteriol ; 198(14): 1974-83, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27137504

RESUMEN

UNLABELLED: Conserved genes essential to sulfur assimilation and trafficking in aerobic organisms are missing in many methanogens, most of which inhabit highly sulfidic, anaerobic environmental niches. This suggests that methanogens possess distinct pathways for the synthesis of key metabolites and intermediates, including cysteine, homocysteine, and protein persulfide groups. Prior work identified a novel tRNA-dependent two-step pathway for cysteine biosynthesis and a new metabolic transformation by which sulfur is inserted into aspartate semialdehyde to produce homocysteine. Homocysteine biosynthesis requires two of the three proteins previously identified in our laboratory by a comprehensive bioinformatics approach. Here, we show that the third protein identified in silico, the ApbE-like protein COG2122, facilitates sulfide assimilation in Methanosarcina acetivorans Knockout strains lacking the gene encoding COG2122 are severely impaired for growth when sulfide is provided as the sole sulfur source. However, rapid growth is recovered upon supplementation with cysteine, homocysteine, or cystathionine, suggesting that COG2122 is required for efficient biosynthesis of both cysteine and homocysteine. Deletion of the gene encoding COG2122 does not influence the extent of sulfur modifications in tRNA or the prevalence of iron-sulfur clusters, indicating that the function of COG2122 could be limited to sulfide assimilation for cysteine and homocysteine biosynthesis alone. IMPORTANCE: We have found that the conserved M. acetivorans ma1715 gene, which encodes an ApbE-like protein, is required for optimal growth with sulfide as the sole sulfur source and supports both cysteine and homocysteine biosynthesis in vivo Together with related functional-genomics studies in methanogens, these findings make a key contribution to elucidating the novel pathways of sulfide assimilation and sulfur trafficking in anaerobic microorganisms that existed before the advent of oxygenic photosynthesis. The data suggest that the MA1715 protein is particularly important to sustaining robust physiological function when ambient sulfide concentrations are low. Phylogenetic analysis shows that MA1715 and other recently discovered methanogen sulfur-trafficking proteins share an evolutionary history with enzymes in the methanogenesis pathway. The newly characterized genes thus likely formed an essential part of the core metabolic machinery of the ancestral euryarchaeote.


Asunto(s)
Proteínas Arqueales/metabolismo , Methanosarcina/metabolismo , Sulfuros/metabolismo , Proteínas Arqueales/genética , Methanosarcina/clasificación , Methanosarcina/genética , Filogenia
11.
Extremophiles ; 20(1): 27-36, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26507955

RESUMEN

The halophilic euryarchaeon Haloferax volcanii can grow anaerobically by DMSO respiration. DMSO reductase was induced by DMSO respiration not only under anaerobic growth conditions but also in denitrifying cells of H. volcanii. Deletion of the dmsR gene, encoding a putative regulator for the DMSO reductase, resulted in the loss of anaerobic growth by DMSO respiration. Reporter experiments revealed that only the anaerobic condition was essential for transcription of the dmsEABCD genes encoding DMSO reductase and that transcription was enhanced threefold by supplementation of DMSO. In the ∆dmsR mutant, transcription of the dmsEABCD genes induced by the anaerobic condition was not enhanced by DMSO, suggesting that DmsR is a DMSO-responsive regulator. Transcriptions of the dmsR and mgd genes for Mo-bisMGD biosynthesis were regulated in the same manner as the dmsEABCD genes. These results suggest that the genetic regulation of DMSO respiration in H. volcanii is controlled by at least two systems: one is the DMSO-responsive DmsR, and the other is an unknown anaerobic regulator.


Asunto(s)
Proteínas Arqueales/genética , Regulación de la Expresión Génica Arqueal , Haloferax volcanii/genética , Proteínas Hierro-Azufre/genética , Oxidorreductasas/genética , Activación Transcripcional , Proteínas Arqueales/metabolismo , Respiración de la Célula , Dimetilsulfóxido/farmacología , Haloferax volcanii/efectos de los fármacos , Haloferax volcanii/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/metabolismo
12.
PLoS One ; 10(12): e0145876, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26710074

RESUMEN

Ginsenoside compound K (C-K) is attracting a lot of interest because of its biological and pharmaceutical activities, including hepatoprotective, antitumor, anti-wrinkling, and anti-skin aging activities. C-K has been used as the principal ingredient in skin care products. For the effective application of ginseng extracts to the manufacture of cosmetics, the PPD-type ginsenosides in ginseng extracts should be converted to C-K by enzymatic conversion. For increased yield of C-K from the protopanaxadiol (PPD)-type ginsenosides in red-ginseng extract (RGE), the α-L-arabinofuranoside-hydrolyzing α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus (CS-abf) was used along with the ß-D-glucopyranoside/α-L-arabinopyranoside-hydrolyzing ß-glycosidase from Sulfolobus solfataricus (SS-bgly) because SS-bgly showed very low hydrolytic activity on the α-L-arabinofuranoside linkage in ginsenosides. The optimal reaction conditions for C-K production were as follows: pH 6.0, 80°C, 2 U/mL SS-bgly, 3 U/mL CS-abf, and 7.5 g/L PPD-type ginsenosides in RGE. Under these optimized conditions, SS-bgly supplemented with CS-abf produced 4.2 g/L C-K from 7.5 g/L PPD-type ginsenosides in 12 h without other ginsenosides, with a molar yield of 100% and a productivity of 348 mg/L/h. To the best of our knowledge, this is the highest concentration and productivity of C-K from ginseng extract ever published in literature.


Asunto(s)
Ginsenósidos/biosíntesis , Panax/química , Plantas Medicinales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Firmicutes/enzimología , Firmicutes/genética , Ginsenósidos/aislamiento & purificación , Ginsenósidos/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Cinética , Redes y Vías Metabólicas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobus solfataricus/enzimología , Sulfolobus solfataricus/genética , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo
13.
Appl Environ Microbiol ; 80(9): 2763-72, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24561589

RESUMEN

Pyrolysin is an extracellular subtilase produced by the marine hyperthermophilic archaeon Pyrococcus furiosus. This enzyme functions at high temperatures in seawater, but little is known about the effects of metal ions on the properties of pyrolysin. Here, we report that the supplementation of Na(+), Ca(2+), or Mg(2+) salts at concentrations similar to those in seawater destabilizes recombinant pyrolysin but leads to an increase in enzyme activity. The destabilizing effect of metal ions on pyrolysin appears to be related to the disturbance of surface electrostatic interactions of the enzyme. In addition, mutational analysis of two predicted high-affinity Ca(2+)-binding sites (Ca1 and Ca2) revealed that the binding of Ca(2+) is important for the stabilization of this enzyme. Interestingly, Asn substitutions at residues Asp818 and Asp820 of the Ca2 site, which is located in the C-terminal extension of pyrolysin, resulted in improvements in both enzyme thermostability and activity without affecting Ca(2+)-binding affinity. These effects were most likely due to the elimination of unfavorable electrostatic repulsion at the Ca2 site. Together, these results suggest that metal ions play important roles in modulating the stability and activity of pyrolysin.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Calcio/metabolismo , Pyrococcus furiosus/enzimología , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Sitios de Unión , Estabilidad de Enzimas , Calor , Cinética , Metales/metabolismo , Pyrococcus furiosus/química , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Serina Endopeptidasas/genética
14.
J Mol Biol ; 425(10): 1627-40, 2013 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-23399544

RESUMEN

HypB (metal-binding GTPase) and HypA (nickel metallochaperone) are required for nickel insertion into [NiFe] hydrogenase. However, the HypB homolog proteins are not found in some archaeal species including Thermococcales. In this article, we identify a novel archaeal Mrp/MinD family ATPase-type HypB from Thermococcus kodakarensis (Tk-mmHypB) and determine its crystal structure. The mmhypB gene is conserved among species lacking the hypB gene and is located adjacent to the hypA gene on their genome. Deletion of the mmhypB gene leads to a significant reduction in hydrogen-dependent growth of T. kodakarensis, which is restored by nickel supplementation. The monomer structure of Tk-mmHypB is similar to those of the Mrp/MinD family ATPases. The ADP molecules are tightly bound to the protein. Isothermal titration calorimetry shows that Tk-mmHypB binds ATP with a K(d) value of 84 nM. ADP binds more tightly than does ATP, with a K(d) value of 15 nM. The closed Tk-mmHypB dimer in the crystallographic asymmetric unit is consistent with the ATP-hydrolysis-deficient dimer of the Mrp/MinD family Soj/MinD proteins. Structural comparisons with these proteins suggest the ATP-binding dependent conformational change and rearrangement of the Tk-mmHypB dimer. These observations imply that the nickel insertion process during the [NiFe] hydrogenase maturation is performed by HypA, mmHypB, and a nucleotide exchange factor in these archaea.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Hidrogenasas/biosíntesis , Thermococcus/enzimología , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Sitios de Unión/genética , Cristalografía por Rayos X , Genes Arqueales , Hidrogenasas/química , Hidrogenasas/genética , Datos de Secuencia Molecular , Níquel/metabolismo , Thermococcus/genética , Thermococcus/crecimiento & desarrollo
15.
Wei Sheng Wu Xue Bao ; 53(10): 1050-5, 2013 Oct 04.
Artículo en Chino | MEDLINE | ID: mdl-24409760

RESUMEN

UNLABELLED: Methanolobus psychrophilus R15, isolated from the Zogei wetland at Tibetan plateau, is a cold-active methanogenic archaeon growing from 0 to 30 degrees C and optimally at 18 degrees C. R15 grew in the NaCl concentrations ranging from 5 to 800 mmol/L. OBJECTIVE: This study aimed to find compatible solutes that can improve the growth of R15 at cold, and the possible function as cryoprotectant. METHODS: Using LC-MC we determined the accumulated substances in the R15 cells growing at lower temperatures, as well as in the cold-shocked cells; by supplementing the accumulated substances and the chemicals known as the bacterial compatible solutes in the R15 culture, we detected their functions of assisting the cold-growth of R15; by adding the detected compatible solutes into the glutamate dehydrogenase (GDH), we determined the enzymatic stabilities at lower temperatures. RESULTS: Choline and betaine were accumulated both in the 4 degrees C-cultured and 4 degrees C -shocked 30 degrees C culture of R15. It was determined that choline, betaine, glycine, carnitine, acetoin and ectoine all improved the growth of R15 at cold. Choline, betaine and glycine could enhance the stability of GDH at low temperature. CONCLUSION: Some compatible solutes can act as the cryoprotectant for methanogenic archaea, which expands our knowledge of the physiological functions of the compatible solutes.


Asunto(s)
Betaína/metabolismo , Colina/metabolismo , Crioprotectores/metabolismo , Euryarchaeota/crecimiento & desarrollo , Euryarchaeota/metabolismo , Aminoácidos Diaminos/metabolismo , Proteínas Arqueales/metabolismo , Frío , Euryarchaeota/química , Euryarchaeota/enzimología , Glutamato Deshidrogenasa/metabolismo , Viabilidad Microbiana
16.
Biotechnol Prog ; 29(1): 237-46, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23125177

RESUMEN

Immunoaffinity separation of large multivalent species such as viruses is limited by the stringent elution conditions necessary to overcome their strong and highly avid interaction with immobilized affinity ligands on the capture surface. Here we present an alternate strategy that harnesses the avidity effect to overcome this limitation. Red clover necrotic mosaic virus (RCNMV), a plant virus relevant to drug delivery applications, was chosen as a model target for this study. An RCNMV binding protein (RBP) with modest binding affinity (K(D) ~100 nM) was generated through mutagenesis of the Sso7d protein from Sulfolobus solfataricus and used as the affinity ligand. In our separation scheme, RCNMV is captured by a highly avid interaction with RBP immobilized on a nickel surface through a hexahistidine (6xHis) tag. Subsequently, disruption of the multivalent interaction and release of RCNMV is achieved by elution of RBP from the nickel surface. Finally, RCNMV is separated from RBP by exploiting the large difference in their molecular weights (~8 MDa vs. ~10 kDa). Our strategy not only eliminates the need for harsh elution conditions, but also bypasses chemical conjugation of the affinity ligand to the capture surface. Stable non-antibody affinity ligands to a wide spectrum of targets can be generated through mutagenesis of Sso7d and other hyperthermophilic proteins. Therefore, our approach may be broadly relevant to cases where capture of large multivalent species from complex mixtures and subsequent release without the use of harsh elution conditions is necessary.


Asunto(s)
Proteínas Arqueales/química , Proteínas de Unión al ADN/química , Sulfolobus solfataricus/química , Tombusviridae/aislamiento & purificación , Proteínas Arqueales/aislamiento & purificación , Proteínas Arqueales/metabolismo , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Ligandos , Peso Molecular , Extractos Vegetales , Hojas de la Planta/virología , Sulfolobus solfataricus/metabolismo , Nicotiana/virología
17.
Proc Natl Acad Sci U S A ; 109(41): 16702-7, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23010932

RESUMEN

Thermoacidophilic archaea are found in heavy metal-rich environments, and, in some cases, these microorganisms are causative agents of metal mobilization through cellular processes related to their bioenergetics. Given the nature of their habitats, these microorganisms must deal with the potentially toxic effect of heavy metals. Here, we show that two thermoacidophilic Metallosphaera species with nearly identical (99.99%) genomes differed significantly in their sensitivity and reactivity to uranium (U). Metallosphaera prunae, isolated from a smoldering heap on a uranium mine in Thüringen, Germany, could be viewed as a "spontaneous mutant" of Metallosphaera sedula, an isolate from Pisciarelli Solfatara near Naples. Metallosphaera prunae tolerated triuranium octaoxide (U(3)O(8)) and soluble uranium [U(VI)] to a much greater extent than M. sedula. Within 15 min following exposure to "U(VI) shock," M. sedula, and not M. prunae, exhibited transcriptomic features associated with severe stress response. Furthermore, within 15 min post-U(VI) shock, M. prunae, and not M. sedula, showed evidence of substantial degradation of cellular RNA, suggesting that transcriptional and translational processes were aborted as a dynamic mechanism for resisting U toxicity; by 60 min post-U(VI) shock, RNA integrity in M. prunae recovered, and known modes for heavy metal resistance were activated. In addition, M. sedula rapidly oxidized solid U(3)O(8) to soluble U(VI) for bioenergetic purposes, a chemolithoautotrophic feature not previously reported. M. prunae, however, did not solubilize solid U(3)O(8) to any significant extent, thereby not exacerbating U(VI) toxicity. These results point to uranium extremophily as an adaptive, rather than intrinsic, feature for Metallosphaera species, driven by environmental factors.


Asunto(s)
Adaptación Fisiológica/genética , Sulfolobaceae/genética , Transcriptoma/genética , Uranio/toxicidad , Adaptación Fisiológica/efectos de los fármacos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Electroforesis en Gel Bidimensional , Contaminantes Ambientales/química , Contaminantes Ambientales/toxicidad , Regulación de la Expresión Génica Arqueal/efectos de los fármacos , Mutación , Estabilidad del ARN/efectos de los fármacos , ARN de Archaea/genética , ARN de Archaea/metabolismo , Especificidad de la Especie , Sulfolobaceae/clasificación , Sulfolobaceae/metabolismo , Factores de Tiempo , Uranio/química
18.
PLoS One ; 7(7): e41621, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22911826

RESUMEN

Natrinema sp. J7-2 is an extreme haloarchaeon capable of growing on synthetic media without amino acid supplements. Here we report the complete genome sequence of Natrinema sp. J7-2 which is composed of a 3,697,626-bp chromosome and a 95,989-bp plasmid pJ7-I. This is the first complete genome sequence of a member of the genus Natrinema. We demonstrate that Natrinema sp. J7-2 can use gluconate, glycerol, or acetate as the sole carbon source and that its genome encodes complete metabolic pathways for assimilating these substrates. The biosynthetic pathways for all 20 amino acids have been reconstructed, and we discuss a possible evolutionary relationship between the haloarchaeal arginine synthetic pathway and the bacterial lysine synthetic pathway. The genome harbors the genes for assimilation of ammonium and nitrite, but not nitrate, and has a denitrification pathway to reduce nitrite to N(2)O. Comparative genomic analysis suggests that most sequenced haloarchaea employ the TrkAH system, rather than the Kdp system, to actively uptake potassium. The genomic analysis also reveals that one of the three CRISPR loci in the Natrinema sp. J7-2 chromosome is located in an integrative genetic element and is probably propagated via horizontal gene transfer (HGT). Finally, our phylogenetic analysis of haloarchaeal genomes provides clues about evolutionary relationships of haloarchaea.


Asunto(s)
Aminoácidos/farmacología , Medios de Cultivo/farmacología , Genoma Arqueal/genética , Halobacteriaceae/crecimiento & desarrollo , Halobacteriaceae/genética , Aminoácidos/biosíntesis , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/genética , Carbono/metabolismo , Carbono/farmacología , Halobacteriaceae/efectos de los fármacos , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Nitrógeno/farmacología , Filogenia
19.
FEBS Lett ; 586(6): 717-21, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22293502

RESUMEN

5-Methylaminomethyl-2-selenouridine (mnm(5)Se(2)U) is found in the first position of the anticodon in certain tRNAs from bacteria, archaea and eukaryotes. This selenonucleoside is formed in Escherichia coli from the corresponding thionucleoside mnm(5)S(2)U by the monomeric enzyme YbbB. This nucleoside is present in the tRNA of Methanococcales, yet the corresponding 2-selenouridine synthase is unknown in archaea and eukaryotes. Here we report that a bipartite ybbB ortholog is present in all members of the Methanococcales. Gene deletions in Methanococcus maripaludis and in vitro activity assays confirm that the two proteins act in trans to form in tRNA a selenonucleoside, presumably mnm(5)Se(2)U. Phylogenetic data suggest a primal origin of seleno-modified tRNAs.


Asunto(s)
Proteínas Arqueales/metabolismo , Methanococcus/genética , Compuestos de Organoselenio/metabolismo , ARN de Transferencia/metabolismo , Selenio/metabolismo , Tiosulfato Azufretransferasa/metabolismo , Uridina/análogos & derivados , Secuencia de Aminoácidos , Animales , Proteínas Arqueales/química , Proteínas Arqueales/clasificación , Proteínas Arqueales/genética , Ligasas/química , Ligasas/clasificación , Ligasas/genética , Ligasas/metabolismo , Methanococcus/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Compuestos de Organoselenio/química , Filogenia , Estructura Terciaria de Proteína , ARN de Transferencia/clasificación , ARN de Transferencia/genética , Alineación de Secuencia , Tiosulfato Azufretransferasa/química , Tiosulfato Azufretransferasa/genética , Uridina/química , Uridina/genética , Uridina/metabolismo
20.
J Bacteriol ; 193(17): 4495-508, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21665970

RESUMEN

Hydrolytic deamination of cytosine to uracil in DNA is increased in organisms adapted to high temperatures. Hitherto, the uracil base excision repair (BER) pathway has only been described in two archaeons, the crenarchaeon Pyrobaculum aerophilum and the euryarchaeon Archaeoglobus fulgidus, which are hyperthermophiles and use single-nucleotide replacement. In the former the apurinic/apyrimidinic (AP) site intermediate is removed by the sequential action of a 5'-acting AP endonuclease and a 5'-deoxyribose phosphate lyase, whereas in the latter the AP site is primarily removed by a 3'-acting AP lyase, followed by a 3'-phosphodiesterase. We describe here uracil BER by a cell extract of the thermoacidophilic euryarchaeon Thermoplasma acidophilum, which prefers a similar short-patch repair mode as A. fulgidus. Importantly, T. acidophilumcell extract also efficiently executes ATP/ADP-stimulated long-patch BER in the presence of deoxynucleoside triphosphates, with a repair track of ∼15 nucleotides. Supplementation of recombinant uracil-DNA glycosylase (rTaUDG; ORF Ta0477) increased the formation of short-patch at the expense of long-patch repair intermediates, and additional supplementation of recombinant DNA ligase (rTalig; Ta1148) greatly enhanced repair product formation. TaUDG seems to recruit AP-incising and -excising functions to prepare for rapid single-nucleotide insertion and ligation, thus excluding slower and energy-costly long-patch BER.


Asunto(s)
Proteínas Arqueales/metabolismo , Reparación del ADN , Thermoplasma/genética , Uracil-ADN Glicosidasa/metabolismo , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/genética , ADN Ligasas/genética , ADN Ligasas/metabolismo , ADN Recombinante , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Electroforesis en Gel de Poliacrilamida , Regulación de la Expresión Génica Arqueal , Genes Arqueales , Liasas de Fósforo-Oxígeno/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Thermoplasma/enzimología , Uracil-ADN Glicosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA