Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 223(Pt A): 755-765, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36368361

RESUMEN

Transmissible spongiform encephalopathies (TSEs) or prion diseases are fatal neurodegenerative diseases with no approved therapeutics. TSE pathology is characterized by abnormal accumulation of amyloidogenic and infectious prion protein conformers (PrPSc) in the central nervous system. Herein, we examined the role of gallate group in green tea catechins in modulating the aggregation of human prion protein (HuPrP) using two green tea constituents i.e., epicatechin 3-gallate (EC3G; with intact gallate ring) and epigallocatechin (EGC; without gallate ring). Molecular docking indicated distinct differences in hydrogen bonding and hydrophobic interactions of EC3G and EGC at the ß2-α2 loop of HuPrP. These differences were substantiated by 44-fold higher KD for EC3G as compared to EGC with the former significantly reducing Thioflavin T (ThT) binding aggregates of HuPrP. Conformational alterations in HuPrP aggregates were validated by particle sizing, AFM analysis and A11 and OC conformational antibodies. As compared to EGC, EC3G showed relatively higher reduction in toxicity and cellular internalization of HuPrP oligomers in Neuro-2a cells. Additionally, EC3G also displayed higher fibril disaggregating properties as observed by ThT kinetics and electron microscopy. Our observations were supported by molecular dynamics (MD) simulations that showed markedly reduced α2-α3 and ß2-α2 loop mobilities in presence of EC3G that may lead to constriction of HuPrP conformational space with lowered ß-sheet conversion. In totality, gallate moiety of catechins play key role in modulating HuPrP aggregation, and toxicity and could be a new structural motif for designing therapeutics against prion diseases and other neurodegenerative disorders.


Asunto(s)
Catequina , Enfermedades por Prión , Priones , Humanos , Priones/química , Proteínas Priónicas/química , , Simulación del Acoplamiento Molecular , Catequina/farmacología
2.
Expert Opin Drug Discov ; 17(9): 985-996, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35983689

RESUMEN

INTRODUCTION: Prion diseases are a group of rare and lethal, rapidly progressive neurodegenerative diseases arising due to conversion of the physiological cellular prion protein into its pathological counterparts, denoted as 'prions.' These agents are resistant to inactivation by standard decontamination procedures and can be transmitted between individuals, consequently driving the irreversible brain damage typical of the diseases. AREAS COVERED: Since its infancy, prion research has mainly depended on animal models for untangling the pathogenesis of the disease as well as for the drug development studies. With the advent of prion-infected cell lines, relevant animal models have been complemented by a variety of cell-based models presenting a much faster, ethically acceptable alternative. EXPERT OPINION: To date, there are still either no effective prophylactic regimens or therapies for human prion diseases. Therefore, there is an urgent need for more relevant cellular models that best approximate in vivo models. Each cellular model presented and discussed in detail in this review has its own benefits and limitations. Once embarking in a drug screening campaign for the identification of molecules that could interfere with prion conversion and replication, one should carefully consider the ideal cellular model.


Asunto(s)
Enfermedades por Prión , Priones , Animales , Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos , Humanos , Enfermedades por Prión/tratamiento farmacológico , Proteínas Priónicas , Priones/metabolismo
3.
Molecules ; 27(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163973

RESUMEN

The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.


Asunto(s)
Resistencia a Múltiples Medicamentos/fisiología , Melatonina/metabolismo , Priones/metabolismo , Animales , Resistencia a Múltiples Medicamentos/genética , Humanos , Peroxidación de Lípido , Melatonina/farmacología , Melatonina/fisiología , Microdominios de Membrana/metabolismo , Neoplasias/metabolismo , Proteínas Priónicas/metabolismo , Priones/química , Priones/genética , Transducción de Señal , Microambiente Tumoral/fisiología
4.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613636

RESUMEN

Prion diseases are neurodegenerative disorders in humans and animals for which no therapies are currently available. Here, we report that Curcuma phaeocaulis Valeton (Zingiberaceae) (CpV) extract was partly effective in decreasing prion aggregation and propagation in both in vitro and in vivo models. CpV extract inhibited self-aggregation of recombinant prion protein (PrP) in a test tube assay and decreased the accumulation of scrapie PrP (PrPSc) in ScN2a cells, a cultured neuroblastoma cell line with chronic prion infection, in a concentration-dependent manner. CpV extract also modified the course of the disease in mice inoculated with mouse-adapted scrapie prions, completely preventing the onset of prion disease in three of eight mice. Biochemical and neuropathological analyses revealed a statistically significant reduction in PrPSc accumulation, spongiosis, astrogliosis, and microglia activation in the brains of mice that avoided disease onset. Furthermore, PrPSc accumulation in the spleen of mice was also reduced. CpV extract precluded prion infection in cultured cells as demonstrated by the modified standard scrapie cell assay. This study suggests that CpV extract could contribute to investigating the modulation of prion propagation.


Asunto(s)
Enfermedades por Prión , Priones , Scrapie , Zingiberaceae , Animales , Ratones , Curcuma/metabolismo , Modelos Animales , Extractos Vegetales/farmacología , Enfermedades por Prión/tratamiento farmacológico , Proteínas Priónicas , Priones/metabolismo , Scrapie/metabolismo , Ovinos
5.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671292

RESUMEN

Anticancer drugs, such as fluorouracil (5-FU), oxaliplatin, and doxorubicin (Dox) are commonly used to treat colorectal cancer (CRC); however, owing to their low response rate and adverse effects, the development of efficient drug delivery systems (DDSs) is required. The cellular prion protein PrPC, which is a cell surface glycoprotein, has been demonstrated to be overexpressed in CRC, however, there has been no research on the development of PrPC-targeting DDSs for targeted drug delivery to CRC. In this study, PrPC aptamer (Apt)-conjugated gold nanoparticles (AuNPs) were synthesized for targeted delivery of Dox to CRC. Thiol-terminated PrPC-Apt was conjugated to AuNPs, followed by hybridization of its complementary DNA for drug loading. Finally, Dox was loaded onto the AuNPs to synthesize PrPC-Apt-functionalized doxorubicin-oligomer-AuNPs (PrPC-Apt DOA). The PrPC-Apt DOA were spherical nanoparticles with an average diameter of 20 nm. Treatment of CRC cells with PrPC-Apt DOA induced reactive oxygen species generation by decreasing catalase and superoxide dismutase activities. In addition, treatment with PrPC-Apt DOA inhibited mitochondrial functions by decreasing the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, complex 4 activity, and oxygen consumption rates. Compared to free Dox, PrPC-Apt DOA decreased proliferation and increased apoptosis of CRC cells to a greater degree. In this study, we demonstrated that PrPC-Apt DOA targeting could effectively deliver Dox to CRC cells. PrPC-Apt DOA can be used as a treatment for CRC, and have the potential to replace existing anticancer drugs, such as 5-FU, oxaliplatin, and Dox.


Asunto(s)
Aptámeros de Nucleótidos/química , Neoplasias Colorrectales/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Oro/química , Nanopartículas del Metal/química , Proteínas Priónicas/química , Apoptosis/efectos de los fármacos , Catalasa/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Superóxido Dismutasa/metabolismo
6.
J Mol Med (Berl) ; 99(3): 383-402, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33409554

RESUMEN

Endoplasmic reticulum (ER) stress is a common threat to photoreceptors during the pathogenesis of chronic retinopathies and often results in irreversible visual impairment. 2,3,5,6-Tetramethylpyrazine (TMP), which possesses many beneficial pharmacological activities, is a potential drug that could be used to protect photoreceptors. In the present study, we found that the cellular growth rate of 661 W cells cultured under low glucose conditions was lower than that of control cells, while the G2/M phase of the cell cycle was longer. We further found that the mitochondrial membrane potential (ΔΨm) was lower and that ER stress factor expression was increased in 661 W cells cultured under low glucose conditions. TMP reversed these trends. Visual function and cell counts in the outer nuclear layer (ONL) were low and the TUNEL-positive rate in the ONL was high in a C3H mouse model of spontaneous retinal degeneration. Similarly, visual function was decreased, and the TUNEL-positive rate in the ONL was increased in fasted C57/BL6j mice compared with control mice. On the other hand, ER stress factor expression was found to be increased in the retinas of both mouse models, as shown by reverse transcription real-time PCR (RT-qPCR) and western blotting. TMP reversed the physiological and molecular biological variations observed in both mouse models, and ATF4 expression was enhanced again. Further investigation by using western blotting illustrated that the proportion of insoluble prion protein (PRP) versus soluble PRP was reduced both in vitro and in vivo. Taken together, these results suggest that TMP increased the functions of photoreceptors by alleviating ER stress in vitro and in vivo, and the intrinsic mechanism was the ATF4-mediated inhibition of PRP aggregation. TMP may potentially be used clinically as a therapeutic agent to attenuate the functional loss of photoreceptors during the pathogenesis of chronic retinopathies. KEY MESSAGES: • Already known: TMP is a beneficial drug mainly used in clinic to enhance organ functions, and the intrinsic mechanism is still worthy of exploring. • New in the study: We discovered that TMP ameliorated retinal photoreceptors function via ER stress alleviation, which was promoted by ATF4-mediated inhibition of PRP aggregation. • Application prospect: In prospective clinical practices, TMP may potentially be used in the clinic as a therapeutic agent to attenuate the photoreceptors functional reduction in chronic retinopathies.


Asunto(s)
Factor de Transcripción Activador 4/fisiología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas Priónicas/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/prevención & control , Pirazinas/farmacología , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Degeneración Retiniana/prevención & control , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Electrorretinografía , Proteínas del Ojo/biosíntesis , Proteínas del Ojo/genética , Ayuno , Femenino , Glucosa/farmacología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Proteínas Priónicas/química , Agregación Patológica de Proteínas/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Degeneración Retiniana/fisiopatología , Método Simple Ciego , Solubilidad , Organismos Libres de Patógenos Específicos , Transcripción Genética/efectos de los fármacos
7.
Ann Neurol ; 89(4): 823-827, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33386648

RESUMEN

Fatal familial insomnia (FFI) is a rare inherited prion disease characterized by sleep, autonomic, and motor disturbances. Neuro-ophthalmological abnormalities have been reported at the onset of disease, although not further characterized. We analyzed video recordings of eye movements of 6 patients with FFI from 3 unrelated kindreds, seen within 6 months from the onset of illness. Excessive saccadic intrusions were the most prominent findings. In patients with severe insomnia, striking saccadic intrusions are an early diagnostic clue for FFI. The fact that the thalamus is the first structure affected in FFI also suggests its role in the control of steady fixation. ANN NEUROL 2021;89:823-827.


Asunto(s)
Técnicas de Diagnóstico Oftalmológico , Insomnio Familiar Fatal/diagnóstico , Examen Neurológico , Adulto , Edad de Inicio , Electrooculografía , Movimientos Oculares , Femenino , Humanos , Insomnio Familiar Fatal/genética , Insomnio Familiar Fatal/fisiopatología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Proteínas Priónicas/genética , Estudios Retrospectivos , Movimientos Sacádicos , Tálamo/fisiopatología , Grabación en Video
8.
Commun Biol ; 4(1): 62, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33437023

RESUMEN

Recent computational advancements in the simulation of biochemical processes allow investigating the mechanisms involved in protein regulation with realistic physics-based models, at an atomistic level of resolution. These techniques allowed us to design a drug discovery approach, named Pharmacological Protein Inactivation by Folding Intermediate Targeting (PPI-FIT), based on the rationale of negatively regulating protein levels by targeting folding intermediates. Here, PPI-FIT was tested for the first time on the cellular prion protein (PrP), a cell surface glycoprotein playing a key role in fatal and transmissible neurodegenerative pathologies known as prion diseases. We predicted the all-atom structure of an intermediate appearing along the folding pathway of PrP and identified four different small molecule ligands for this conformer, all capable of selectively lowering the load of the protein by promoting its degradation. Our data support the notion that the level of target proteins could be modulated by acting on their folding pathways, implying a previously unappreciated role for folding intermediates in the biological regulation of protein expression.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Enfermedades por Prión/tratamiento farmacológico , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo , Pliegue de Proteína , Animales , Sitios de Unión , Simulación por Computador , Retículo Endoplásmico/metabolismo , Fibroblastos , Células HEK293 , Humanos , Ligandos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Reproducibilidad de los Resultados
9.
J Neurol Neurosurg Psychiatry ; 91(11): 1158-1165, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32839349

RESUMEN

OBJECTIVE: To clinically diagnose MM2-cortical (MM2C) and MM2-thalamic (MM2T)-type sporadic Creutzfeldt-Jakob disease (sCJD) at early stage with high sensitivity and specificity. METHODS: We reviewed the results of Creutzfeldt-Jakob disease Surveillance Study in Japan between April 1999 and September 2019, which included 254 patients with pathologically confirmed prion diseases, including 9 with MM2C-type sCJD (MM2C-sCJD) and 10 with MM2T-type sCJD (MM2T-sCJD), and 607 with non-prion diseases. RESULTS: According to the conventional criteria of sCJD, 4 of 9 patients with MM2C- and 7 of 10 patients with MM2T-sCJD could not be diagnosed with probable sCJD until their death. Compared with other types of sCJD, patients with MM2C-sCJD showed slower progression of the disease and cortical distribution of hyperintensity lesions on diffusion-weighted images of brain MRI. Patients with MM2T-sCJD also showed relatively slow progression and negative results for most of currently established investigations for diagnosis of sCJD. To clinically diagnose MM2C-sCJD, we propose the new criteria; diagnostic sensitivity and specificity to distinguish 'probable' MM2C-sCJD from other subtypes of sCJD, genetic or acquired prion diseases and non-prion disease controls were 77.8% and 98.5%, respectively. As for MM2T-sCJD, clinical and laboratory features are not characterised enough to develop its diagnostic criteria. CONCLUSIONS: MM2C-sCJD can be diagnosed at earlier stage using the new criteria with high sensitivity and specificity, although it is still difficult to diagnose MM2T-sCJD clinically.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Circulación Cerebrovascular , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagen , Proteínas PrPSc/líquido cefalorraquídeo , Proteínas Priónicas/genética , Tálamo/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Corteza Cerebral/fisiopatología , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/fisiopatología , Cisteína/análogos & derivados , Imagen de Difusión por Resonancia Magnética , Progresión de la Enfermedad , Femenino , Fluorodesoxiglucosa F18 , Humanos , Yofetamina , Masculino , Persona de Mediana Edad , Compuestos de Organotecnecio , Radiofármacos , Sensibilidad y Especificidad , Tálamo/fisiopatología , Tomografía Computarizada de Emisión de Fotón Único
10.
Neurotherapeutics ; 17(4): 1836-1849, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32767031

RESUMEN

The accumulation of abnormal prion protein (PrPSc) produced by the structure conversion of PrP (PrPC) in the brain induces prion disease. Although the conversion process of the protein is still not fully elucidated, it has been known that the intramolecular chemical bridging in the most fragile pocket of PrP, known as the "hot spot," stabilizes the structure of PrPC and inhibits the conversion process. Using our original structure-based drug discovery algorithm, we identified the low molecular weight compounds that predicted binding to the hot spot. NPR-130 and NPR-162 strongly bound to recombinant PrP in vitro, and fragment molecular orbital (FMO) analysis indicated that the high affinity of those candidates to the PrP is largely dependent on nonpolar interactions, such as van der Waals interactions. Those NPRs showed not only significant reduction of the PrPSc levels but also remarkable decrease of the number of aggresomes in persistently prion-infected cells. Intriguingly, treatment with those candidate compounds significantly prolonged the survival period of prion-infected mice and suppressed prion disease-specific pathological damage, such as vacuole degeneration, PrPSc accumulation, microgliosis, and astrogliosis in the brain, suggesting their possible clinical use. Our results indicate that in silico drug discovery using NUDE/DEGIMA may be widely useful to identify candidate compounds that effectively stabilize the protein.


Asunto(s)
Simulación por Computador , Progresión de la Enfermedad , Descubrimiento de Drogas/métodos , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/tratamiento farmacológico , Proteínas Priónicas/efectos de los fármacos , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Humanos , Masculino , Ratones , Ratones Transgénicos , Enfermedades por Prión/genética , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Unión Proteica/fisiología , Relación Estructura-Actividad
11.
J Biol Chem ; 295(39): 13516-13531, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32723867

RESUMEN

Prion disease is a rapidly progressive neurodegenerative disorder caused by misfolding and aggregation of the prion protein (PrP), and there are currently no therapeutic options. PrP ligands could theoretically antagonize prion formation by protecting the native protein from misfolding or by targeting it for degradation, but no validated small-molecule binders have been discovered to date. We deployed a variety of screening methods in an effort to discover binders of PrP, including 19F-observed and saturation transfer difference (STD) NMR spectroscopy, differential scanning fluorimetry (DSF), DNA-encoded library selection, and in silico screening. A single benzimidazole compound was confirmed in concentration-response, but affinity was very weak (Kd > 1 mm), and it could not be advanced further. The exceptionally low hit rate observed here suggests that PrP is a difficult target for small-molecule binders. Whereas orthogonal binder discovery methods could yield high-affinity compounds, non-small-molecule modalities may offer independent paths forward against prion disease.


Asunto(s)
Bencimidazoles/farmacología , Enfermedades por Prión/tratamiento farmacológico , Proteínas Priónicas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Bencimidazoles/química , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Humanos , Espectroscopía de Resonancia Magnética , Enfermedades por Prión/metabolismo , Proteínas Priónicas/metabolismo , Bibliotecas de Moléculas Pequeñas/química
12.
Eur J Med Chem ; 196: 112295, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32325366

RESUMEN

Prion diseases or transmissible spongiform encephalopathies (TSEs) are a group of rare neurodegenerative disorders. TSEs are characterized by the accumulation of prions (PrPSc) that represent pathological isoforms of the physiological cellular prion protein PrPC. Although the conversion of PrPC to PrPSc is still not completely understood, blocking this process may lead to develop new therapies. Here, we have generated a pharmacophore model, based on anti-prion molecules reported in literature to be effective in phenotypic assay. The model was used to conduct a virtual screen of commercial compound databases that selected a small library of ten compounds. These molecules were then screened in mouse neuroblastoma cell line chronically infected with prions (ScN2a) after excluding neurotoxicity. 1 has been identified as the therapeutic hit on the basis of the following evidence: chronic treatments of ScN2a cells using 1 eliminate PrPSc loaded in both Western blotting analysis and Real-Time Quaking-Induced Conversion (RT-QuIC) assay. We also proposed the mechanism of action of 1 by which it has the ability to bind PrPC and consequentially blocks prion conversion. Herein we describe the results of these efforts.


Asunto(s)
Fenotiazinas/farmacología , Proteínas Priónicas/antagonistas & inhibidores , Animales , Línea Celular , Evaluación Preclínica de Medicamentos , Ratones , Modelos Moleculares , Estructura Molecular , Fenotiazinas/química , Proteínas Priónicas/aislamiento & purificación , Proteínas Priónicas/metabolismo , Relación Estructura-Actividad Cuantitativa
14.
BMJ Case Rep ; 12(3)2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30850568

RESUMEN

Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disease that can mimic other neurological disorders. We present a case of sCJD in a 64-year-old man that presented with corticobasal syndrome and survived for 3 years. He presented initially with dementia, hemiparkinsonism and alien limb phenomenon and was diagnosed with corticobasal degeneration, ultimately progressing to immobility and akinetic mutism. With a normal MRI 1 year before onset, his neuroimaging 1 year later revealed abnormal DaTscan, cortical and hippocampal atrophy with ventricular dilatation on MRI, and diffusion-weighted cortical ribboning and thalamic hyperintensity. Postmortem, the patient's brain was collected by the Parkinson's UK Tissue Bank. Prion protein immunohistochemistry revealed widespread diffuse microvacuolar staining without kuru-type plaques. Hyperphosphorylated tau was only found in the entorhinal cortex and hippocampus. This case highlights the clinical heterogeneity of sCJD presentation and the important inclusion of CJD in the differential diagnosis of atypical presentations of neurodegenerative disease.


Asunto(s)
Enfermedades de los Ganglios Basales/diagnóstico , Síndrome de Creutzfeldt-Jakob/patología , Degeneraciones Espinocerebelosas/diagnóstico , Autopsia , Enfermedades de los Ganglios Basales/patología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/tratamiento farmacológico , Demencia/diagnóstico , Diagnóstico Diferencial , Imagen de Difusión por Resonancia Magnética/métodos , Resultado Fatal , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen/métodos , Proteínas Priónicas/metabolismo , Enfermedades Raras , Degeneraciones Espinocerebelosas/patología , Tálamo/diagnóstico por imagen
15.
Am J Pathol ; 189(6): 1276-1283, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30926338

RESUMEN

Six subgroups of sporadic Creutzfeldt-Jakob disease have been identified by distinctive clinicopathologic features, genotype at polymorphic codon 129 [methionine (M)/valine (V)] of the PRNP gene, and type of abnormal prion proteins (type 1 or 2). In addition to the pure subgroups, mixed neuropathologic features and the coexistence of two types of abnormal prion proteins in the same patient also have been reported. Here, we found that a portion of the patients previously diagnosed as MM1 had neuropathologic characteristics of the MM2 thalamic form (ie, neuronal loss of the inferior olivary nucleus of the medulla). Furthermore, coexistence of biochemical features of the MM2 thalamic form also was confirmed in the identified cases. In addition, in transmission experiments using prion protein-humanized mice, the brain material from the identified case showed weak infectivity and generated characteristic abnormal prion proteins in the inoculated mice resembling those after inoculation with brain material of MM2 thalamic form. Taken together, these results show that the co-occurrence of MM1 and MM2 thalamic form is a novel entity of sporadic Creutzfeldt-Jakob disease prion strain co-occurrence. The present study raises the possibility that the co-occurrence of the MM2 thalamic form might have been overlooked so far because of the scarcity of abnormal prion protein accumulation and restricted neuropathology.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/metabolismo , Mutación Missense , Proteínas Priónicas/metabolismo , Tálamo/metabolismo , Anciano , Sustitución de Aminoácidos , Animales , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Proteínas Priónicas/genética , Tálamo/patología
16.
Neurobiol Dis ; 124: 57-66, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30423473

RESUMEN

Mitochondrial malfunction is a common feature in advanced stages of neurodegenerative conditions, as is the case for the accumulation of aberrantly folded proteins, such as PrP in prion diseases. In this work, we investigated mitochondrial activity and expression of related factors vis a vis PrP accumulation at the subclinical stages of TgMHu2ME199K mice, modeling for genetic prion diseases. While these mice remain healthy until 5-6 months of age, they succumb to fatal disease at 12-14 months. We found that mitochondrial respiratory chain enzymatic activates and ATP/ROS production, were abnormally elevated in asymptomatic mice, concomitant with initial accumulation of disease related PrP. In parallel, the expression of Cytochrome c oxidase (COX) subunit IV isoform 1(Cox IV-1) was reduced and replaced by the activity of Cox IV isoform 2, which operates in oxidative neuronal conditions. At all stages of disease, Cox IV-1 was absent from cells accumulating disease related PrP, suggesting that PrP aggregates may directly compromise normal mitochondrial function. Administration of Nano-PSO, a brain targeted antioxidant, to TgMHu2ME199K mice, reversed functional and biochemical mitochondrial functions to normal conditions regardless of the presence of misfolded PrP. Our results therefore indicate that in genetic prion disease, oxidative damage initiates long before clinical manifestations. These manifest only when aggregated PrP levels are too high for the compensatory mechanisms to sustain mitochondrial activity.


Asunto(s)
Mitocondrias/enzimología , Enfermedades por Prión/enzimología , Enfermedades por Prión/genética , Proteínas Priónicas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/administración & dosificación , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Aceites de Plantas/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo
17.
Prion ; 11(5): 338-351, 2017 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-28956708

RESUMEN

α1-Antichymotrypsin (α1-ACT) belongs to a kind of acute-phase inflammatory protein. Recently, such protein has been proved exist in the amyloid deposits which is the hallmark of Alzheimer's disease, but limitedly reported in prion disease. To estimate the change of α1-ACT during prion infection, the levels of α1-ACT in the brain tissues of scrapie agents 263K-, 139A- and ME7-infected rodents were analyzed, respectively. Results shown that α1-ACT levels were significantly increased in the brain tissues of the three kinds of scrapie-infected rodents, displaying a time-dependent manner during prion infection. Immunohistochemistry assays revealed the increased α1-ACT mainly accumulated in some cerebral regions of rodents infected with prion, such as cortex, thalamus and cerebellum. Immunofluorescent assays illustrated ubiquitously localization of α1-ACT with GFAP positive astrocytes, Iba1-positive microglia and NeuN-positive neurons. Moreover, double-stained immunofluorescent assays and immunohistochemistry assays using series of brain slices demonstrated close morphological colocalization of α1-ACT signals with that of PrP and PrPSc in the brain slices of 263K-infected hamster. However, co-immunoprecipitation does not identify any detectable molecular interaction between the endogenous α1-ACT and PrP either in the brain homogenates of 263K-infected hamsters or in the lysates of prion-infected cultured cells. Our data here imply that brain α1-ACT is increased abnormally in various scrapie-infected rodent models. Direct molecular interaction between α1-ACT and PrP seems not to be essential for the morphological colocalization of those two proteins in the brain tissues of prion infection.


Asunto(s)
Corteza Cerebelosa/metabolismo , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Tálamo/metabolismo , alfa 1-Antiquimotripsina/metabolismo , Amiloide/metabolismo , Animales , Astrocitos/metabolismo , Línea Celular , Corteza Cerebelosa/patología , Cricetinae , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Priónicas/metabolismo , Tálamo/patología , Factores de Tiempo , alfa 1-Antiquimotripsina/análisis
18.
Expert Rev Mol Diagn ; 17(10): 897-904, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28817974

RESUMEN

INTRODUCTION: The development of in vitro protein misfolding amplification assays for the detection and analysis of abnormally folded proteins, such as proteinase K resistant prion protein (PrPres) was a major innovation in the prion field. In prion diseases, these types of assays imitate the pathological conversion of the cellular PrP (PrPC) into a proteinase resistant associated conformer or amyloid, called PrPres. Areas covered: The most prominent protein misfolding amplification assays are the protein misfolding cyclic amplification (PMCA), which is based on sonication and the real-time quaking-induced conversion (RT-QuIC) technique based on shaking. The more recently established RT-QuIC is fully automatic and enables the monitoring of misfolded protein aggregates in real-time by using a fluorescent dye. Expert commentary: RT-QuIC is a very robust and highly reproducible test system which is applicable in diagnosis, prion strain-typing, drug pre-screening and other amyloidopathies.


Asunto(s)
Amiloidosis/diagnóstico , Amiloidosis/metabolismo , Bioensayo/métodos , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/metabolismo , Priones/metabolismo , Amiloidosis/tratamiento farmacológico , Biomarcadores , Líquidos Corporales/metabolismo , Diagnóstico Diferencial , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Enfermedades por Prión/tratamiento farmacológico , Proteínas Priónicas/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas
19.
Phytother Res ; 31(7): 1046-1055, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28509424

RESUMEN

Neurodegenerative diseases are associated with accumulation of amyloid-type protein misfolding products. Prion protein (PrP) is known for its ability to aggregate into soluble oligomers that in turn associate into amyloid fibrils. Preventing the formation of these infective and neurotoxic entities represents a viable strategy to control prion diseases. Numerous attempts to find dietary compounds with anti-prion properties have been made; however, the most promising agent found so far was curcumin, which is poorly soluble and merely bioavailable. In the present work, we identify 3,4-dimethoxycinnamic acid (DMCA) which is a bioavailable coffee component as a perspective anti-prion compound. 3,4-Dimethoxycinnamic acid was found to bind potently to prion protein with a Kd of 405 nM. An in vitro study of DMCA effect on PrP oligomerization and fibrillization was undertaken using isothermal titration calorimetry (ITC), dynamic light scattering (DLS) and circular dichroism (CD) methodologies. We demonstrated that DMCA affects PrP oligomer formation reducing the oligomer content by 30-40%, and enhancing SH-SY5Y cell viability treated with prion oligomers. Molecular docking studies allowed to suggest a site where DMCA is able to bind stabilizing PrP tertiary structure. We suggest that DMCA is a perspective dietary compound for prophylaxis of neurodegenerative diseases that needs further research. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Cinamatos/química , Proteínas Priónicas/antagonistas & inhibidores , Priones/antagonistas & inhibidores , Sitios de Unión , Simulación del Acoplamiento Molecular , Enfermedades por Prión
20.
J Neurol Sci ; 373: 27-30, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28131204

RESUMEN

Gerstmann-Sträussler-Scheinker syndrome caused by the P102L mutation in the prion protein gene (GSS102) is usually characterized by the onset of slowly progressive cerebellar ataxia, with dementia occurring much later. Because of the relatively long disease course and the prominence of progressive cerebellar ataxia in the early stage, GSS102 is often misdiagnosed as other neurodegenerative disorders. We present two cases of genetically proven GSS102L, both of which present with atrophy and decreased blood flow of the thalamus as determined by voxel-based specific regional analysis system for Alzheimer's disease (VSRAD) advance software and easy Z-score analysis for 99mTc-ethyl cysteinate dimer-SPECT, respectively. These thalamic abnormalities have not been fully evaluated to date, and detecting them might be useful for differentiating GSS102 from other neurodegenerative disorders.


Asunto(s)
Enfermedad de Gerstmann-Straussler-Scheinker/diagnóstico por imagen , Enfermedad de Gerstmann-Straussler-Scheinker/genética , Imagen por Resonancia Magnética , Proteínas Priónicas/genética , Tálamo/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único , Anciano , Cisteína/análogos & derivados , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Persona de Mediana Edad , Mutación , Compuestos de Organotecnecio , Radiofármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA