Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 665: 477-490, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38429120

RESUMEN

Clinical pancreatic ductal adenocarcinoma (PDAC) treatment is severely limited by lack of effective KRAS suppression strategies. To address this dilemma, a reactive oxygen species (ROS)-responsive and PDAC-targeted nanodrug named Z/B-PLS was constructed to confront KRAS through dual-blockade of its downstream PI3K/AKT/mTOR and RAF/MEK/ERK for enhanced PDAC treatment. Specifically, photosensitizer zinc phthalocyanine (ZnPc) and PI3K/mTOR inhibitor BEZ235 (BEZ) were co-loaded into PLS which was constructed by click chemistry conjugating MEK inhibitor selumetinib (SEL) to low molecular weight heparin with ROS-responsive oxalate bond. The BEZ and SEL blocked PI3K/AKT/mTOR and RAF/MEK/ERK respectively to remodel glycolysis and non-canonical glutamine metabolism. ZnPc mediated photodynamic therapy (PDT) could enhance drug release through ROS generation, further facilitating KRAS downstream dual-blockade to create treatment-promoting drug delivery-therapeutic positive feedback. Benefiting from this broad metabolic modulation cascade, the metabolic symbiosis between normoxic and hypoxic tumor cells was also cut off simultaneously and effective tumor vascular normalization effects could be achieved. As a result, PDT was dramatically promoted through glycolysis-non-canonical glutamine dual-metabolism regulation, achieving complete elimination of tumors in vivo. Above all, this study achieved effective multidimensional metabolic modulation based on integrated smart nanodrug delivery, helping overcome the therapeutic challenges posed by KRAS mutations of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Humanos , Glutamina/farmacología , Glutamina/metabolismo , Glutamina/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Glucólisis , Fototerapia , Línea Celular Tumoral
2.
Phytochem Anal ; 35(2): 271-287, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37779218

RESUMEN

INTRODUCTION: Coptidis Rhizoma (CR) is one of the most frequently used herbs to treat ulcerative colitis (UC) and is often processed before usage. However, the composition changes and therapeutic effects of CR before and after processing in the treatment of UC are still unclear. OBJECTIVE: The purpose of the study is to explore the chemical components and therapeutic effects of crude and processed CR. MATERIAL AND METHODS: CR was processed according to the 2020 version of the Chinese Pharmacopoeia. The liquid chromatography-mass spectrometry (LC-MS) and multivariate statistical analysis were used to screen the different compounds before and after processing. The network pharmacological prediction was carried out. The mechanism and therapeutic effects between crude and processed CR were verified by using dextran sulphate sodium-induced UC mice assay. RESULTS: Ten compounds distinguish crude and processed CR based on multivariate statistical analysis. Network pharmacology predicts that the 10 compounds mainly play a role through TNF-α and IL-6 targets and PI3K/Akt and HIF-1 signalling pathways, and these results are verified by molecular biology experiments. For IL-6, IL-10 and TNF-α inflammatory factors, CR is not effective, while CR stir-fried with Evodiae Fructus (CRFE) and ginger juice (CRGJ) are. For PI3K/p-Akt, Cleaved caspase3, NF- κBp65 and HIF-1α signalling pathways, CR has therapeutic effects, while CRFE and CRGJ are significant. CONCLUSION: Overall, CRFE and CRGJ show better effects in treating UC. The chemical changes of processing and the efficacy of processed CR are correlated, which provides a scientific basis for the clinical use of crude and processed CR.


Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Ratones , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Farmacología en Red , Factor de Necrosis Tumoral alfa , Interleucina-6 , Fosfatidilinositol 3-Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/uso terapéutico
3.
Eur J Heart Fail ; 25(12): 2130-2143, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37877337

RESUMEN

The active ingredients in many traditional Chinese medicines are isoprene oligomers with a diterpenoid or triterpenoid structure, which exert cardiovascular effects by signalling through nutrient surplus and nutrient deprivation pathways. Qiliqiangxin (QLQX) is a commercial formulation of 11 different plant ingredients, whose active compounds include astragaloside IV, tanshione IIA, ginsenosides (Rb1, Rg1 and Re) and periplocymarin. In the QUEST trial, QLQX reduced the combined risk of cardiovascular death or heart failure hospitalization (hazard ratio 0.78, 95% confidence interval 0.68-0.90), based on 859 events in 3119 patients over a median of 18.2 months; the benefits were seen in patients taking foundational drugs except for sodium-glucose cotransporter 2 (SGLT2) inhibitors. Numerous experimental studies of QLQX in diverse cardiac injuries have yielded highly consistent findings. In marked abrupt cardiac injury, QLQX mitigated cardiac injury by upregulating nutrient surplus signalling through the PI3K/Akt/mTOR/HIF-1α/NRF2 pathway; the benefits of QLQX were abrogated by suppression of PI3K, Akt, mTOR, HIF-1α or NRF2. In contrast, in prolonged measured cardiac stress (as in chronic heart failure), QLQX ameliorated oxidative stress, maladaptive hypertrophy, cardiomyocyte apoptosis, and proinflammatory and profibrotic pathways, while enhancing mitochondrial health and promoting glucose and fatty acid oxidation and ATP production. These effects are achieved by an action of QLQX to upregulate nutrient deprivation signalling through SIRT1/AMPK/PGC-1α and enhanced autophagic flux. In particular, QLQX appears to enhance the interaction of PGC-1α with PPARα, possibly by direct binding to RXRα; silencing of SIRT1, PGC-1α and RXRα abrogated the favourable effects of QLQX in the heart. Since PGC-1α/RXRα is also a downstream effector of Akt/mTOR signalling, the actions of QLQX on PGC-1α/RXRα may explain its favourable effects in both acute and chronic stress. Intriguingly, the individual ingredients in QLQX - astragaloside IV, ginsenosides, and tanshione IIA - share QLQX's effects on PGC-1α/RXRα/PPARα signalling. QXQL also contains periplocymarin, a cardiac glycoside that inhibits Na+ -K+ -ATPase. Taken collectively, these observations support a conceptual framework for understanding the mechanism of action for QLQX in heart failure. The high likelihood of overlap in the mechanism of action of QLQX and SGLT2 inhibitors requires additional experimental studies and clinical trials.


Asunto(s)
Medicamentos Herbarios Chinos , Ginsenósidos , Insuficiencia Cardíaca , Saponinas , Triterpenos , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Sirtuina 1/metabolismo , Sirtuina 1/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/uso terapéutico , PPAR alfa/uso terapéutico , Ginsenósidos/uso terapéutico , Fosfatidilinositol 3-Quinasas/uso terapéutico , Factor 2 Relacionado con NF-E2/uso terapéutico , Serina-Treonina Quinasas TOR/uso terapéutico , Glucosa
4.
J Pharm Biomed Anal ; 236: 115738, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37742504

RESUMEN

OBJECTIVE: This study aimed to explore the mechanism of total saponin of black ginseng (TSBG) in treating heart failure (HF) in DOX-induced HF model rats. METHODS: Rats with HF induced by the intraperitoneal injection of DOX were treated with TSBG (low dose, 30 mg/kg/day; medium dose, 60 mg/kg/day; high dose, 120 mg/kg/day) and shakubar trivalsartan (80 mg/kg/day, positive control) for four weeks. Serum BNP and ANP levels were tested by ELISA, and pathological tissue sections were examined. Serum metabolites were measured using nontargeted metabolomic techniques. The expression of Akt/mTOR autophagy-associated proteins in heart tissue was detected using Western blot, including Beclin1, p62, LCII and LC3I. RESULTS: Compared with the model group, rats in the TSBG-H group had a significantly lower heart index (p < 0.05), significantly lower serum levels of BNP (p < 0.01) and ANP (p < 0.01) and significantly fewer cardiac histopathological changes. Metabolomic results showed that TSBG significantly back-regulated 12 metabolites (p < 0.05), including cholesterol, histamine, sphinganine, putrescine, arachidonic acid, 3-sulfinoalanine, hypotaurine, gluconic acid and lysoPC (18:0:0). These metabolite changes were involved in taurine and hypotaurine metabolism, arachidonic acid metabolism, sphingolipid metabolism, etc. The protein expression level of p-Akt/Akt and p-mTOR/mTOR was significantly up-regulated (p < 0.001), whereas that of Beclin1, p62 (p < 0.001) and LCII/LC3I was down-regulated (p < 0.05). CONCLUSION: TSBG has an excellent therapeutic effect on DOX-induced HF in rats, probably by regulating the Akt/mTOR autophagy signalling pathway, resulting in the improvement of taurine and hypotaurine metabolism, arachidonic acid metabolism and sphingolipid metabolism, which may provide a reference for elucidating the potential mechanism of action of TSBG against HF.


Asunto(s)
Insuficiencia Cardíaca , Panax , Saponinas , Ratas , Animales , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/uso terapéutico , Saponinas/farmacología , Beclina-1 , Panax/metabolismo , Ácido Araquidónico , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Metabolómica , Taurina , Esfingolípidos/uso terapéutico
5.
Altern Ther Health Med ; 29(8): 650-655, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678870

RESUMEN

Objective: To investigate the effects of Moringa Oleifera Leaf Extract (MOLE) plus rosiglitazone (RSG) on glucose and lipid metabolism, serum leptin, and the Akt/GSK3ß/ß-Catenin signaling pathway in type 2 diabetic (T2D) rats. Methods: Sixty male Sprague-Dawley (SD) rats were randomly divided into six groups: the normal group, the model group, the RSG group, the low- and high-dose MOLE group, and the MOLE+RSG group. The normal group was fed a standard rat diet, while the other groups were given a single intraperitoneal injection of low-dose streptozomycin (STZ) (35 mg/kg) and fed a high-sugar and high-fat diet. After 8 weeks, the treatment outcomes were evaluated by measuring key parameters of blood glucose and lipid metabolism and the protein kinase B (AKT) / Glycogen synthase kinase 3beta (GSK3ß) /ß-Catenin signaling pathway in the T2D rats. Results: Compared with the normal group, the model group showed significantly increased levels of blood glucose, blood lipids, serum leptin, free fatty acid (FFA), and tumor necrosis factor-α (TNF-α). Compared with the model group, the RSG, low-dose MOLE, and high-dose MOLE groups displayed effective control of blood glucose, blood lipids, serum leptin, FFA, and TNF-α. The MOLE+RSG group surpassed the RSG group in regulating glucose, lipid metabolism, and serum leptin levels in T2D rats. In addition, the MOLE+RSG group also had superiority over the RSG group in activating the AKT/GSK3ß/ß-Catenin pathway. Conclusion: MOLE plus RSG can effectively reduce blood glucose and blood lipids in T2DM rats.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Moringa oleifera , Ratas , Masculino , Animales , Rosiglitazona/uso terapéutico , Glucosa/metabolismo , Glucemia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/uso terapéutico , Moringa oleifera/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , beta Catenina/metabolismo , beta Catenina/uso terapéutico , Leptina/metabolismo , Leptina/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Metabolismo de los Lípidos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/uso terapéutico , Ratas Sprague-Dawley , Lípidos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
6.
Altern Ther Health Med ; 29(5): 334-341, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37171945

RESUMEN

Context: The high resistance rate and high recurrence rate of progesterone only as a treatment for endometrial cancer (EC) limit its clinical application. Metformin (MET) may have antitumor ability. Combining MET and medroxyprogesterone acetate (MPA) may strengthen their inhibitory effects on proliferation of EC cells, but MET's mechanisms remain unclear. Objective: The study intended to identify the specific molecular mechanism that MET combined with MPA uses against EC progression. Design: The research team performed a controlled animal study. Setting: The study took place at Xuzhou Medical University in Xuzhou, China. Animals: The animals were16 female non-obese diabetic-severe combined immunodeficient (NOD-SCID) nude mice, about 12 to 16 g in weight. Interventions: The research team divided randomly, the mice into four groups and induced EC in all groups, four in each group: (1) The control group which received received normal saline, (2) the MPA group, which received 100 mg/kg of MPA; (3) the MET group, which received metformin at the rate of 200 mg/kg, each gavage volume was 0.1ml; (4) the MET+MPA group, which received 100 mg/kg of MPA and 200 mg/kg of MET. Outcome measures: The research team: (1) used a CCK-8 kit, an EdU assay, and a flow-cytometry assay to measure cancer-cell proliferation, count, and viability; determine the cell cycle; and measure apoptosis; (2) performed a Western blot analysis to determine the expression of the PR, CD133, pAkt, totalAkt, p-mTOR, and totalTOR antibodies; and (3) determined the size and volume of tumors in vivo and used immunohistochemical staining to determine expression of the Ki67 protein. Results: The MET+MPA group had a significantly lower number of cancer cells than the MET or MDA groups (both P < .001). That group also had significantly more stagnated cancer cells in the G0/G1 phase and significantly fewer cancer cells in the S phase or G2/M phase control, MET, or MPA groups (all P < .01). The MET+MPA group's PCNA and Ki-67 protein expression was significantly lower than that of the MET and MPA group. The EDU assay yielded similar results. Additionally, the MET+MPA group had significantly higher PR expression than that of to MET or MPA group (both P < .001). The MET and MPA groups' expression of CD133, p-Akt, and p-mTOR were significantly lower than those of the control group, while the MET+MPA group's levels were significantly lower than those of the MET and MPA groups. In-vivo experiments revealed that the MET and MPA groups did show decreased tumor size and volume. The MET+MPA group had tumor weights that were significantly lower and tumor volumes were significantly smaller than those of the MET and MPA groups (all P < .001). Immunohistochemical analysis revealed that the MET+MPA group's levels of the Ki-67 antigen were significantly lower than those of the MET and MPA groups. Conclusions: MET inhibited the proliferation of EC cells by increasing MPA-sensitivity, which was dependent on the inhibition of the CD133 expression and the Akt/mTOR pathway. In addition, if MET acts as an effective progestin sensitizer, it certainly offers promising therapeutic prospects for patients with early-stage EC or overgrown endometrium who have fertility requirements.


Asunto(s)
Neoplasias Endometriales , Metformina , Humanos , Femenino , Animales , Ratones , Acetato de Medroxiprogesterona/farmacología , Acetato de Medroxiprogesterona/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Ratones Desnudos , Proteínas Proto-Oncogénicas c-akt/farmacología , Proteínas Proto-Oncogénicas c-akt/uso terapéutico , Receptores de Progesterona/metabolismo , Receptores de Progesterona/uso terapéutico , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Proliferación Celular , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Serina-Treonina Quinasas TOR/uso terapéutico , Apoptosis , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA