Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Mech Methods ; 33(1): 56-64, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35606921

RESUMEN

UR-144, a cannabinoid receptor agonist, is widely used alone or in combination with other synthetic cannabinoids (SCs) all over the world. At overdose, cardiovascular symptoms have been reported and the underlying molecular mechanisms of these adverse effects are not known. It is highly important to clarify the toxic effects of UR-144 for the treatment of poisoning. In the present study, the molecular mechanism of cytotoxic effects of UR-144 is evaluated on a cardiomyoblastic cell line using WST-1 and LDH assays. Apoptosis/necrosis, autophagy, and ROS (reactive oxygen species) levels were determined using flow cytometry. Cytoplasmic Ca2+ levels were measured by using a fluorogenic calcium-binding dye. Released and cytoplasmic troponin T levels, a specific marker of cardiotoxicity, were examined with western blot. For the evaluation of the role of DAPK1, on UR-144-induced cell death, DAPK1 activity and DAPK1 protein level were investigated. Its cytotoxic effects increased in a dose-dependent manner for WST-1 and LDH assays, while membrane damage, one of the signs of necrotic cell death, was more remarkable than damage to mitochondria. Cytoplasmic Ca2+ levels rose after high-dose UR-144 treatment and inhibition of DAPK1 activity ameliorated UR-144-induced cytotoxicity. Released troponin T significantly increased at a dose of 200 µM. ROS and total antioxidant capacity of cells were both reduced following high dose UR-144 treatment. The results indicated that UR-144-induced autophagic and necrotic cell death might be a consequence of elevated cytoplasmic Ca2+ levels and DAPK1 activation. However, in vivo/clinical studies are needed to identify molecular mechanisms of cardiotoxic effects of UR-144.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Troponina T , Humanos , Agonistas de Receptores de Cannabinoides/farmacología , Especies Reactivas de Oxígeno , Troponina T/farmacología , Apoptosis , Autofagia , Necrosis/inducido químicamente , Cardiotoxicidad , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/farmacología
2.
Neurochem Res ; 47(8): 2142-2157, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35674928

RESUMEN

Stroke is a sudden neurological disorder that occurs due to impaired blood flow to an area of the brain. Stroke can be caused by the blockage or rupture of a blood vessel in the brain, called ischemic stroke and hemorrhagic stroke, respectively. Stroke is more common in men than women. Atrial fibrillation, hypertension, kidney disease, high cholesterol and lipids, genetic predisposition, inactivity, poor nutrition, diabetes mellitus, family history and smoking are factors that increase the risk of stroke. Restoring blood flow by repositioning blocked arteries using thrombolytic agents or endovascular therapy are the most effective treatments for stroke. However, restoring circulation after thrombolysis can cause fatal edema or intracranial hemorrhage, and worsen brain damage in a process known as ischemia-reperfusion injury. Therefore, there is a pressing need to find and develop more effective treatments for stroke. In the past, the first choice of treatment was based on natural compounds. Natural compounds are able to reduce the symptoms and reduce various diseases including stroke that attract the attention of the pharmaceutical industry. Nowadays, as a result of the numerous studies carried out in the field of herbal medicine, many useful and valuable effects of plants have been identified. The death-associated protein kinase (DAPK) family is one of the vital families of serine/threonine kinases involved in the regulation of some biological functions in human cells. DAPK1 is the most studied kinase within the DAPKs family as it is involved in neuronal and recovery processes. Dysregulation of DAPK1 in the brain is involved in the developing neurological diseases such as stroke. Natural products can function in a variety of ways, including reducing cerebral edema, reducing brain endothelial cell death, and inhibiting TNFα and interleukin-1ß (IL-1ß) through regulating the DAPK1 signal against stroke. Due to the role of DAPK1 in neurological disorders, the aim of this article was to investigate the role of DAPK1 in stroke and its modulation by natural compounds.


Asunto(s)
Productos Biológicos , Proteínas Quinasas Asociadas a Muerte Celular , Accidente Cerebrovascular , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/farmacología , Femenino , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Masculino , Neuronas/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo
3.
Sci Rep ; 10(1): 8078, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415270

RESUMEN

Neuroprotective strategies in the treatment of stroke have been attracting a great deal of attentions. Our previous clinical and basic studies have demonstrated that protopanaxadiol ginsenoside-Rd (Rd), a monomer compound extracted from Panax ginseng or Panax notoginseng, has neuroprotective effects against ischemic stroke, probably due to its ability to block Ca2+ overload, an usual consequence of the overactivation of NMDA receptor (NMDAR). As an extending study, we explored here whether Rd exerted its neuroprotection as a novel NMDAR blocker. Our whole-cell patch-clamp results showed that Rd reduced NMDAR currents of cultured rat cortical neurons (EC50 = 7.7 µM) dose-dependently by acting on extrasynaptic NMDAR NR2b subunit. However, unexpectedly, cell transfection and radioligand binding assays revealed that Rd did not bind to the NMDAR channel directly. Alternatively, it inhibited the phosphorylation of NR2b at Ser-1303, a target of death associated protein kinase 1 (DAPK1). Moreover, cell-based and cell-free enzymatic assays showed that Rd did not inhibit the activity of DAPK1 directly, but blocked the activity of calcineurin, a key phosphatase for activating DAPK1. Importantly, other protopanaxadiol ginsenosides were also found to have potential inhibitory effects on calcineurin activity. Furthermore, as expected, calcineurin inhibition by cyclosporin A could mimic Rd's effects and protect against NMDA-, oxygen glucose deprivation- or transient ischemic stroke-induced neuronal injury. Therefore, our present study provided the first evidence that Rd could exert an inhibitive effect on NMDAR-triggered currents and sequential excitotoxicity through mitigation of DAPK1-mediated NR2b phosphorylation by attenuating calcineurin activity.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Calcineurina/farmacología , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Ginsenósidos/farmacología , Fármacos Neuroprotectores/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Sapogeninas/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/farmacología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Panax/química , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA