Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 110: 154607, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610352

RESUMEN

BACKGROUND: Sambucus williamsii Hance (SWH) has effectively been adopted to treat joint and bone disorders. Diabetes-induced osteopenia (DOP) is caused primarily by impaired bone formation as a result of hyperglycemia. We had previously demonstrated that SWH extract accelerated fracture healing and promoted osteoblastic MC3T3-E1 cell proliferation and osteogenic differentiation. This study assessed the impacts of SWH extract on diabetes-induced bone loss and explored the mechanisms underlying its osteoprotective effects. METHODS: This work employed MC3T3-E1 cell line for evaluating how SWH extract affected osteogenesis, oxidative stress (OS), and the underlying mechanism in vitro. Streptozotocin-induced osteopenia mouse model was applied with the purpose of assessing SWH extract's osteoprotection on bone homeostasis in vivo. RESULTS: The increased OS of MC3T3-E1 cells exposed to high glucose (HG) was largely because of the upregulation of pro-oxidant genes and the downregulation of antioxidant genes, whereas SWH extract reduced the OS by modulating NADPH oxidase-4 and thioredoxin-related genes by activating cyclic guanosine monophosphate (cGMP) production and increasing the level of cGMP-mediated protein kinase G type-2 (PKG2). The oral administration of SWH extract maintained bone homeostasis in type 1 diabetes mellitus (T1DM) mice by enhancing osteogenesis while decreasing OS. In bones from hyperglycemia-induced osteopenia mice and HG-treated MC3T3-E1 cells, the SWH extract achieved the osteoprotective effects through activating the cGMP/PKG2 signaling pathway, upregulating the level of antioxidant genes, as well as downregulating the level of pro-oxidant genes. CONCLUSION: SWH extract exerts osteoprotective effects on hyperglycemia-induced osteopenia by reversing OS via cGMP/PKG signal transduction and is a potential therapy for DOP.


Asunto(s)
Enfermedades Óseas Metabólicas , Hiperglucemia , Sambucus , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/metabolismo , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/metabolismo , Homeostasis , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Osteoblastos , Osteogénesis , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Sambucus/metabolismo , Transducción de Señal , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo
2.
J Exp Bot ; 74(1): 178-193, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36260406

RESUMEN

Pollen development is a crucial biological process indispensable for seed set in flowering plants and for successful crop breeding. However, little is known about the molecular mechanisms regulating pollen development in crop species. This study reports a novel male-sterile tomato mutant, pollen deficient 2 (pod2), characterized by the production of non-viable pollen grains and resulting in the development of small parthenocarpic fruits. A combined strategy of mapping-by-sequencing and RNA interference-mediated gene silencing was used to prove that the pod2 phenotype is caused by the loss of Solanum lycopersicum G-type lectin receptor kinase II.9 (SlG-LecRK-II.9) activity. In situ hybridization of floral buds showed that POD2/SlG-LecRK-II.9 is specifically expressed in tapetal cells and microspores at the late tetrad stage. Accordingly, abnormalities in meiosis and tapetum programmed cell death in pod2 occurred during microsporogenesis, resulting in the formation of four dysfunctional microspores leading to an aberrant microgametogenesis process. RNA-seq analyses supported the existence of alterations at the final stage of microsporogenesis, since we found tomato deregulated genes whose counterparts in Arabidopsis are essential for the normal progression of male meiosis and cytokinesis. Collectively, our results revealed the essential role of POD2/SlG-LecRK-II.9 in regulating tomato pollen development.


Asunto(s)
Arabidopsis , Fenómenos Biológicos , Solanum lycopersicum , Solanum lycopersicum/genética , Lectinas/genética , Lectinas/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fitomejoramiento , Polen/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
3.
J Ethnopharmacol ; 300: 115705, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36099983

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zhenwu Decoction (ZWD) is a traditional Chinese medicine (TCM) formula which has wide scope of indications related to Yang deficiency and dampness retention in TCM syndrome. Cardiac hypertrophy can induce similar symptoms and signs to the clinical features of Yang deficiency and dampness retention syndrome. ZWD can increase the left ventricular ejection fraction, reduce cardiac hypertrophy of patients with chronic heart failure. However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY: The study aimed to confirm the protective effects of ZWD on cardiac hypertrophy and explore the underlying mechanisms. MATERIALS AND METHODS: The potential targets and pathways of ZWD in cardiac hypertrophy were highlighted by network pharmacology and validated by mechanistic and functional studies. RESULTS: Our network pharmacology analysis suggests that the protective effects of ZWD on cardiac hypertrophy are related to cyclic guanosine monophosphate (cGMP) - protein kinase G (PKG) pathway. Subsequent animal studies showed that ZWD significantly ameliorated cardiac function decline, cardiac hypertrophy, cardiac fibrosis and cardiomyocyte apoptosis. To explore the underlying mechanisms of action, we performed Western blotting, immunohistochemical analysis, and detection of inflammatory response and oxidative stress. Our results showed that ZWD activated the soluble guanylate cyclase (sGC) - cGMP - PKG signaling pathway. The sGC inhibitor ODQ that blocks the sGC-cGMP-PKG signaling pathway in zebrafish abolished the protective effects of ZWD, suggesting sGC-cGMP-PKG is the main signaling pathway mediates the protective effect of ZWD in cardiac hypertrophy. In addition, three major ingredients from ZWD, poricoic acid C, hederagenin and dehydrotumulosic acid, showed a high binding energy with prototype sGC. CONCLUSION: ZWD reduces oxidative stress and inflammation and exerts cardioprotective effects by activating the sGC-cGMP-PKG signaling pathway.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , Guanosina Monofosfato , Animales , Cardiomegalia/tratamiento farmacológico , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Medicamentos Herbarios Chinos , Guanilato Ciclasa/metabolismo , Óxido Nítrico/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Deficiencia Yang , Pez Cebra
4.
J Tradit Chin Med ; 42(5): 764-772, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36083484

RESUMEN

OBJECTIVE: To determine whether Shunxin decoction improves diastolic function in rats with heart failure with preserved ejection fraction (HFpEF) by regulating the cyclic guanosine monophosphate-dependent protein kinase (cGMP-PKG) signaling pathway. METHODS: Except for control group 8 and sham surgery group 8, the remaining 32 male Sprague-Dawlay rats were developed into HFpEF rat models using the abdominal aorta constriction method. These rats in the HFpEF model were randomly divided into the model group, the Shunxin high-dose group, the Shunxin low-dose group, and the Qiliqiangxin capsule group. The three groups received high-dose Shunxin decoction, low-dose Shunxin decoction, and Qiliqiangxin capsule by gavage, respectively, for 14 d. After the intervention, the diastolic function of each rat was evaluated by testing E/A, heart index, hematoxylin-eosin staining, Masson, myocardial ultrastructure, and N-terminal pro-brain natriuretic peptide (NT-proBNP). The Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) software was used to predict targets for which Shunxin decoction acts on the cGMP-PKG pathway. Natriuretic peptide receptor A (NPRA) and guanylate cyclase (GC) were detected by immunohistochemistry, and eNOS, phosphodiesterase 5A (PDE5A), and cGMP-dependent protein kinase 1(PKG I) were determined by Western blotting. RESULTS: Compared to the model group, the thickness of the interventricular septum at the end of diastole (IVSd) and the thickness of the posterior wall at the end of diastole (PWd) of the Shunxin decoction high-dose group, Shunxin decoction low-dose group, and Qiliqiangxin capsule group were all significantly reduced ( < 0.01). Furthermore, Shunxin decoction high-dose group E/A value was decreased ( < 0.01). Compared to the model group, the expression of NPRA and GC increased in the Shunxin decoction low-dose group and the Qiliqiangxin capsule group ( < 0.01). Compared to the model group, the expressions of eNOS and PKG I increased ( < 0.05) in the Shunxin decoction high-dose group. The expression of PDE5A expression decreased in the myocardium of the Shunxin decoction high-dose group, Shunxin decoction low-dose group, and Qiliqiangxin capsule group compared to the model group ( < 0.01). CONCLUSIONS: Shunxin decoction can improve diastolic function in rats with HFpEF. It increases the expression of NPRA, GC, and eNOS in the myocardial cell cGMP-PKG signaling pathway, upregulates cGMP expression, decreases PDE5A expression to reduce the cGMP degradation. Thus, the cGMP continually stimulates PKG I, reversing myocardial hypertrophy and improving myocardial compliance in HFpEF rats.


Asunto(s)
Insuficiencia Cardíaca , Animales , Aorta Abdominal/metabolismo , Constricción , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Diástole , Guanosina Monofosfato , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Masculino , Ratas , Transducción de Señal , Volumen Sistólico/fisiología
5.
Neurochem Int ; 150: 105171, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34419525

RESUMEN

Gastrodin, which is extracted from the Chinese herbal medicine Gastrodia elata Blume, can ameliorate neurogenesis after cerebral ischemia. However, it's possible underlying mechanisms remain still elusive. PDE9-cGMP-PKG signaling pathway is involved in the proliferation of neural stem cells (NSCs) after cerebral ischemia. In this study, we investigated whether the beneficial effect of gastrodin on hippocampal neurogenesis after cerebral ischemia is correlated with the PDE9-cGMP-PKG signaling pathway. Bilateral common carotid artery occlusion (BCCAO) in mice and oxygen-glucose deprivation/reoxygenation (OGD/R) in primary cultured hippocampal NSCs were used to mimic brain ischemic injury. The Morris water maze (MWM) test was executed to detect spatial learning and memory. Proliferation, differentiation, and mature neurons were examined using immunofluorescence. The survival and proliferation of NSCs were assessed by CCK-8 assay and BrdU immunofluorescence staining, respectively. ELISA and western blot were used to detect the level of the PDE9-cGMP-PKG signaling pathway. In BCCAO mice, administering gastrodin (50 and 100 mg/kg) for 14 d restored cognitive behaviors; meanwhile, neurogenesis in hippocampus was stimulated, and PDE9 was inhibited and cGMP-PKG was activated by gastrodin. Consistent with the results, administering gastrodin (from 0.01-1 µmol/L) for 48 h dose-dependently ameliorated the cell viability and promoted greatly the proliferation in primary hippocampal NSCs exposed to OGD/R. Gastrodin further decreased PDE9 activity and up-regulated cGMP-PKG level. KT5823, a PKG inhibitor, markedly abrogated the protective effects of gastrodin on OGD/R-injured NSCs, accompanied by the down-regulation of PKG protein expression, but had no effects on PDE9 activity and cGMP level. Gastrodin could accelerate hippocampal neurogenesis after cerebral ischemia, which is mediated, at least partly, by PDE9-cGMP-PKG signaling pathway.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Alcoholes Bencílicos/farmacología , Isquemia Encefálica/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Glucósidos/farmacología , Hipocampo/metabolismo , Neurogénesis/efectos de los fármacos , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Alcoholes Bencílicos/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Células Cultivadas , Gastrodia , Glucósidos/uso terapéutico , Hipocampo/citología , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Neurogénesis/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
6.
J Ethnopharmacol ; 260: 112989, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32526339

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lei-gong-gen formula granule (LFG) is a folk prescription derived from Zhuang nationality, the largest ethnic minority among the 56 nationalities in China. It is composed of three herbs, namely Centella asiatica (L.) Urb., Eclipta prostrata (L.) L., Smilax glabra Roxb. It has been widely used as health protection tea for many years to prevent cardiovascular and cerebrovascular diseases such as hyperlipidemia and hypertension. AIM OF THE STUDY: This study validated the lipid-lowering effect of LFG in a hyperlipidemia rat model. Then we employed network pharmacology and molecular biological approach to identify the active ingredients of LFG, corresponding targets, and its anti-hyperlipidemia mechanisms. MATERIALS AND METHODS: Hyperlipidemia rat model was established by feeding male Sprague-Dawley rats with high-fat diet for two weeks. LFG (two doses of 10 and 20 g/kg) was administered orally to hyperlipidemia rat model for 4 weeks, twice per day. Serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) were monitored in rats pre and post-treatment. Hematoxylin-eosin staining was applied to observe the pathology and lipid accumulation of liver. We then performed network pharmacology analysis to predict the ingredients, their associated targets, and hyperlipidemia associated targets. Pathway analysis with significant genes was carried out using KEGG pathway. These genes and proteins intersectioned between compound targets and hyperlipidemia targets were further verified with samples from hyperlipidemia rats treated with LFG using Real-time RT-PCR and Western Blot. RESULTS: LFG attenuated hyperlipidemia in rat model, and this was characterized with decreased serum levels of TC, LDL-C, liver wet weight, and liver index. LFG alleviated the hepatic steatosis in hyperlipidemia rats. Network pharmacology analysis identified 53 bioactive ingredients from LFG formula (three herbs), which link to 765 potential targets. 53 hyperlipidemia associated genes were retrieved from public databases. There were 10 common genes between ingredients-targets and hyperlipidemia associated genes, which linked to 20 bioactive ingredients. Among these 10 genes, 3 of them were validated to be involved in LFG's anti-hyperlipidemia effect using Real-time RT-PCR, namely ADRB2 encoding beta-2 adrenergic receptor, NOS3 encoding nitric oxide synthase 3, LDLR encoding low-density lipoprotein receptor. The cGMP-PKG signaling pathway was enriched for hyperlipidemia after pharmacology network analysis with ADRB2, NOS3, and LDLR. Interestingly, expression of cGMP-dependent protein kinase (PKG) was downregulated in hyperlipidemia rat after LFG treatment. Molecular docking study further supported that ferulic acid, histidine, p-hydroxybenzoic acid, and linalool were potential active ingredients for LFG's anti-hyperlipidemia effect. LC-MS/MS analysis confirmed that ferulic acid and p-hydroxybenzoic acid were active ingredients of LFG. CONCLUSION: LFG exhibited the lipid-lowering effect, which might be attributed to downregulating ADRB2 and NOS3, and upregulating LDLR through the cGMP-PKG signaling pathway in hyperlipidemia rat. Ferulic acid and p-hydroxybenzoic acid might be the underlying active ingredients which affect the potential targets for their anti-hyperlipidemia effect.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Medicamentos Herbarios Chinos/farmacología , Hiperlipidemias/tratamiento farmacológico , Animales , Centella/química , Cromatografía Liquida , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Eclipta/química , Hipolipemiantes/administración & dosificación , Hipolipemiantes/química , Hipolipemiantes/farmacología , Lípidos/sangre , Masculino , Simulación del Acoplamiento Molecular , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Smilax/química , Espectrometría de Masas en Tándem
7.
Chin J Integr Med ; 26(11): 833-838, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32418177

RESUMEN

OBJECTIVE: To test the effect of Banxia Xiexin Decoction (, BXD) on the contraction and relaxation of gastric smooth muscle (SM) in diabetic gastroparesis (DGP) model rats, and to explore the mechanism of BXD in the prevention and treatment of DGP through experiments of signal pathway both in vivo and in vitro. METHODS: Sixty Sprague-Dawley rats were divided into 6 groups according to a random number table: control group, model group, high-, medium- and low-dose BXD groups (9.2, 4.6 and 1.8 g/(kg·d), respectively), and domperidone group (10 mg/(kg·d)), 10 rats per group. DGP model was established initially by a single intraperitoneal injection of streptozotocin (STZ), and was confirmed by recording gastric emptying, intestinal transport velocity and gastric myoelectric activity of rats after 2 months. Each group was treated with a corresponding drug for 4 weeks. The mRNA and protein expressions of phospholipase C (PLC), inositol triphosphate (IP3), neuronal nitric oxide synthase (nNOS), and cyclic guanosine monophosphate (cGMP) dependent protein kinase G (PKG) were detected by reverse transcription-polymerase chain reaction and Western blot, respectively, while nitric oxide (NO) and cGMP expressions were detected by enzyme-linked immunosorbent assay. Gastric tissues were obtained from rats for primary cell culture preparation. Gastric SM cells were treated with 0.8 µmol/L of STZ or STZ plus 1,000, 500 and 200 µg/mL of BXD or STZ plus 2.5 µmol/mL of domperidone for 24, 48, 72 or 96 h, respectively. The length of gastric SM cells and intracellular Ca2+ concentration ([Ca2+]i) before and after BXD treatment was measured. RESULTS: Compared with the model group, high- and medium-dose BXD and domperidone significantly increased the expressions of PLC, IP3, NO, nNOS, cGMP and PKG in rat's gastric tissue (P<0.01). Gastric SM cells treated with BXD showed a time- and dose-dependent increase in cell viability (P<0.01). The treatment with high- and medium-dose BXD and domperidone inhibited the increase in gastric SM cells length and increased [Ca2+]i compared with the model cells (P<0.01). CONCLUSIONS: Treatment with high- and medium-dose BXD significantly attenuated STZ-induced experimental DGP in rats. The therapeutic effect of BXD on DGP rats might be associated with the PLC-IP3-Ca2+/NO-cGMP-PKG signal pathway.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Medicamentos Herbarios Chinos/farmacología , Gastroparesia/tratamiento farmacológico , Fosfatos de Inositol/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Nucleótidos Cíclicos/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Señalización del Calcio , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Masculino , Óxido Nítrico/metabolismo , Ratas , Ratas Sprague-Dawley , Estreptozocina
8.
Chem Biol Interact ; 316: 108923, 2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31838051

RESUMEN

Angina pectoris can be used as an early warning for coronary artery disease. Vasodilation is an important mechanism of angina pectoris. Traditional Chinese medicine - Compound Danshen Dripping Pill (CDDP) is widely used to improve the symptoms of cardiovascular diseases (CVDs). To investigate the influence of vasodilation effect and underlying mechanisms of CDDP, we determined the vasodilation effect of thoracic aorta ring on rat induced by norepinephrine (NE). Then targets-fishing method was used to predict the potential mechanism of CDDP on vasodilation, based on the structures of the main components. Then, iTRAQ-based quantitative proteomics analysis was used for verification of the candidate target proteins and pathways to illustrate the underlying mechanisms. Furthermore, the differentially expressed proteins in the enriched pathways were validated by western blotting. In this study, we found that CDDP could significantly inhibit NE induced aortic contraction tension, and the mechanism may be related to platelet activation, cGMP - PKG signaling pathway and vascular smooth muscle contraction. The method provides a new way to uncover the vasodilation mechanism of CDDP, as well as other multi-component herbal medicines.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Proteoma/análisis , Proteómica , Vasodilatadores/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Canfanos , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Masculino , Medicina Tradicional China , Contracción Muscular/efectos de los fármacos , Norepinefrina/farmacología , Panax notoginseng , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Ratas , Ratas Sprague-Dawley , Salvia miltiorrhiza , Transducción de Señal/efectos de los fármacos
9.
Plant Cell ; 31(12): 3073-3091, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31575723

RESUMEN

Cyclic GMP (cGMP) is an important regulator in eukaryotes, and cGMP-dependent protein kinase (PKG) plays a key role in perceiving cellular cGMP in diverse physiological processes in animals. However, the molecular identity, property, and function of PKG in plants remain elusive. In this study, we have identified PKG from plants and characterized its role in mediating the gibberellin (GA) response in rice (Oryza sativa). PKGs from plants are structurally unique with an additional type 2C protein phosphatase domain. Rice PKG possesses both protein kinase and phosphatase activities, and cGMP stimulates its kinase activity but inhibits its phosphatase activity. One of PKG's targets is GAMYB, a transcription factor in GA signaling, and the dual activities of PKG catalyze the reversible phosphorylation of GAMYB at Ser6 and modulate the nucleocytoplasmic distribution of GAMYB in response to GA. Loss of PKG impeded the nuclear localization of GAMYB and abolished GAMYB function in the GA response, leading to defects in GA-induced seed germination, internode elongation, and pollen viability. In addition to GAMYB, PKG has multiple potential targets and thus has broad effects, particularly in the salt stress response.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Giberelinas/metabolismo , Oryza/metabolismo , Estrés Salino/genética , Factores de Transcripción/metabolismo , Núcleo Celular/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Germinación/efectos de los fármacos , Giberelinas/farmacología , Mutación , Oryza/efectos de los fármacos , Oryza/enzimología , Oryza/genética , Fosforilación/efectos de los fármacos , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Regiones Promotoras Genéticas , Semillas/genética , Semillas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética
10.
Biomed Pharmacother ; 118: 109216, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31319371

RESUMEN

The osseointegration process of implant is seriously impaired in type 2 diabetes mellitus (T2DM) that causes high failure rate, and insufficiency exists in current insulin therapy, creating a demand for new bone-synergistic agent. Cinaciguat, a novel type of soluble guanylate cyclase (sGC) activator, plays a vital role in glucose metabolism, inflammation control and bone regeneration. We hypothesized that the combined application of cinaciguat and insulin could reverse poor implant osseointegration in diabetes. To test this hypothesis, streptozotocin-induced diabetic rats were placed implants in the femur, and divided into five groups: control, T2DM, cinaciguat-treated T2DM (7 µg/kg), insulin-treated T2DM (12 IU/kg), cinaciguat plus insulin combination-treated T2DM (7 µg/kg and 12 IU/kg respectively), according to different treatment received. The weight and glucose levels of rats were evaluated at fixed times, and plasma level of cyclic guanosine monophosphate (cGMP) was determined before euthanasia. Three months after therapy, the femurs were isolated for pull-out test, environmental scanning electron microscope observation, microscopic computerized tomography evaluation and various histology analysis. Results revealed that diabetic rats showed the highest blood glucose level and lowest cGMP content, which led to the worst structural damage and least osseointegration. Combined treatment could attenuate the diabetes induced hyperglycemia to be normal, restore the cGMP content, protein kinase G II (PKG II) expression, phosphodiesterase-5 (PDE5) activity and ameliorate the mechanical strength, the impaired bone microarchitecture and osseointegration to the highest level. Meanwhile, monotreatment (insulin or cinaciguat) also showed restorative effect, but less. Our findings demonstrated that the cGMP/PKG II signaling pathway activated by cinaciguat mediated the favorable effects of the combined application on improving implant fixation under T2DM condition.


Asunto(s)
Benzoatos/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Insulina/uso terapéutico , Oseointegración/efectos de los fármacos , Prótesis e Implantes , Animales , Benzoatos/administración & dosificación , Glucemia/análisis , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Tipo 2/sangre , Quimioterapia Combinada , Guanilato Ciclasa/metabolismo , Insulina/administración & dosificación , Masculino , Ratas Sprague-Dawley
11.
Biosci Biotechnol Biochem ; 83(7): 1205-1215, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30999826

RESUMEN

Panax ginseng C. A. Meyer has been widely used in skin care. Our previous study showed that the phenolic acids in ginseng root extract (GRE) impart inhibitory effects on melanogenesis. In this study, we found that as the most abundant component of phenolic acids in GRE, vanillic acid decreased tyrosinase activity and melanin levels with or without α-MSH stimulation and suppressed the expression of microphthalmia-associated transcription factor (MITF) and melanogenic enzymes in B16F10 cells. Furthermore, vanillic acid downregulated NOS activity, nitric oxide (NO) content, cGMP level, guanylate cyclase (GC) and protein kinase G (PKG) activity, and the phosphorylation of cAMP-response element-binding protein (CREB), whereas arbutin had no effect on the NO/PKG pathway. These findings indicate that vanillic acid in GRE suppressed melanogenesis by inhibiting the NO/PKG signaling pathways. This study provides a potential mechanism underlying the inhibitory effect of ginseng on melanogenesis.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Melaninas/antagonistas & inhibidores , Óxido Nítrico/antagonistas & inhibidores , Panax/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Transducción de Señal/efectos de los fármacos , Ácido Vanílico/farmacología , Animales , Línea Celular Tumoral , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Melaninas/biosíntesis , Melaninas/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Oxidorreductasas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , alfa-MSH/farmacología
12.
Clin Exp Hypertens ; 41(1): 5-13, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29424564

RESUMEN

Reactive oxygen species induce vascular dysfunction and hypertension by directly interacting with nitric oxide (NO) which leads to NO inactivation. In addition to a decrease in NO bioavailability, there is evidence that oxidative stress can also modulate NO signaling during hypertension. Here, we investigated the effect of oxidative stress on NO signaling molecules cGMP-dependent protein kinase (PKG) and vasodilator-stimulated phosphoprotein (VASP) which are known to mediate vasodilatory actions of NO. Male Sprague Dawley (SD) rats were provided with tap water (control), 30 mM L-buthionine sulfoximine (BSO, a pro-oxidant), 1 mM tempol (T, an antioxidant) and BSO + T for 3 wks. BSO-treated rats exhibited high blood pressure and oxidative stress. Incubation of mesenteric arterial rings with NO donors caused concentration-dependent relaxation in control rats. However, the response to NO donors was significantly lower in BSO-treated rats with a marked decrease in pD2. In control rats, NO donors activated mesenteric PKG, increased VASP phosphorylation and its interaction with transient receptor potential channels 4 (TRPC4) and inhibited store-operated Ca2+ influx. NO failed to activate these signaling molecules in mesenteric arteries from BSO-treated rats. Supplementation of BSO-treated rats with tempol reduced oxidative stress and blood pressure and normalized the NO signaling. These data suggest that oxidative stress can reduce NO-mediated PKG activation and VASP-TRPC4 interaction which leads to failure of NO to reduce Ca2+ influx in smooth muscle cells. The increase in intracellular Ca2+ contributes to sustained vasoconstriction and subsequent hypertension. Antioxidant supplementation decreases oxidative stress, normalizes NO signaling and reduces blood pressure.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Hipertensión/fisiopatología , Arterias Mesentéricas/fisiopatología , Proteínas de Microfilamentos/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo , Fosfoproteínas/metabolismo , Animales , Antioxidantes/farmacología , Presión Sanguínea/efectos de los fármacos , Butionina Sulfoximina/farmacología , Calcio/metabolismo , Óxidos N-Cíclicos/farmacología , Masculino , Arterias Mesentéricas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/farmacología , Serina/metabolismo , Transducción de Señal/efectos de los fármacos , Marcadores de Spin , Canales Catiónicos TRPC/metabolismo , Vasodilatación/efectos de los fármacos
13.
Phytomedicine ; 43: 140-149, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29747747

RESUMEN

BACKGROUND: Tiger nut (Cyperus esculentus L.) and walnut (Tetracarpidium conophorum Müll. Arg.) have been reportedly used in the treatment of inflammatory diseases such as atherosclerosis, prevent heart attack and improve blood circulation, reduce serum cholesterol level as well as inhibit oxidation reactions. PURPOSE: This study investigated the effect of tiger nut and walnut hydro-alcoholic extracts on extracellular metabolism of ATP through the NOS/cGMP/PKG signaling pathway induced by Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) in kidney slices. METHODS: The plants were extracted for 24 h in 10 ml of 70% ethanol and 30% distilled water per gram milled material on a mechanical shaker and filtered using Whatman filter paper. The effect of the extracts on ecto-nucleotidases (NTPDase and 5' nucleotidase) and adenosine deaminase activities, nitrites and nitrates levels (NO, markers of NO production) as well as lipid and protein oxidation reactions in kidney slices were evaluated. Also, the phenolic components of the nut samples were determined using High Performance Liquid Chromatography (HPLC). RESULTS: The results revealed a protective effect of tiger nut and walnut on co-incubation with L-NAME of the enzyme activities, increased NO significantly (P < 0.05) when compared to the vehicle. L-NAME also increased the thiobabituric reactive substances but co-incubation with the extracts caused a significant reduction while protein oxidation across groups showed no significant difference when compared to the vehicle group. HPLC finger printing revealed the presence of quercetin and kaempferol as the most abundant phenolic compounds in tiger nut and walnut respectively. CONCLUSION: Tiger nut and walnut extracts showed a protective effect on L-NAME induced kidney slices by reducing the activities of NTPDase (ATP as substrate) and adenosine deaminase, increased NO levels as well as prevent oxidative damage. The effect observed may be attributed to the phenolic compounds present in both nuts as depicted by HPLC finger printing.


Asunto(s)
Cyperus/química , Juglans/química , Riñón/efectos de los fármacos , Riñón/metabolismo , Extractos Vegetales/farmacología , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Cromatografía Líquida de Alta Presión , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Femenino , Metabolismo de los Lípidos/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/metabolismo , Oxidación-Reducción , Fenoles/análisis , Ratas Wistar
14.
Neurochem Int ; 112: 18-26, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101001

RESUMEN

Icariside II (ICS II), a phosphodiesterase 5 inhibitor (PDE 5-I), is a major ingredient of Epimedium brevicornum, with wide spectrum of neuroprotective properties. However, little is known about the potential beneficial effect of ICS II on neuronal cell proliferation, and its possible underlying mechanism remains still unclear. We hypothesized that the beneficial effect of ICS II on neuron-like highly differentiated rat pheochromocytoma (PC12) cell proliferation is correlated with the nitric oxide (NO) signaling pathway and its upstream of PI3K/AKT pathway. PC12 cells were treated with ICS II alone or together with L-NMMA, H89, KT-5823, and/or LY294002 (the inhibitor of NOS, PKA, PKG, PI3K, respectively). It was found that ICS II concentration-dependently promoted PC12 cells proliferation, and cell cycle analysis showed that the proportion of ICS II-treated PC12 cells in S phase was higher than that of control. Moreover, ICS II at the appropriate concentration (100 µM) not only increased nNOS expression, NO production, but also enhanced cGMP content and PKG activity. The addition of L-NMMA and KT-5 823 significantly inhibited the effects of ICS II on nNOS expression, NO production and PKG activity. Furthermore, LY294002 significantly decreased p-AKT level, NOS activity, NO production and nNOS expression, but it did not affect iNOS expression. These findings demonstrate that the beneficial effect of ICS II on neuronal cell proliferation, and its possible underlying mechanisms are, at least partly, through activating AKT/nNOS/NO/cGMP/PKG signaling pathway.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Flavonoides/farmacología , Óxido Nítrico/metabolismo , Inhibidores de Fosfodiesterasa 5/farmacología , Animales , Proliferación Celular/fisiología , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/farmacología , Epimedium , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Ratas
15.
Med Hypotheses ; 109: 145-149, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29150274

RESUMEN

A recent controlled trial has established that high-dose biotin supplementation - 100 mg, three times daily - has a stabilizing effect on progression of multiple sclerosis (MS). Although this effect has been attributed to an optimization of biotin's essential cofactor role in the brain, a case can be made that direct stimulation of soluble guanylate cyclase (sGC) by pharmacological concentrations of biotin plays a key role in this regard. The utility of high-dose biotin in MS might reflect an anti-inflammatory effect of cGMP on the cerebral microvasculature, as well on oligodendrocyte differentiation and on Schwann cell production of neurotrophic factors thought to have potential for managing MS. But biotin's ability to boost cGMP synthesis in the brain may have broader neuroprotective potential. In many types of neurons and neural cells, cGMP exerts neurotrophic-mimetic effects - entailing activation of the PI3K-Akt and Ras-ERK pathways - that promote neuron survival and plasticity. Hippocampal long term potentiation requires nitric oxide synthesis, which in turn promotes an activating phosphorylation of CREB via a pathway involving cGMP and protein kinase G (PKG). In Alzheimer's disease (AD), amyloid beta suppresses this mechanism by inhibiting sGC activity; agents which exert a countervailing effect by boosting cGMP levels tend to restore effective long-term potentiation in rodent models of AD. Moreover, NO/cGMP suppresses amyloid beta production within the brain by inhibiting expression of amyloid precursor protein and BACE1. In conjunction with cGMP's ability to oppose neuron apoptosis, these effects suggest that high-dose biotin might have potential for the prevention and management of AD. cGMP also promotes neurogenesis, and may lessen stroke risk by impeding atherogenesis and hypertrophic remodeling in the cerebral vasculature. The neuroprotective potential of high-dose biotin likely could be boosted by concurrent administration of brain-permeable phosphodiesterase-5 inhibitors.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Biotina/farmacología , GMP Cíclico/metabolismo , Esclerosis Múltiple/prevención & control , Fármacos Neuroprotectores/farmacología , Envejecimiento , Péptidos beta-Amiloides/metabolismo , Encéfalo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Potenciación a Largo Plazo , Microcirculación , Neurogénesis , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Fosfodiesterasa/química , Ensayos Clínicos Controlados Aleatorios como Asunto , Transducción de Señal/efectos de los fármacos
16.
J Headache Pain ; 18(1): 51, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28470432

RESUMEN

BACKGROUND: Hyperbaric oxygen (HBO) has the potential to relieve neuropathic pain. The purpose of this study was to determine whether the NO-cGMP-PKG signaling pathway is involved in the analgesic effects of early hyperbaric oxygen treatment of neuropathic pain in rats. METHODS: Rats were randomly grouped for establishment of chronic constriction injury (CCI) models. Intrathecal catheters were inserted and 2.5ATA HBO therapy was administered from day 1 post-surgery for 60 minutes daily, continuously for 5 days; menstruum NS, DMSO, NO synthase(NOS) nonspecific inhibitor (L-NAME), soluble guanylyl cyclase(sGC) inhibitor (ODQ) and protein kinase G(PKG) inhibitor (KT5823) were administered intrathecally 30 minutes prior to HBO therapy. Pain-related behaviors in rats were observed at specific time points. Western blot and real-time RT-PCR were used to observe the expressions of PKG1 mRNA and protein in the spinal dorsal horn. RESULTS: Compared with the CCI group, HBO could significantly relieve mechanical and thermal hyperalgesia in rats. After intrathecal administration of L-NAME, ODQ and KT5823, effects of HBO on relieving hyperalgesia in rats were reversed (P < 0.05 vs. HBO), and expression of PKG1 mRNA and protein decreased in the spinal dorsal horn of the animals (P < 0.05 vs. HBO). CONCLUSIONS: Early HBO therapy could significantly improve symptoms of hyperalgesia of neuropathic pain in rats, possibly via activation of the NO-cGMP-PKG signaling transduction pathway.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Oxigenoterapia Hiperbárica/métodos , Neuralgia/metabolismo , Óxido Nítrico Sintasa/metabolismo , Transducción de Señal/fisiología , Analgesia/métodos , Animales , Masculino , Neuralgia/terapia , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
17.
Pain ; 158(5): 822-832, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28059868

RESUMEN

Activating PKG-1α induces a long-term hyperexcitability (LTH) in nociceptive neurons. Since the LTH correlates directly with chronic pain in many animal models, we tested the hypothesis that inhibiting PKG-1α would attenuate LTH-mediated pain. We first synthesized and characterized compound N46 (N-((3R,4R)-4-(4-(2-fluoro-3-methoxy-6-propoxybenzoyl)benzamido)pyrrolidin-3-yl)-1H-indazole-5-carboxamide). N46 inhibits PKG-1α with an IC50 of 7.5 nmol, was highly selective when tested against a panel of 274 kinases, and tissue distribution studies indicate that it does not enter the CNS. To evaluate its antinociceptive potential, we used 2 animal models in which the pain involves both activated PKG-1α and LTH. Injecting complete Freund's adjuvant (CFA) into the rat hind paw causes a thermal hyperalgesia that was significantly attenuated 24 hours after a single intravenous injection of N46. Next, we used a rat model of osteoarthritic knee joint pain and found that a single intra-articular injection of N46 alleviated the pain 14 days after the pain was established and the relief lasted for 7 days. Thermal hyperalgesia and osteoarthritic pain are also associated with the activation of the capsaicin-activated transient receptor protein vanilloid-1 (TRPV1) channel. We show that capsaicin activates PKG-1α in nerves and that a subcutaneous delivery of N46 attenuated the mechanical and thermal hypersensitivity elicited by exposure to capsaicin. Thus, PKG-1α appears to be downstream of the transient receptor protein vanilloid-1. Our studies provide proof of concept in animal models that a PKG-1α antagonist has a powerful antinociceptive effect on persistent, already existing inflammatory pain. They further suggest that N46 is a valid chemotype for the further development of such antagonists.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Inflamación/complicaciones , Osteoartritis/complicaciones , Osteoartritis/enzimología , Umbral del Dolor/fisiología , Dolor/enzimología , Dolor/etiología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacocinética , Animales , Compuestos de Bifenilo/uso terapéutico , Enfermedad Crónica , GMP Cíclico/análogos & derivados , GMP Cíclico/uso terapéutico , Modelos Animales de Enfermedad , Método Doble Ciego , Inhibidores Enzimáticos/uso terapéutico , Adyuvante de Freund/toxicidad , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , Modelos Moleculares , Osteoartritis/tratamiento farmacológico , Dolor/tratamiento farmacológico , Umbral del Dolor/efectos de los fármacos , Piridinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Tionucleótidos/uso terapéutico , Factores de Tiempo
18.
Int J Biol Macromol ; 97: 76-84, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28065754

RESUMEN

Temporomandibular disorder is a common clinical condition involving pain in the temporomandibular joint (TMJ) region. This study assessed the antinociceptive effects of a polysulfated fraction from the red seaweed Gracilaria cornea (Gc-FI) on the formalin-induced TMJ hypernociception in rats and investigated the involvement of different mechanisms. Male Wistar rats were pretreated with injection (sc) of saline or Gc-FI 1h before intra- TMJ injection of formalin to evaluate the nociception. The results showed that pretreatment with Gc-FI significantly reduced formalin-induced nociceptive behavior. Moreover, the antinociceptive effect of the Gc-FI was blocked by naloxone (a non-selective opioid antagonist), suggesting the involvement of opioids selective receptors. Thus, the pretreatment with selective opioids receptors antagonists, reversed the antinociceptive effect of the Gc-FI in the TMJ. The Gc-FI antinociceptive effect depends on the nitric oxide/cyclic GMP/protein kinase G/ATP-sensitive potassium channel (NO/cGMP/PKG/K+ATP) pathway because it was prevented by pretreatment with inhibitors of nitric oxide synthase, guanylate cyclase enzyme, PKG and a K+ATP blocker. In addition, after inhibition with a specific heme oxygenase-1 (HO-1) inhibitor, the antinociceptive effect of the Gc-FI was not observed. Collectively, these data suggest that the antinociceptive effect induced by Gc-FI is mediated by µ/δ/κ-opioid receptors and by activation NO/cGMP/PKG/K+ATP channel pathway, besides of HO-1.


Asunto(s)
Gracilaria/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Algas Marinas/química , Sulfatos/química , Articulación Temporomandibular/efectos de los fármacos , Analgésicos/química , Analgésicos/aislamiento & purificación , Analgésicos/farmacología , Animales , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Formaldehído/farmacología , Hemo-Oxigenasa 1/metabolismo , Interleucina-10/metabolismo , Canales KATP/metabolismo , Masculino , Nocicepción/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Ratas , Ratas Wistar , Receptores Opioides/metabolismo , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Articulación Temporomandibular/citología , Articulación Temporomandibular/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo
19.
Kaohsiung J Med Sci ; 32(2): 55-67, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26944323

RESUMEN

KMUP-3 (7-{2-[4-(4-nitrobenzene) piperazinyl]ethyl}-1, 3-dimethylxanthine) displays cardioprotection and increases cardiac output, and is suggested to increase cardiac performance and improve myocardial infarction. To determine whether KMUP-3 improves outcomes in hypoperfused myocardium by inducing Ca(2+) sensitization to oppose protein kinase (PK)G-mediated Ca(2+) blockade, we measured left ventricular systolic blood pressure, maximal rates of pressure development, mean arterial pressure and heart rate in rats, and measured contractility and expression of PKs/RhoA/Rho kinase (ROCK)II in beating guinea pig left atria. Hemodynamic changes induced by KMUP-3 (0.5-3.0 mg/kg, intravenously) were inhibited by Y27632 [(R)-(+)-trans-4-1-aminoethyl)-N-(4-Pyridyl) cyclohexane carboxamide] and ketanserin (1 mg/kg, intravenously). In electrically stimulated left guinea pig atria, positive inotropy induced by KMUP-3 (0.1-100µM) was inhibited by the endothelial NO synthase (eNOS) inhibitors N-nitro-l-arginine methyl ester (L-NAME) and 7-nitroindazole, cyclic AMP antagonist SQ22536 [9-(terahydro-2-furanyl)-9H-purin-6-amine], soluble guanylyl cyclase (sGC) antagonist ODQ (1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one), RhoA inhibitor C3 exoenzyme, ß-blocker propranolol, 5-hydroxytryptamine 2A antagonist ketanserin, ROCK inhibitor Y27632 and KMUP-1 (7-{2-[4-(2-chlorobenzene) piperazinyl]ethyl}-1, 3-dimethylxanthine) at 10µM. Western blotting assays indicated that KMUP-3 (0.1-10µM) increased PKA, RhoA/ROCKII, and PKC translocation and CIP-17 (an endogenous 17-kDa inhibitory protein) activation. In spontaneous right atria, KMUP-3 induced negative chronotropy that was blunted by 7-nitroindazole and atropine. In neonatal myocytes, L-NAME inhibited KMUP-3-induced eNOS phosphorylation and RhoA/ROCK activation. In H9c2 cells, Y-27632 (50µM) and PKG antagonist KT5823 [2,3,9,10,11,12-hexahydro-10R- methoxy-2,9-dimethyl-1-oxo-9S,12R-epoxy-1H-diindolo(1,2,3-fg:3',2',1'-kl) pyrrolo(3,4-i)(1,6)benzodiazocine-10-carboxylic acid, methyl ester] (3µM) reversed KMUP-3 (1-100µM)-induced Ca(2+)-entry blockade. GPCR agonist activity of KMUP-3 appeared opposed to KMUP-1, and increased cardiac output via Ca(2+) sensitization, and displayed cardioprotection via cyclic GMP/PKG-mediated myocardial preconditioning in animal studies.


Asunto(s)
Gasto Cardíaco/efectos de los fármacos , Cardiotónicos/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Piperidinas/farmacología , Xantinas/farmacología , Animales , Presión Sanguínea , Señalización del Calcio , Carbazoles/farmacología , Línea Celular , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Cobayas , Atrios Cardíacos/fisiopatología , Masculino , Transporte de Proteínas , Ratas Wistar , Receptores Acoplados a Proteínas G/metabolismo , Presión Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA