Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 478(13): 2481-2497, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198328

RESUMEN

The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Exorribonucleasas/antagonistas & inhibidores , Metiltransferasas/antagonistas & inhibidores , Caperuzas de ARN/metabolismo , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/química , Clorobencenos/farmacología , Chlorocebus aethiops , Pruebas de Enzimas , Exorribonucleasas/genética , Exorribonucleasas/aislamiento & purificación , Exorribonucleasas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Indazoles/farmacología , Indenos/farmacología , Indoles/farmacología , Metiltransferasas/genética , Metiltransferasas/aislamiento & purificación , Metiltransferasas/metabolismo , Nitrilos/farmacología , Fenotiazinas/farmacología , Purinas/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Especificidad por Sustrato , Trifluperidol/farmacología , Células Vero , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/aislamiento & purificación , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/aislamiento & purificación , Proteínas Reguladoras y Accesorias Virales/metabolismo
2.
Biochemistry ; 57(44): 6367-6378, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30298725

RESUMEN

Ebola virus (EBOV) is a filovirus that causes a severe and rapidly progressing hemorrhagic syndrome; a recent epidemic illustrated the urgent need for novel therapeutic agents because no drugs have been approved for treatment of Ebola virus. A key contribution to the high lethality observed during EBOV outbreaks comes from viral evasion of the host antiviral innate immune response in which viral protein VP35 plays a crucial role, blocking interferon type I production, first by masking the viral double-stranded RNA (dsRNA) and preventing its detection by the pattern recognition receptor RIG-I. Aiming to identify inhibitors of the interaction of VP35 with the viral dsRNA, counteracting the VP35 viral innate immune evasion, we established a new methodology for high-yield recombinant VP35 (rVP35) expression and purification and a novel and robust fluorescence-based rVP35-RNA interaction assay ( Z' factor of 0.69). Taking advantage of such newly established methods, we screened a small library of Sardinian natural extracts, identifying Limonium morisianum as the most potent inhibitor extract. A bioguided fractionation led to the identification of myricetin as the component that can inhibit rVP35-dsRNA interaction with an IC50 value of 2.7 µM. Molecular docking studies showed that myricetin interacts with the highly conserved region of the VP35 RNA binding domain, laying the basis for further structural optimization of potent inhibitors of VP35-dsRNA interaction.


Asunto(s)
Antivirales/farmacología , Flavonoides/farmacología , Fluorescencia , Extractos Vegetales/farmacología , ARN Bicatenario/antagonistas & inhibidores , ARN Viral/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/virología , Humanos , Simulación del Acoplamiento Molecular , Plumbaginaceae/química , Conformación Proteica , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo
3.
ACS Infect Dis ; 3(3): 190-198, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28152588

RESUMEN

The 2014 Ebola outbreak in West Africa, the largest outbreak on record, highlighted the need for novel approaches to therapeutics targeting Ebola virus (EBOV). Within the EBOV replication complex, the interaction between polymerase cofactor, viral protein 35 (VP35), and nucleoprotein (NP) is critical for viral RNA synthesis. We recently identified a peptide at the N-terminus of VP35 (termed NPBP) that is sufficient for interaction with NP and suppresses EBOV replication, suggesting that the NPBP binding pocket can serve as a potential drug target. Here we describe the development and validation of a sensitive high-throughput screen (HTS) using a fluorescence polarization assay. Initial hits from this HTS include the FDA-approved compound tolcapone, whose potency against EBOV infection was validated in a nonfluorescent secondary assay. High conservation of the NP-VP35 interface among filoviruses suggests that this assay has the capacity to identify pan-filoviral inhibitors for development as antivirals.


Asunto(s)
Antivirales/farmacología , Filoviridae/fisiología , Nucleoproteínas/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Secuencia de Aminoácidos , Sitios de Unión/efectos de los fármacos , Secuencia Conservada , Evaluación Preclínica de Medicamentos , Filoviridae/efectos de los fármacos , Filoviridae/genética , Polarización de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Técnicas In Vitro , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral/efectos de los fármacos
4.
Biochemistry ; 52(1): 171-7, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23240720

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) Vpu is an integral membrane protein that belongs to the viroporin family. Viroporins interact with cell membranes, triggering membrane permeabilization and promoting release of viral particles. In vitro electrophysiological methods have revealed changes in membrane ion currents when Vpu is present; however, in vivo the molecular mechanism of Vpu at the plasma membrane is still uncertain. We used the yeast Saccharomyces cerevisiae as a genetic model system to analyze how Vpu ion channel impacts cellular homeostasis. Inducible expression of Vpu impaired cell growth, suggesting that this viral protein is toxic to yeast cultures. This toxicity decreased with extracellular acidic pH. Also, Vpu toxicity diminished as the extracellular K(+) concentration was increased. However, expression of the Vpu protein suppresses the growth defect of K(+) uptake-deficient yeast (Δtrk1,2). The phenotype rescue of these highly hyperpolarized cells was almost total when they were grown in medium supplemented with high concentrations of KCl (100 mM) at pH 7.0 but was significantly reduced when the extracellular K(+) concentration or pH was decreased. These results indicate that Vpu has the ability to modify K(+) transport in both yeast strains. Here, we show also that Vpu confers tolerance to the aminoglycoside antibiotic hygromycin B in Δtrk1,2 yeast. Our results suggest that Vpu interferes with cell growth of wild-type yeast but improves proliferation of the hyperpolarized trk1,2 mutant by inducing plasma membrane depolarization. Furthermore, evaluation of the ion channel activity of the Vpu protein in Δtrk1,2 yeast could aid in the development of a high-throughput screening assay for molecules that target the retroviral protein.


Asunto(s)
VIH-1/fisiología , Interacciones Huésped-Patógeno , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Potasio/metabolismo , Saccharomyces cerevisiae/virología , Proteínas Reguladoras y Accesorias Virales/metabolismo , Transporte Biológico , Expresión Génica , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética
5.
Pest Manag Sci ; 58(11): 1132-6, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12449532

RESUMEN

Many pathogenic plant viruses are RNA viruses, which initiate production of double-stranded RNA intermediates when they replicate in host plant cells. Introduction of double-stranded RNA-specific ribonucleases such as the Schizosaccharomyces pombe derived pac I protein and animal cell derived interferon-induced 2',5'-oligoadenylate synthetase (2-5 Aase)/ribonuclease L (RNase L) system into various plants may make plants resistant to various pathogenic viruses and viroids. We have demonstrated that pac I and 2-5 Aase/RNase L transgenic tobacco plants are resistant to various viruses including tobacco mosaic virus, cucumber mosaic virus and potato virus Y. In addition, pac I transgenic potato plants are resistant to potato spindle tuber viroid. Using Agrobacterium-mediated transformation, we have established a transformation system for chrysanthemum plants and have recently developed pac I transgenic chrysanthemum (Dendranthema grandiflora cv Reagan) resistant to chrysanthemum stunt viroid and have grown them in isolated fields for an evaluation of their effects.


Asunto(s)
Enfermedades de las Plantas/genética , Virus de Plantas/genética , Plantas/genética , Virus ARN/genética , Viroides/genética , Chrysanthemum/genética , Chrysanthemum/virología , Cucumovirus/genética , Cucumovirus/crecimiento & desarrollo , Inmunidad Innata/genética , Enfermedades de las Plantas/virología , Virus de Plantas/crecimiento & desarrollo , Plantas/virología , Plantas Modificadas Genéticamente , Potyvirus/genética , Potyvirus/crecimiento & desarrollo , Virus ARN/crecimiento & desarrollo , Solanum tuberosum/genética , Solanum tuberosum/virología , Nicotiana/genética , Nicotiana/virología , Virus del Mosaico del Tabaco/genética , Virus del Mosaico del Tabaco/crecimiento & desarrollo , Proteínas Reguladoras y Accesorias Virales/genética , Viroides/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA