Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.177
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Bacteriol ; 206(4): e0006924, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38488356

RESUMEN

Bacteria are capable of withstanding large changes in osmolality and cytoplasmic pH, unlike eukaryotes that tightly regulate their pH and cellular composition. Previous studies on the bacterial acid stress response described a rapid, brief acidification, followed by immediate recovery. More recent experiments with better pH probes have imaged single living cells, and we now appreciate that following acid stress, bacteria maintain an acidic cytoplasm for as long as the stress remains. This acidification enables pathogens to sense a host environment and turn on their virulence programs, for example, enabling survival and replication within acidic vacuoles. Single-cell analysis identified an intracellular pH threshold of ~6.5. Acid stress reduces the internal pH below this threshold, triggering the assembly of a type III secretion system in Salmonella and the secretion of virulence factors in the host. These pathways are significant because preventing intracellular acidification of Salmonella renders it avirulent, suggesting that acid stress pathways represent a potential therapeutic target. Although we refer to the acid stress response as singular, it is actually a complex response that involves numerous two-component signaling systems, several amino acid decarboxylation systems, as well as cellular buffering systems and electron transport chain components, among others. In a recent paper in the Journal of Bacteriology, M. G. Gorelik, H. Yakhnin, A. Pannuri, A. C. Walker, C. Pourciau, D. Czyz, T. Romeo, and P. Babitzke (J Bacteriol 206:e00354-23, 2024, https://doi.org/10.1128/jb.00354-23) describe a new connection linking the carbon storage regulator CsrA to the acid stress response, highlighting new additional layers of complexity.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Cebollas/metabolismo , Proteínas Bacterianas/metabolismo , Citoplasma/metabolismo , Vacuolas/metabolismo , Salmonella/metabolismo , Ácidos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Escherichia coli/metabolismo
2.
Chem Pharm Bull (Tokyo) ; 72(2): 173-178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296560

RESUMEN

Histone deacetylase 8 (HDAC8) is a zinc-dependent HDAC that catalyzes the deacetylation of nonhistone proteins. It is involved in cancer development and HDAC8 inhibitors are promising candidates as anticancer agents. However, most reported HDAC8 inhibitors contain a hydroxamic acid moiety, which often causes mutagenicity. Therefore, we used machine learning for drug screening and attempted to identify non-hydroxamic acids as HDAC8 inhibitors. In this study, we established a prediction model based on the random forest (RF) algorithm for screening HDAC8 inhibitors because it exhibited the best predictive accuracy in the training dataset, including data generated by the synthetic minority over-sampling technique (SMOTE). Using the trained RF-SMOTE model, we screened the Osaka University library for compounds and selected 50 virtual hits. However, the 50 hits in the first screening did not show HDAC8-inhibitory activity. In the second screening, using the RF-SMOTE model, which was established by retraining the dataset including 50 inactive compounds, we identified non-hydroxamic acid 12 as an HDAC8 inhibitor with an IC50 of 842 nM. Interestingly, its IC50 values for HDAC1 and HDAC3-inhibitory activity were 38 and 12 µM, respectively, showing that compound 12 has high HDAC8 selectivity. Using machine learning, we expanded the chemical space for HDAC8 inhibitors and identified non-hydroxamic acid 12 as a novel HDAC8 selective inhibitor.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Evaluación Preclínica de Medicamentos , Histona Desacetilasas/metabolismo , Antineoplásicos/farmacología , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/química , Aprendizaje Automático , Proteínas Represoras
3.
J Cell Physiol ; 239(1): 135-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37942831

RESUMEN

In tandem with the expanding obesity pandemic, the prevalence of metabolic dysfunction associated steatohepatitis (MASH, formerly known as NASH)- driven hepatocellular carcinoma (HCC) is predicted to rise globally, creating a significant need for therapeutic interventions. We previously identified the upregulation of apoptosis antagonizing transcription factor (AATF), which is implicated in facilitating the progression from MASH to HCC. The objective of this study was to examine whether the intervention of curcumin could alleviate AATF-mediated MASH, inhibit tumor growth, and elucidate the underlying mechanism. A preclinical murine model mimicking human MASH-HCC was employed, subjecting mice to either a chow diet normal water (CDNW) or western diet sugar water (WDSW) along with very low dose of carbon tetrachloride (CCl4 - 0.2 µL/g, weekly). Mice receiving curcumin (CUR) alongside WDSW/CCl4 exhibited significant improvements, including reduced liver enzymes, dyslipidemia, steatosis, inflammation, and hepatocellular ballooning. Curcumin treatment also suppressed hepatic expression of inflammatory, fibrogenic, and oncogenic markers. Of note, there was a significant reduction in the expression of AATF upon curcumin treatment in WDSW/CCl4 mice and human HCC cells. In contrast, curcumin upregulated Kruppel-like factor 4 (KLF4) in MASH liver and HCC cells, which is known to downregulate sp1 (specificity protein-1) expression. Thus, curcumin treatment effectively inhibited the progression of MASH to HCC by downregulating the expression of AATF via the KLF4-Sp1 signaling pathway. These preclinical findings establish a novel molecular connection between curcumin and AATF in reducing hepatocarcinogenesis, and provide a strong rationale for the development of curcumin as a viable treatment for MASH-HCC in humans.


Asunto(s)
Carcinoma Hepatocelular , Curcumina , Hígado Graso , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Apoptosis , Proteínas Reguladoras de la Apoptosis , Carcinoma Hepatocelular/patología , Curcumina/farmacología , Curcumina/uso terapéutico , Hígado Graso/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Represoras , Factores de Transcripción
4.
Aging Dis ; 15(2): 640-697, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37450923

RESUMEN

Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.


Asunto(s)
Productos Biológicos , Neoplasias , Animales , Humanos , Genes myc , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/genética , Productos Biológicos/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Transducción de Señal , Neoplasias/tratamiento farmacológico
5.
J Nat Med ; 78(1): 236-245, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37991632

RESUMEN

Chrysin (5,7-dihydroxyflavone, 6) and galangin 3-methyl ether (5,7-dihydroxy-3-methoxy flavone, 7) were obtained from the leaves of Oroxylum indicum (L.) Kurz in 4% and 6% yields, respectively. Both compounds could act as pan-histone deacetylase (HDAC) inhibitors. Structural modification of these lead compounds provided thirty-eight derivatives which were further tested as HDAC inhibitors. Compounds 6b, 6c, and 6q were the most potent derivatives with the IC50 values of 97.29 ± 0.63 µM, 91.71 ± 0.27 µM, and 96.87 ± 0.45 µM, respectively. Molecular docking study indicated the selectivity of these three compounds toward HDAC8 and the test against HDAC8 showed IC50 values in the same micromolar range. All three compounds were further evaluated for the anti-proliferative activity against HeLa and A549 cell lines. Compound 6q exhibited the best activity against HeLa cell line with the IC50 value of 13.91 ± 0.34 µM. Moreover, 6q was able to increase the acetylation level of histone H3. These promising HDAC inhibitors deserve investigation as chemotherapeutic agents for treating cancer.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Células HeLa , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Histona Desacetilasas/metabolismo , Histona Desacetilasas/farmacología , Flavonoides/farmacología , Relación Estructura-Actividad , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Proteínas Represoras/metabolismo , Proteínas Represoras/farmacología
6.
Cell Mol Life Sci ; 80(12): 367, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37987826

RESUMEN

BACKGROUND: Huntington's Disease (HD) is a disorder that affects body movements. Altered glutamatergic innervation of the striatum is a major hallmark of the disease. Approximately 30% of those glutamatergic inputs come from thalamic nuclei. Foxp2 is a transcription factor involved in cell differentiation and reported low in patients with HD. However, the role of the Foxp2 in the thalamus in HD remains unexplored. METHODS: We used two different mouse models of HD, the R6/1 and the HdhQ111 mice, to demonstrate a consistent thalamic Foxp2 reduction in the context of HD. We used in vivo electrophysiological recordings, microdialysis in behaving mice and rabies virus-based monosynaptic tracing to study thalamo-striatal and thalamo-cortical synaptic connectivity in R6/1 mice. Micro-structural synaptic plasticity was also evaluated in the striatum and cortex of R6/1 mice. We over-expressed Foxp2 in the thalamus of R6/1 mice or reduced Foxp2 in the thalamus of wild type mice to evaluate its role in sensory and motor skills deficiencies, as well as thalamo-striatal and thalamo-cortical connectivity in such mouse models. RESULTS: Here, we demonstrate in a HD mouse model a clear and early thalamo-striatal aberrant connectivity associated with a reduction of thalamic Foxp2 levels. Recovering thalamic Foxp2 levels in the mouse rescued motor coordination and sensory skills concomitant with an amelioration of neuropathological features and with a repair of the structural and functional connectivity through a restoration of neurotransmitter release. In addition, reduction of thalamic Foxp2 levels in wild type mice induced HD-like phenotypes. CONCLUSIONS: In conclusion, we show that a novel identified thalamic Foxp2 dysregulation alters basal ganglia circuits implicated in the pathophysiology of HD.


Asunto(s)
Enfermedad de Huntington , Trastornos Motores , Humanos , Animales , Ratones , Tálamo , Cuerpo Estriado , Movimiento , Modelos Animales de Enfermedad , Proteínas Represoras , Factores de Transcripción Forkhead/genética
7.
Phytomedicine ; 120: 155046, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37659297

RESUMEN

BACKGROUND: Doxorubicin (Dox), a chemotherapeutic agent known for its efficacy, has been associated with the development of severe cardiotoxicity, commonly referred to as doxorubicin-induced cardiotoxicity (DIC). The role and mechanism of action of phloretin (Phl) in cardiovascular diseases are well-established; however, its specific function and underlying mechanism in the context of DIC have yet to be fully elucidated. OBJECTIVE: This research aimed to uncover the protective effect of Phl against DIC in vivo and in vitro, while also providing a comprehensive understanding of the underlying mechanisms involved. METHODS: DIC cell and murine models were established. The action targets and mechanism of Phl against DIC were comprehensively examined by systematic network pharmacology, molecular docking, transcriptomics technologies, transcription factor (TF) prediction, and experimental validation. RESULTS: Phl relieved Dox-induced cell apoptosis in vitro and in vivo. Through network pharmacology analysis, a total of 554 co-targeted genes of Phl and Dox were identified. Enrichment analysis revealed several key pathways including the PI3K-Akt signaling pathway, Apoptosis, and the IL-17 signaling pathway. Protein-protein interaction (PPI) analysis identified 24 core co-targeted genes, such as Fos, Jun, Hif1a, which were predicted to bind well to Phl based on molecular docking. Transcriptomics analysis was performed to identify the top 20 differentially expressed genes (DEGs), and 202 transcription factors (TFs) were predicted for these DEGs. Among these TFs, 10 TFs (Fos, Jun, Hif1a, etc.) are also the co-targeted genes, and 3 TFs (Fos, Jun, Hif1a) are also the core co-targeted genes. Further experiments validated the finding that Phl reduced the elevated levels of Hif3a (one of the top 20 DEGs) and Fos (one of Hif3a's predicted TFs) induced by Dox. Moreover, the interaction between Fos protein and the Hif3a promoter was confirmed through luciferase reporter assays. CONCLUSION: Phl actively targeted and down-regulated the Fos protein to inhibit its binding to the promoter region of Hif3a, thereby providing protection against DIC.


Asunto(s)
Cardiotoxicidad , Floretina , Animales , Ratones , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Doxorrubicina/efectos adversos , Proteínas Represoras , Proteínas Reguladoras de la Apoptosis
8.
Sci Rep ; 13(1): 12800, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550432

RESUMEN

Pancreatic cancer(PC) is less common than other cancers; however, it has a poor prognosis. Therefore, studying novel target signaling and anticancer agents is necessary. Momordicae Semen (MS), the seed of Momordica sochinensis Spreng, mainly found in South-East Asia, including China and Bangladesh, is used to treat various diseases because of its anticancer, antioxidant, anti-inflammatory, and antibacterial properties. However, the effect of the MS extract on pancreatic cancer cells remains unknown. In this study investigated whether the MS extract exerted an anti-cancer effect by regulating c-Myc through CNOT2. Cytotoxicity and proliferation were investigated using MTT and colony formation assays. The levels of apoptotic, oncogenic, and migration-associated factors were confirmed using immunoblotting and immunofluorescence. Wound closure was analyzed using a wound healing assay. The chemical composition of the MS methanol extracts was analyzed using liquid chromatography-mass spectrometry. We confirmed that the MS extract regulated apoptotic factors and attenuated the stability of c-Myc and its sensitivity to fetal bovine serum. Furthermore, the MS extract increased apoptosis by regulating c-Myc and CNOT2 expression and enhanced the sensitivity of 5-FU in pancreatic cancer. This study showed that the MS extract is a promising new drug for PC.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Semillas , Apoptosis , Antineoplásicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Extractos Vegetales/química , Proliferación Celular , Proteínas Represoras/farmacología , Neoplasias Pancreáticas
9.
Bioorg Chem ; 140: 106768, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37586133

RESUMEN

Pharmacological induction of fetal hemoglobin has proven to be a promising therapeutic intervention in ß-hemoglobinopathies by reducing the globin chain imbalance and inhibiting sickle cell polymerization. Fagonia indica has shown therapeutic relevance to ß-thalassemia. Therefore, we study the ethnopharmacological potential of Fagonia indica and its biomarker compounds for their HbF induction ability for the treatment of ß-thalassemia. Here, we identify, compound 8 (triterpenoid glycosides) of F. indica. as a prominent HbF inducer in-vitro and in-vivo. Compound 8 showed potent erythroid differentiation, enhanced cellular proliferation, ample accumulation of total hemoglobin, and a strong notion of γ-globin gene expression in K562 cultures. Compound 8 treatment also revealed strong induction of erythroid differentiation and fetal hemoglobin mRNA and protein in adult erythroid precursor cells. This induction was associated with simultaneous downregulation of BCL11A and SOX6, and overexpression of the GATA-1 gene, suggesting a compound 8-mediated partial mechanism involved in the reactivation of fetal-like globin genes. The in vivo study with compound 8 (10 mg/kg) in ß-YAC mice resulted in significant HbF synthesis demonstrated by the enhanced level of F-cells (84.14 %) and an 8.85-fold increase in the γ-globin gene. Overall, the study identifies compound 8 as a new HbF-inducing entity and provides an early "proof-of-concept" to enable the initiation of preclinical and clinical studies in the development of this HbF-inducing agent for ß-thalassemia.


Asunto(s)
Hemoglobinopatías , Triterpenos , Talasemia beta , Humanos , Animales , Ratones , gamma-Globinas/genética , gamma-Globinas/metabolismo , Talasemia beta/tratamiento farmacológico , Talasemia beta/genética , Talasemia beta/metabolismo , Glicósidos/farmacología , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Células K562 , Factores de Transcripción , Expresión Génica , Proteínas Represoras
10.
J Med Chem ; 66(15): 10528-10557, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37463500

RESUMEN

Idiopathic pulmonary fibrosis is incurable, and its progression is difficult to control and thus can lead to pulmonary deterioration. Pan-histone deacetylase inhibitors such as SAHA have shown potential for modulating pulmonary fibrosis yet with off-target effects. Therefore, selective HDAC inhibitors would be beneficial for reducing side effects. Toward this goal, we designed and synthesized 24 novel HDAC6, HDAC8, or dual HDAC6/8 inhibitors and established a two-stage screening platform to rapidly screen for HDAC inhibitors that effectively mitigate TGF-ß-induced pulmonary fibrosis. The first stage consisted of a mouse NIH-3T3 fibroblast prescreen and yielded five hits. In the second stage, human pulmonary fibroblasts (HPFs) were used, and four out of the five hits were tested for caco-2 permeability and liver microsome stability to give two potential leads: J27644 (15) and 20. This novel two-stage screen platform will accelerate the discovery and reduce the cost of developing HDAC inhibitors to mitigate TGF-ß-induced pulmonary fibrosis.


Asunto(s)
Inhibidores de Histona Desacetilasas , Fibrosis Pulmonar Idiopática , Ratones , Animales , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Factor de Crecimiento Transformador beta , Histona Desacetilasas/uso terapéutico , Evaluación Preclínica de Medicamentos , Células CACO-2 , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Histona Desacetilasa 6 , Proteínas Represoras
11.
Arch Biochem Biophys ; 743: 109655, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37285895

RESUMEN

Endometrial carcinoma is the most common gynecological tumor in developed countries. Tanshinone IIA is a traditional herbal medicine which is to treat cardiovascular disease and has been shown to have various biological effects, such as anti-inflammatory, antioxidative and antitumor activities. However, there has been no study about the effect of tanshinone IIA on endometrial carcinoma. Thus, the aim of this study was to determine the antitumor activity of tanshinone IIA against endometrial carcinoma and investigate the associated molecular mechanism. We demonstrated that tanshinone IIA induced cell apoptosis and inhibited migration. We further demonstrated that tanshinone IIA activated the intrinsic (mitochondrial) apoptotic pathway. Mechanistically, tanshinone IIA induced apoptosis by upregulating TRIB3 expression and inhibiting the MAPK/ERK signaling pathway. In addition, knockdown of TRIB3 with an shRNA lentivirus accelerated proliferation and attenuated inhibition mediated by tanshinone IIA. Finally, we further demonstrated that tanshinone IIA inhibited tumor growth by inducing TRIB3 expression in vivo. In conclusion, these findings suggest that tanshinone IIA has a significant antitumor effect by inducing apoptosis and may be used as a drug for the treatment of endometrial carcinoma.


Asunto(s)
Abietanos , Neoplasias Endometriales , Humanos , Femenino , Línea Celular Tumoral , Abietanos/farmacología , Abietanos/uso terapéutico , Apoptosis , Neoplasias Endometriales/tratamiento farmacológico , Proteínas Represoras , Proteínas Serina-Treonina Quinasas , Proteínas de Ciclo Celular
12.
Phytomedicine ; 116: 154892, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37267693

RESUMEN

BACKGROUND: The annual incidence of diabetic foot ulcers (DFUs) has been reported to vary from 0.2% to 11% in diabetes-specific clinical settings and less than 0.1% to 8% in community- and population-based cohorts. According to the International Diabetes Foundation, approximately 40 million to 60 million people worldwide are affected by DFUs, and a recent meta-analysis indicates a global prevalence of 6.3% among adults with diabetes, or about 33 million individuals. The cost of diabetes care is significant, amounting to $273 billion in direct and $90 billion in indirect expenses annually, in America. Foot complications in diabetes care excess annual expenditures ranging from 50% to 200% above the baseline cost of diabetes-related care. The cost of advanced-stage ulcers can be more than $50,000 per wound episode, and the direct expenses of major amputation are even higher. DFUs can be treated using various methods, including wound dressings, antibiotics, pressure-off loading, skin substitutes, stem cells, debridement, topical oxygen therapy, gene therapy and growth factors. For severe DFUs patients are at risk of amputation if treatment is not timely or appropriate. Amputating limbs not only causes physical pain to patients, but also brings economic burden due to lost productivity, and decreased employment linked to DFUs. Currently, long-term use of local antibiotics in clinical practice is prone to induce drug resistance, while growth factors do not effectively inhibit bacterial growth and control inflammation in wounds. Stem cell and gene therapies are still in the experimental stage. The method of local debridement combined with negative pressure therapy is expensive. Therefore, we urgently need an affordable, non-surgical method to treat diabetic ulcers. Extracts of bark of Bauhinia purpurea, Paeoniae rubrae, Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. (Hoffm.) Benth. & Hook.f. ex Franch. & Sav., Acorus calamus L, and Radix Angelicae biseratae have been used as traditional remedies to treat inflammation-related diseases and cutaneous wounds due to their anti-inflammatory properties and their ability to promote vascular renewal. However, there have been few studies on the mixture of these five herbal extracts on diabetic wound healing. PURPOSE: This study was designed to assess the healing effect of a mixture of five aforementioned herbal extracts on diabetic ulcer wounds in rats, and to reveal the potential mechanisms behind any potential wound healing using transcriptomics and proteomics. STUDY DESIGN: We designed the experiment to explore the effects of five herbal extracts on diabetic wound healing process through in vivo experiments and to investigate the underlying mechanisms through proteomics and transcriptomics. METHODS: We used a mixture of five aforementioned herbal extract to treat rat model of diabetic established by intraperitoneal injection of streptozotocin, and a 2 × 2 cm round full-thickness skin defect was created on the back of the rat. Staphylococcus aureus (1 ml of 1.5 × 109 cfu/ml) was evenly applied to the wound. The wound was then observed for 72 h. The infected ulcer model of diabetic rats was considered to be successfully established if the wound was found to be infected with S. aureus. According to different medications, the rats were divided into three groups, namely mixture of herbal extract (MHE), Kangfuxin solution (KFS) and control (Ctrl). The effects of the medicine on wound healing were observed. HE staining and Masson staining were performed to evaluate the histopathological changes and collagen synthesis. IHC staining was used to assess the neovascularization, and M2 macrophage proliferation was determined by immunofluorescence staining. Proteomic and transcriptomic studies were performed to explore potential mechanism of five herbal extracts to promote wound healing. UHPLC-QE-MS was performed to identify the chemical composition of mixture of herbal extract. RESULTS: The study show that the mixed herbal extract promotes angiogenesis, proliferation of M2 macrophages, and collagen synthesis. Transcriptomics showed that rno-miR-1298, rno-miR-144-5p, and rno-miR-92a-1-5p are vital miRNAs which also play a significant role in role in regulating wound healing. Proteomics results showed that the following proteins were important in wounds treated with MHE: Rack1, LOC100362366, Cops2, Cops6, Eif4e, Eif3c, Rpl12, Srp54, Rpl13 and Lsm7. Autophagy, PI3-Akt and mTOR signaling pathways were enriched after treatment with MHE compared to other groups. CONCLUSION: Herein, we have shown that MHE containing extracts of bark of Bauhinia purpurea, P. rubrae, A. dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav., A. calamus L, and R. A. biseratae has significant wound healing effects in the diabetic ulcer wound rat model. These results suggest that local application of MHE in diabetic wounds can accelerate the wound healing process. Moreover, in vivo experiments revealed that the diabetic wound healing process was primarily mediated by angiogenesis and M2 macrophage transition. Therefore, this study may provide a promising and non-surgical therapeutic strategy to accelerate diabetic wound healing, thereby decreasing the number of limb amputations in diabetic patients.


Asunto(s)
Diabetes Mellitus Experimental , Pie Diabético , MicroARNs , Ratas , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Transcriptoma , Proteómica , Staphylococcus aureus , Cicatrización de Heridas , Antibacterianos/farmacología , Pie Diabético/tratamiento farmacológico , Colágeno , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Inflamación/tratamiento farmacológico , Complejo del Señalosoma COP9/farmacología , Proteínas Represoras
13.
Biomolecules ; 13(6)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37371463

RESUMEN

BACKGROUND: Metastasis-associated protein 2 (MTA2) is a member of the metastasis-associated transcriptional regulator family and is a core component of the nucleosome remodeling and histone deacetylation complex. Despite growing evidence that MTA2 plays a crucial role in the tumorigenesis of certain cancers, no systematic pan-cancer analysis of MTA2 is available to date. Therefore, the aim of our study is to explore the prognostic value of MTA2 in 33 cancer types and to investigate its potential immune function. METHODS: by comprehensive use of databases from TCGA, GTEx, GEO, UCSC xena, cBioPortal, comPPI, GeneMANIA, TCIA, MSigDB, and PDB, we applied various bioinformatics approaches to investigate the potential role of MTA2, including analyzing the association of MTA2 with MSI, prognosis, gene mutation, and immune cell infiltration in different tumors. We constructed a nomogram in TCGA-LIHC, performed single-cell sequencing (scRNA-seq) analysis of MTA2 in hepatocellular carcinoma (HCC), and screened drugs for the treatment of HCC. Finally, immunohistochemical experiments were performed to verify the expression and prognostic value of MTA2 in HCC. In vitro experiments were employed to observe the growth inhibition effects of MK-886 on the HCC cell line HepG2. RESULTS: The results suggested that MTA2 was highly expressed in most cancers, and MTA2 expression was associated with the prognosis of different cancers. In addition, MTA2 expression was associated with Tumor Mutation Burden (TMB) in 12 cancer types and MSI in 8 cancer types. Immunoassays indicated that MTA2 positively correlated with activated memory CD4 T cells and M0 macrophage infiltration levels in HCC. ScRNA-seq analysis based on the GEO dataset discovered that MTA2 was significantly expressed in T cells in HCC. Finally, the eXtreme Sum (Xsum) algorithm was used to screen the antitumor drug MK-886, and the molecular docking technique was utilized to reveal the binding capacity between MK-886 and the MTA2 protein. The results demonstrated excellent binding sites between them, which bind to each other through Π-alkyl and alkyl interaction forces. An immunohistochemistry experiment showed that MTA2 protein was highly expressed in HCC, and high MTA2 expression was associated with poor survival in HCC patients. MK-886 significantly inhibited the proliferation and induced cell death of HepG2 cells in a dose-dependent manner. CONCLUSIONS: Our study demonstrated that MTA2 plays crucial roles in tumor progression and tumor immunity, and it could be used as a prognostic marker for various malignancies. MK-886 might be a powerful drug for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Histona Desacetilasas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Simulación del Acoplamiento Molecular , Neoplasias/genética , Neoplasias/inmunología , Pronóstico , Proteínas Represoras/genética
14.
Genome ; 66(9): 235-250, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163758

RESUMEN

Nothapodytes nimmoniana is a medicinally important plant producing anticancer monoterpene indole alkaloid (MIA), camptothecin (CPT). The CPT is synthesised through the strictosidine intermediate following the MIA pathway; however, transcriptional regulation of CPT pathway is still elusive in N. nimmoniana. Biosynthesis of MIA is regulated by various transcription factors (TFs) belonging to AP2/ERF, bHLH, MYB, and WRKY families. The present study identified transcriptionally active full-length 105 AP2/ERF and 68 bHLH family TFs from the N. nimmoniana. AP2/ERF TFs were divided into three subfamilies along with a soloist, while bHLH TFs were divided into 10 subfamilies according to their phylogenetic similarities. Three group IXa ERFs, Nn-ERF22, Nn-ERF29, and Nn-ERF41, one subfamily IVa TF Nn-bHLH7, and three subfamilies IIIe Nn-bHLH33, Nn-bHLH51, and Nn-bHLH52 clustered with the TFs regulating alkaloid biosynthesis in Catharanthus roseus, tomato, tobacco, and Artemisia annua. Expression of these TFs in N. nimmoniana was higher in roots, which is a primary CPT accumulating tissue. Moreover, genome skimming approach was used to reconstruct the promoter regions of candidate ERF genes to identify the cis-regulatory elements. The presence of G-boxes and other jasmonic acid-responsive elements in the promoter suggests the regulation of ERFs by bHLHs. The present study effectively generated and used genomics resource for characterisation of regulatory TFs from non-model medicinal plant.


Asunto(s)
Alcaloides , Plantas Medicinales , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Medicinales/genética , Regiones Promotoras Genéticas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
15.
Molecules ; 28(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985402

RESUMEN

Finding structurally similar compounds in compound databases is highly efficient and is widely used in present-day drug discovery methodology. The most-trusted and -followed similarity indexing method is Tanimoto similarity indexing. Epigenetic proteins like histone deacetylases (HDACs) inhibitors are traditionally used to target cancer, but have only been investigated very recently for their possible effectiveness against rheumatoid arthritis (RA). The synthetic drugs that have been identified and used for the inhibition of HDACs include SAHA, which is being used to inhibit the activity of HDACs of different classes. SAHA was chosen as a compound of high importance as it is reported to inhibit the activity of many HDAC types. Similarity searching using the UNPD database as a reference identified aglaithioduline from the Aglaia leptantha compound as having a ~70% similarity of molecular fingerprints with SAHA, based on the Tanimoto indexing method using ChemmineR. Aglaithioduline is abundantly present in the shell and fruits of A. leptantha. In silico studies with aglaithioduline were carried out against the HDAC8 protein target and showed a binding affinity of -8.5 kcal mol. The complex was further subjected to molecular dynamics simulation using Gromacs. The RMSD, RMSF, compactness and SASA plots of the target with aglaithioduline, in comparison with the co-crystallized ligand (SAHA) system, showed a very stable configuration. The results of the study are supportive of the usage of A. leptantha and A. edulis in Indian traditional medicine for the treatment of pain-related ailments similar to RA. Our study therefore calls for further investigation of A. leptantha and A. edulis for their potential use against RA by targeting epigenetic changes, using in vivo and in vitro studies.


Asunto(s)
Artritis Reumatoide , Inhibidores de Histona Desacetilasas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Amidas , Simulación de Dinámica Molecular , Epigénesis Genética , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Simulación del Acoplamiento Molecular , Histona Desacetilasas/genética , Proteínas Represoras
16.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769377

RESUMEN

Cervical cancer is the fourth most common cancer among women worldwide. The main factor associated with the onset and progression of this neoplasia is the human papillomavirus (HPV) infection. The HPV-oncogenes E6 and E7 are critical drivers of cellular transformation, promoting the expression of oncogenes such as KCNH1. The phytochemical α-mangostin (AM) is a potent antineoplastic and antiviral compound. However, its effects on HPV oncogenes and KCNH1 gene expression remain unknown. This study evaluated the effects of AM on cell proliferation, cell cycle distribution and gene expression, including its effects on tumor growth in xenografted mice. AM inhibited cell proliferation in a concentration-dependent manner, being the most sensitive cell lines those with the highest number of HPV16 copies. In addition, AM promoted G1-cell cycle arrest in CaSki cells, while led to cell death in SiHa and HeLa cells. Of interest was the finding of an AM-dependent decreased gene expression of E6, E7 and KCNH1 both in vitro and in vivo, as well as the modulation of cytokine expression, Ki-67, and tumor growth inhibition. On these bases, we suggest that AM represents a good option as an adjuvant for the treatment and prevention of cervical cancer.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Animales , Ratones , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Células HeLa , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Represoras/genética , Oncogenes , Proliferación Celular , Expresión Génica , Canales de Potasio Éter-A-Go-Go/genética
17.
Immunity ; 56(4): 797-812.e4, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36801011

RESUMEN

The aryl-hydrocarbon receptor (AHR) is a ligand-activated transcription factor that buoys intestinal immune responses. AHR induces its own negative regulator, the AHR repressor (AHRR). Here, we show that AHRR is vital to sustaining intestinal intraepithelial lymphocytes (IELs). AHRR deficiency reduced IEL representation in a cell-intrinsic fashion. Single-cell RNA sequencing revealed an oxidative stress profile in Ahrr-/- IELs. AHRR deficiency unleashed AHR-induced expression of CYP1A1, a monooxygenase that generates reactive oxygen species, increasing redox imbalance, lipid peroxidation, and ferroptosis in Ahrr-/- IELs. Dietary supplementation with selenium or vitamin E to restore redox homeostasis rescued Ahrr-/- IELs. Loss of IELs in Ahrr-/- mice caused susceptibility to Clostridium difficile infection and dextran sodium-sulfate-induced colitis. Inflamed tissue of inflammatory bowel disease patients showed reduced Ahrr expression that may contribute to disease. We conclude that AHR signaling must be tightly regulated to prevent oxidative stress and ferroptosis of IELs and to preserve intestinal immune responses.


Asunto(s)
Ferroptosis , Linfocitos Intraepiteliales , Animales , Ratones , Linfocitos Intraepiteliales/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estrés Oxidativo , Hidrocarburos
18.
Infect Immun ; 91(2): e0042022, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36633416

RESUMEN

Both Helicobacter pylori infection and a high-salt diet are risk factors for gastric cancer. We previously showed that a mutation in fur (encoding the ferric uptake regulator variant Fur-R88H) was positively selected in H. pylori strains isolated from experimentally infected Mongolian gerbils receiving a high-salt diet. In the present study, we report that continuous H. pylori growth in high-salt conditions in vitro also leads to positive selection of the fur-R88H mutation. Competition experiments with strains containing wild-type fur or fur-R88H, each labeled with unique nucleotide barcodes, showed that the fur-R88H mutation enhances H. pylori fitness under high-salt conditions but reduces H. pylori fitness under routine culture conditions. The fitness advantage of the fur-R88H mutant under high-salt conditions was abrogated by the addition of supplemental iron. To test the hypothesis that the fur-R88H mutation alters the regulatory properties of Fur, we compared the transcriptional profiles of strains containing wild-type fur or fur-R88H. Increased transcript levels of fecA2, which encodes a predicted TonB-dependent outer membrane transporter, were detected in the fur-R88H variant compared to those in the strain containing wild-type fur under both high-salt and routine conditions. Competition experiments showed that fecA2 contributes to H. pylori fitness under both high-salt and routine conditions. These results provide new insights into mechanisms by which the fur-R88H mutation confers a selective advantage to H. pylori in high-salt environments.


Asunto(s)
Proteínas Bacterianas , Helicobacter pylori , Proteínas Represoras , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Helicobacter , Helicobacter pylori/genética , Helicobacter pylori/fisiología , Mutación , Cloruro de Sodio/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
19.
Autophagy ; 19(7): 1997-2014, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36647288

RESUMEN

Mutations in the Krebs cycle enzyme IDH1 (isocitrate dehydrogenase (NADP(+)) 1) are associated with better prognosis in gliomas. Though IDH1 mutant (IDH1R132H) tumors are characterized by their antiproliferative signatures maintained through hypermethylation of DNA and chromatin, mechanisms affecting cell death pathways in these tumors are not well elucidated. On investigating the crosstalk between the IDH1 mutant epigenome, ferritinophagy and inflammation, diminished expression of PRMT1 (protein arginine methyltransferase 1) and its associated asymmetric dimethyl epigenetic mark H4R3me2a was observed in IDH1R132H gliomas. Reduced expression of PRMT1 was concurrent with diminished levels of PTX3, a key secretory factor involved in cancer-related inflammation. Lack of PRMT1 H4R3me2a in IDH1 mutant glioma failed to epigenetically activate the expression of PTX3 with a reduction in YY1 (YY1 transcription factor) binding on its promoter. Transcriptional activation and subsequent secretion of PTX3 from cells was required for maintaining macroautophagic/autophagic balance as pharmacological or genetic ablation of PTX3 secretion in wild-type IDH1 significantly increased autophagic flux. Additionally, PTX3-deficient IDH1 mutant gliomas exhibited heightened autophagic signatures. Furthermore, we demonstrate that the PRMT1-PTX3 axis is important in regulating the levels of ferritin genes/iron storage and inhibition of this axis triggered ferritinophagic flux. This study highlights the conserved role of IDH1 mutants in augmenting ferritinophagic flux in gliomas irrespective of genetic landscape through inhibition of the PRMT1-PTX3 axis. This is the first study describing ferritinophagy in IDH1 mutant gliomas with mechanistic details. Of clinical importance, our study suggests that the PRMT1-PTX3 ferritinophagy regulatory circuit could be exploited for therapeutic gains.Abbreviations: 2-HG: D-2-hydroxyglutarate; BafA1: bafilomycin A1; ChIP: chromatin immunoprecipitation; FTH1: ferritin heavy chain 1; FTL: ferritin light chain; GBM: glioblastoma; HMOX1/HO-1: heme oxygenase 1; IHC: immunohistochemistry; IDH1: isocitrate dehydrogenase(NADP(+))1; MDC: monodansylcadaverine; NCOA4: nuclear receptor coactivator 4; NFE2L2/Nrf2: NFE2 like bZIP transcription factor 2; PTX3/TSG-14: pentraxin 3; PRMT: protein arginine methyltransferase; SLC40A1: solute carrier family 40 member 1; Tan IIA: tanshinone IIA; TCA: trichloroacetic acid; TEM: transmission electron microscopy; TNF: tumor necrosis factor.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/uso terapéutico , Proteína-Arginina N-Metiltransferasas/genética , NADP , Autofagia/genética , Glioma/patología , Mutación/genética , Factor de Transcripción YY1 , Neoplasias Encefálicas/patología , Proteínas Represoras/genética
20.
Diagn Pathol ; 18(1): 5, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639698

RESUMEN

BACKGROUND: Uterine adenosarcoma is a rare malignant tumor that accounts for 8% of all uterine sarcomas, and less than 0.2% of all uterine malignancies. However, it is frequently misdiagnosed in clinical examinations, including pathological diagnosis, and imaging studies owing to its rare and non-specific nature, which is further compounded by the lack of specific diagnostic markers. CASE PRESENTATION: We report a case of uterine adenosarcoma for which a comprehensive genomic profiling (CGP) test provided a chance to reach the proper diagnosis. The patient, a woman in her 60s with a history of uterine leiomyoma was diagnosed with an intra-abdominal mass post presentation with abdominal distention and loss of appetite. She was suspected to have gastrointestinal stromal tumor (GIST); the laparotomically excised mass was found to comprise uniform spindle-shaped cells that grew in bundles with a herringbone architecture, and occasional myxomatous stroma. Immunostaining revealed no specific findings, and the tumor was diagnosed as a spindle cell tumor/suspicious adult fibrosarcoma. The tumor relapsed during postoperative follow-up, and showed size reduction with chemotherapy, prior to regrowth. CGP was performed to identify a possible treatment, which resulted in detection of a JAZF1-BCORL1 rearrangement. Since the rearrangement has been reported in uterine sarcomas, we reevaluated specimens of the preceding uterine leiomyoma, which revealed the presence of adenosarcoma components in the corpus uteri. Furthermore, both the uterine adenosarcoma and intra-abdominal mass were partially positive for CD10 and BCOR staining. CONCLUSION: These results led to the conclusive identification of the abdominal tumor as a metastasis of the uterine adenosarcoma. The JAZF1-BCORL1 rearrangement is predominantly associated with uterine stromal sarcomas; thus far, ours is the second report of the same in an adenosarcoma. Adenosarcomas are rare and difficult to diagnose, especially in atypical cases with scarce glandular epithelial components. Identification of rearrangements involving BCOR or BCORL1, will encourage BCOR staining analysis, thereby potentially resulting in better diagnostic outcomes. Given that platinum-based chemotherapy was proposed as the treatment choice for this patient post diagnosis with adenosarcoma, CGP also indirectly contributed to the designing of the best-suited treatment protocol.


Asunto(s)
Adenosarcoma , Leiomioma , Neoplasias Uterinas , Femenino , Humanos , Adenosarcoma/diagnóstico , Adenosarcoma/genética , Adenosarcoma/patología , Proteínas Co-Represoras , Diagnóstico Diferencial , Proteínas de Unión al ADN , Genómica , Leiomioma/diagnóstico , Proteínas Represoras/genética , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA