Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nutr Biochem ; 101: 108912, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34801692

RESUMEN

Glucose homeostasis imbalance and insulin resistance (IR) are major contributors to the incidence of type 2 diabetes. Omega-3 polyunsaturated fatty acids (PUFAs) are key ingredients for maintaining cellular functions and improving insulin sensitivity. However, how omega-3 PUFAs modulate the dynamic process of glucose transport at the cellular level remains unclear. Here we unraveled eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may regulate the glucose transporter 4 (GLUT4) vesicle trafficking in both normal and IR adipocytes. Both omega-3 PUFAs significantly increase glucose consumption within a range of 10-32% in the basal state. Furthermore, both EPA (200 µM) and DHA (100 µM) may significantly promote the serine/threonine protein kinase (Akt) phosphorylation by 70% and 40% in the physiological state of adipocytes, respectively. Both omega-3 PUFAs significantly advanced the Akt phosphorylation in a dose-dependent way and showed a ∼2-fold increase at the dose of 200 µM in the IR pathological state. However, they could not up-regulate the expression of GLUT4 and insulin-regulated aminopeptidase protein. We further revealed that both omega-3 PUFAs dynamically promote insulin-stimulated GLUT4 vesicle translocation and soluble N-ethylmaleimide-sensitive factor attachment protein receptor mediated vesicle docking and fusion to the plasma membrane via specifically modulating the expression of vesicle-associated membrane protein 2. Understanding the mechanisms by which omega-3 PUFAs modulate cellular metabolism and IR in peripheral tissues may provide novel insights into the potential impact of omega-3 PUFAs on the metabolic function and the management of IR.


Asunto(s)
Adipocitos/metabolismo , Ácidos Grasos Omega-3/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas SNARE/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Animales , Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Glucosa/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Fosforilación , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
2.
Sci Rep ; 11(1): 10955, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040104

RESUMEN

The primary hallmark of Parkinson's disease (PD) is the generation of Lewy bodies of which major component is α-synuclein (α-Syn). Because of increasing evidence of the fundamental roles of α-Syn oligomers in disease progression, α-Syn oligomers have become potential targets for therapeutic interventions for PD. One of the potential toxicities of α-Syn oligomers is their inhibition of SNARE-mediated vesicle fusion by specifically interacting with vesicle-SNARE protein synaptobrevin-2 (Syb2), which hampers dopamine release. Here, we show that α-Syn monomers and oligomers cooperatively inhibit neuronal SNARE-mediated vesicle fusion. α-Syn monomers at submicromolar concentrations increase the fusion inhibition by α-Syn oligomers. This cooperative pathological effect stems from the synergically enhanced vesicle clustering. Based on this cooperative inhibition mechanism, we reverse the fusion inhibitory effect of α-Syn oligomers using small peptide fragments. The small peptide fragments, derivatives of α-Syn, block the binding of α-Syn oligomers to Syb2 and dramatically reverse the toxicity of α-Syn oligomers in vesicle fusion. Our findings demonstrate a new strategy for therapeutic intervention in PD and related diseases based on this specific interaction of α-Syn.


Asunto(s)
Fusión de Membrana/efectos de los fármacos , Proteínas SNARE/antagonistas & inhibidores , alfa-Sinucleína/farmacología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dopamina/metabolismo , Dopamina/farmacología , Evaluación Preclínica de Medicamentos , Liposomas , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Mutación Missense , Fragmentos de Péptidos/farmacología , Mutación Puntual , Unión Proteica , Multimerización de Proteína , Proteolípidos/química , Proteínas Recombinantes de Fusión/farmacología , Proteínas SNARE/fisiología , Proteína 2 de Membrana Asociada a Vesículas/antagonistas & inhibidores , Proteína 2 de Membrana Asociada a Vesículas/fisiología , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad
3.
Plant Physiol ; 186(1): 330-343, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33576796

RESUMEN

Pollen development is a key process for the sexual reproduction of angiosperms. The Golgi plays a critical role in pollen development via the synthesis and transport of cell wall materials. However, little is known about the molecular mechanisms underlying the maintenance of Golgi integrity in plants. In Arabidopsis thaliana, syntaxin of plants (SYP) 3 family proteins SYP31 and SYP32 are the only two Golgi-localized Qa-soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) with unknown endogenous functions. Here, we demonstrate the roles of SYP31 and SYP32 in modulating Golgi morphology and pollen development. Two independent lines of syp31/+ syp32/+ double mutants were male gametophytic lethal; the zero transmission rate of syp31 syp32 mutations was restored to largely normal levels by pSYP32:SYP32 but not pSYP32:SYP31 transgenes, indicating their functional differences in pollen development. The initial arrest of syp31 syp32 pollen occurred during the transition from the microspore to the bicellular stage, where cell plate formation in pollen mitosis I (PMI) and deposition of intine were abnormal. In syp31 syp32 pollen, the number and length of Golgi cisterna were significantly reduced, accompanied by many surrounding vesicles, which could be largely attributed to defects in anterograde and retrograde trafficking routes. SYP31 and SYP32 directly interacted with COG3, a subunit of the conserved oligomeric Golgi (COG) complex and were responsible for its Golgi localization, providing an underlying mechanism for SYP31/32 function in intra-Golgi trafficking. We propose that SYP31 and SYP32 play partially redundant roles in pollen development by modulating protein trafficking and Golgi structure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aparato de Golgi , Polen , Proteínas Qa-SNARE , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aparato de Golgi/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Transporte de Proteínas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(31): 18470-18476, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690682

RESUMEN

Lipid membrane fusion is an essential process for a number of critical biological functions. The overall process is thermodynamically favorable but faces multiple kinetic barriers along the way. Inspired by nature's engineered proteins such as SNAP receptor [soluble N-ethylmale-imide-sensitive factor-attachment protein receptor (SNARE)] complexes or viral fusogenic proteins that actively promote the development of membrane proximity, nucleation of a stalk, and triggered expansion of the fusion pore, here we introduce a synthetic fusogen that can modulate membrane fusion and equivalently prime lipid membranes for calcium-triggered fusion. Our fusogen consists of a gold nanoparticle functionalized with an amphiphilic monolayer of alkanethiol ligands that had previously been shown to fuse with lipid bilayers. While previous efforts to develop synthetic fusogens have only replicated the initial steps of the fusion cascade, we use molecular simulations and complementary experimental techniques to demonstrate that these nanoparticles can induce the formation of a lipid stalk and also drive its expansion into a fusion pore upon the addition of excess calcium. These results have important implications in general understanding of stimuli-triggered fusion and the development of synthetic fusogens for biomedical applications.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Oro/química , Membrana Dobles de Lípidos/metabolismo , Nanopartículas del Metal/química , Calcio/química , Membrana Celular/química , Oro/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Fusión de Membrana , Simulación de Dinámica Molecular , Proteínas SNARE/metabolismo , Análisis de Matrices Tisulares
5.
Artículo en Inglés | WPRIM | ID: wpr-810984

RESUMEN

OBJECTIVE: To evaluate the technical feasibility of intranodal lymphangiography and thoracic duct (TD) access in a canine model.MATERIALS AND METHODS: Five male mongrel dogs were studied. The dog was placed in the supine position, and the most prominent lymph node in the groin was accessed using a 26-gauge spinal needle under ultrasonography (US) guidance. If the cisterna chyli (CC) was not opacified by bilateral lymphangiography, the medial iliac lymph nodes were directly punctured and Lipiodol was injected. After opacification, the CC was directly punctured with a 22-gauge needle. A 0.018-in microguidewire was advanced through the CC and TD. A 4-Fr introducer and dilator were then advanced over the wire. The microguidewire was changed to a 0.035-in guidewire, and this was advanced into the left subclavian vein through the terminal valve of the TD. Retrograde TD access was performed using a snare kit.RESULTS: US-guided lymphangiography (including intranodal injection of Lipiodol [Guerbet]) was successful in all five dogs. However, in three of the five dogs (60%), the medial iliac lymph nodes were not fully opacified due to overt Lipiodol extravasation at the initial injection site. In these dogs, contralateral superficial inguinal intranodal injection was performed. However, two of these three dogs subsequently underwent direct medial iliac lymph node puncture under fluoroscopy guidance to deliver additional Lipiodol into the lymphatic system. Transabdominal CC puncture and cannulation with a 4-Fr introducer was successful in all five dogs. Transvenous retrograde catheterization of the TD (performed using a snare kit) was also successful in all five dogs.CONCLUSION: A canine model may be appropriate for intranodal lymphangiography and TD access. Most lymphatic intervention techniques can be performed in a canine using the same instruments that are employed in a clinical setting.


Asunto(s)
Animales , Perros , Humanos , Masculino , Cateterismo , Catéteres , Aceite Etiodizado , Fluoroscopía , Ingle , Ganglios Linfáticos , Sistema Linfático , Linfografía , Agujas , Punciones , Proteínas SNARE , Vena Subclavia , Posición Supina , Conducto Torácico , Ultrasonografía
7.
Plant Physiol ; 181(3): 1114-1126, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31530628

RESUMEN

SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex formation is necessary for intracellular membrane fusion and thus has a key role in processes such as secretion. However, little is known about the regulatory factors that bind to Qa-SNAREs, which are also known as syntaxins (SYPs) in plants. Here, we characterized Arabidopsis (Arabidopsis thaliana) Tomosyn protein (AtTMS) and demonstrated that it is a conserved regulator of SYPs in plants. AtTMS binds strongly via its R-SNARE motif-containing C terminus to the Qa domain of PM-resident, pollen-expressed SYP1s (SYP111, SYP124, SYP125, SYP131, and SYP132), which were narrowed down from 12 SYPs. AtTMS is highly expressed in pollen from the bicellular stage onwards, and overexpression of AtTMS under the control of the UBIQUITIN10, MSP1, or LAT52 promoter all resulted in defective pollen after the microspore stage in which secretion was inhibited, leading to the failure of intine deposition and cell plate formation during pollen mitosis I. In tobacco (Nicotiana benthamiana) leaf epidermal cells, overexpression of AtTMS inhibited the secretion of secreted GFP. The defects were rescued by mCherry-tagged SYP124, SYP125, SYP131, or SYP132. In vivo, SYP132 partially rescued the pMSP1:AtTMS phenotype. In addition, AtTMS, lacking a transmembrane domain, was recruited to the plasma membrane by SYP124, SYP125, SYP131, and SYP132 and competed with Vesicle-Associated Membrane Protein721/722 for binding to, for example, SYP132. Together, our results demonstrated that AtTMS might serve as a negative regulator of secretion, whereby active secretion might be fine-tuned during pollen development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas SNARE/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Expresión Génica , Fusión de Membrana , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Unión Proteica , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/genética , Vesículas Secretoras/metabolismo , Nicotiana/genética , Nicotiana/fisiología
8.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30389764

RESUMEN

Botulinum neurotoxins (BoNTs), the most poisonous proteins known to humankind, are a family of seven (serotype A to G) immunologically distinct proteins synthesized primarily by different strains of the anaerobic bacterium Clostridium botulinum Being the causative agents of botulism, the toxins block neurotransmitter release by specifically cleaving one of the three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, thereby inducing flaccid paralysis. The development of countermeasures and therapeutics against BoNTs is a high-priority research area for public health because of their extreme toxicity and potential for use as biowarfare agents. Extensive research has focused on designing antagonists that block the catalytic activity of BoNTs. In this study, we screened 300 small natural compounds and their analogues extracted from Indian plants for their activity against BoNT serotype A (BoNT/A) as well as its light chain (LCA) using biochemical and cellular assays. One natural compound, a nitrophenyl psoralen (NPP), was identified to be a specific inhibitor of LCA with an in vitro 50% inhibitory concentration (IC50) value of 4.74 ± 0.03 µM. NPP was able to rescue endogenous synaptosome-associated protein 25 (SNAP-25) from cleavage by BoNT/A in human neuroblastoma cells with an IC50 of 12.2 ± 1.7 µM, as well as to prolong the time to the blocking of neutrally elicited twitch tensions in isolated mouse phrenic nerve-hemidiaphragm preparations.IMPORTANCE The long-lasting endopeptidase activity of BoNT is a critical biological activity inside the nerve cell, as it prompts proteolysis of the SNARE proteins, involved in the exocytosis of the neurotransmitter acetylcholine. Thus, the BoNT endopeptidase activity is an appropriate clinical target for designing new small-molecule antidotes against BoNT with the potential to reverse the paralysis syndrome of botulism. In principle, small-molecule inhibitors (SMIs) can gain entry into BoNT-intoxicated cells if they have a suitable octanol-water partition coefficient (log P) value and other favorable characteristics (P. Leeson, Nature 481:455-456, 2012, https://doi.org/10.1038/481455a). Several efforts have been made in the past to develop SMIs, but inhibitors effective under in vitro conditions have not in general been effective in vivo or in cellular models (L. M. Eubanks, M. S. Hixon, W. Jin, S. Hong, et al., Proc Natl Acad Sci U S A 104:2602-2607, 2007, https://doi.org/10.1073/pnas.0611213104). The difference between the in vitro and cellular efficacy presumably results from difficulties experienced by the compounds in crossing the cell membrane, in conjunction with poor bioavailability and high cytotoxicity. The screened nitrophenyl psoralen (NPP) effectively antagonized BoNT/A in both in vitro and ex vivo assays. Importantly, NPP inhibited the BoNT/A light chain but not other general zinc endopeptidases, such as thermolysin, suggesting high selectivity for its target. Small-molecule (nonpeptidic) inhibitors have better oral bioavailability, better stability, and better tissue and cell permeation than antitoxins or peptide inhibitors.


Asunto(s)
Antídotos/farmacología , Antídotos/uso terapéutico , Antitoxinas/farmacología , Antitoxinas/uso terapéutico , Toxinas Bacterianas/antagonistas & inhibidores , Animales , Toxinas Botulínicas Tipo A/antagonistas & inhibidores , Línea Celular Tumoral/efectos de los fármacos , Clostridium botulinum , Modelos Animales de Enfermedad , Endopeptidasas , Ensayos Analíticos de Alto Rendimiento , Humanos , India , Concentración 50 Inhibidora , Masculino , Ratones , Neuroblastoma/tratamiento farmacológico , Extractos Vegetales/farmacología , Proteínas SNARE/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Termolisina
9.
Mol Pain ; 14: 1744806918781259, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29770746

RESUMEN

Reward system has been proved to be important to nociceptive behavior, and the nucleus accumbens (NAc) is a key node in reward circuitry. It has been further revealed that dopamine system modulates the NAc to influence the pain sensation, whereas the role of glutamatergic projection in the NAc in the modulation of chronic pain is still elusive. In this study, we used a complete Freund's adjuvant-induced chronic inflammatory pain model to explore the changes of the glutamatergic terminals in the NAc, and we found that following the chronic inflammation, the protein level of vesicular glutamate transporter1 (VGLUT1) was significantly decreased in the NAc. Immunofluorescence staining further showed a reduced expression of VGLUT1-positive terminals in the dopamine receptor 2 (D2R) spiny projection neurons of NAc after chronic inflammatory pain. Furthermore, using a whole-cell recording in double transgenic mice, in which dopamine receptor 1- and D2R-expressing neurons can be visualized, we found that the frequency of spontaneous excitatory postsynaptic currents was significantly decreased and paired-pulse ratio of evoked excitatory postsynaptic currents was increased in D2R neurons, but not in dopamine receptor 1 neurons in NAc of complete Freund's adjuvant group. Moreover, the abnormal expression of soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex contributed to the reduced formation of glutamate vesicles. Hence, our results demonstrated that decreased glutamate release in the indirect pathway of the NAc may be a critical mechanism for chronic pain and provided a novel evidence for the presynaptic mechanisms in chronic pain regulation.


Asunto(s)
Dolor Crónico/metabolismo , Dolor Crónico/patología , Ácido Glutámico/metabolismo , Inflamación/patología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Terminales Presinápticos/metabolismo , Animales , Ansiedad/complicaciones , Ansiedad/metabolismo , Ansiedad/patología , Dolor Crónico/fisiopatología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Adyuvante de Freund , Hiperalgesia/complicaciones , Hiperalgesia/metabolismo , Hiperalgesia/patología , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Núcleo Accumbens/fisiopatología , Receptores de Dopamina D2/metabolismo , Proteínas SNARE/metabolismo , Transmisión Sináptica , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
10.
Glia ; 65(12): 1944-1960, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28885722

RESUMEN

Astrocytes interact with neurons at the cellular level through modulation of synaptic formation, maturation, and function, but the impact of such interaction into behavior remains unclear. Here, we studied the dominant negative SNARE (dnSNARE) mouse model to dissect the role of astrocyte-derived signaling in corticolimbic circuits, with implications for cognitive processing. We found that the blockade of gliotransmitter release in astrocytes triggers a critical desynchronization of neural theta oscillations between dorsal hippocampus and prefrontal cortex. Moreover, we found a strong cognitive impairment in tasks depending on this network. Importantly, the supplementation with d-serine completely restores hippocampal-prefrontal theta synchronization and rescues the spatial memory and long-term memory of dnSNARE mice. We provide here novel evidence of long distance network modulation by astrocytes, with direct implications to cognitive function.


Asunto(s)
Astrocitos/metabolismo , Cognición/fisiología , Hipocampo/citología , Corteza Prefrontal/fisiología , Transducción de Señal/fisiología , Animales , Astrocitos/patología , Astrocitos/ultraestructura , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/genética , Doxiciclina/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Modelos Neurológicos , Neuronas/ultraestructura , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Serina/farmacología , Conducta Espacial/fisiología , Ritmo Teta/efectos de los fármacos , Ritmo Teta/genética
11.
Protein Sci ; 26(7): 1252-1265, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28097727

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins.


Asunto(s)
Metabolismo Energético/fisiología , Fusión de Membrana/fisiología , Pinzas Ópticas , Pliegue de Proteína , Proteínas SNARE , Animales , Humanos , Dominios Proteicos , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
12.
J Acupunct Meridian Stud ; 9(5): 242-249, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27776762

RESUMEN

This study aims to investigate the molecular mechanisms of acupuncture in the remission of depression. A depressive disorder model was induced by exposing Sprague-Dawley rats to chronic unpredictable stress. The rats were divided into five groups: healthy (blank group) and stressed rats (model group), and stressed rats treated with acupuncture (acupuncture group), riluzole (riluzole group), acupuncture combined with botulinum toxin A (BTX-A) injection (acupuncture+BTX-A group) or riluzole combined with BTX-A injection (riluzole+BTX-A group). Behavioral analysis showed significant differences in sucrose consumption, weight, and horizontal or vertical movements between the model and both the riluzole and acupuncture groups. No obvious differences between the riluzole+BTX-A and acupuncture+BTX-A groups were found. Moreover, no significance differences in glutamate content in the hippocampus were found among the riluzole+BTX-A, acupuncture+BTX-A and model groups (p>0.05). Western blots and reverse transcription polymerase chain reactions were employed to detect protein and mRNA expressions of VGLUT2, SNAP25, VAMP1, VAMP2, VAMP7, and syntaxin1; no obvious differences among the riluzole+BTX-A, acupuncture+BTX-A and model groups were found. These data suggest that soluble N-ethylmaleimide-sensitive factor attachment receptor proteins are involved in the remission of depression in rats treated with acupuncture.


Asunto(s)
Terapia por Acupuntura , Depresión/metabolismo , Depresión/terapia , Proteínas SNARE/metabolismo , Animales , Depresión/genética , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Proteínas SNARE/genética
13.
Mol Biosyst ; 12(9): 2770-6, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27345759

RESUMEN

Fusion of synaptic vesicles with the presynaptic plasma membrane is mediated by Soluble NSF (N-ethylmaleimide-sensitive factor) Attachment Protein Receptor proteins also known as SNAREs. The backbone of this essential process is the assembly of SNAREs from opposite membranes into tight four helix bundles forcing membranes in close proximity. With model systems resembling SNAREs with reduced complexity we aim to understand how these proteins work at the molecular level. Here, peptide nucleic acids (PNAs) are used as excellent candidates for mimicking the SNARE recognition motif by forming well-characterized duplex structures. Hybridization between complementary PNA strands anchored in liposomes through native transmembrane domains (TMDs) induces the merger of the outer leaflets of the participating vesicles but not of the inner leaflets. A series of PNA/peptide hybrids differing in the length of TMDs and charges at the C-terminal end is presented. Interestingly, mixing of both outer and inner leaflets is seen for TMDs containing an amide in place of the natural carboxylic acid at the C-terminal end. Charged side chains at the C-terminal end of the TMDs are shown to have a negative impact on the mixing of liposomes. The length of the TMDs is vital for fusion as with the use of shortened TMDs, fusion was completely prevented.


Asunto(s)
Fusión de Membrana , Modelos Biológicos , Dominios y Motivos de Interacción de Proteínas , Proteínas SNARE/metabolismo , Aminoácidos , Lípidos/química , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Proteínas SNARE/química
14.
Biol Aujourdhui ; 209(1): 87-95, 2015.
Artículo en Francés | MEDLINE | ID: mdl-26115714

RESUMEN

Numerous neurotransmitters have been implicated in neurodevelopmental processes. In addition, developing neurons show an abundance of vesicles in the growth cones, and express proteins of the SNARE complex early on. This has led to propose a role for vesicular fusion machinery in axonal growth and synapse formation. However, as the molecular machinery of vesicular fusion started to unveil, and knockouts for the major proteins of this complex were generated, it came as a surprise that none of these proteins was essential for the construction of brain architecture, although they were crucial for vital functions of the organism, leading to early mortality of exocytosis mutants. Because of this early death, conditional ablation of these genes in well-defined neuronal populations was necessary to study their role at later stages of neural circuit development, when activity-dependent mechanisms are best defined. Early studies showed that mutants of Munc18-1, a gene essential for both constitutive and calcium triggered release, were required for target dependent cell survival but not for axon growth or early refinement of topographic targeting, at least in the retinotectal system. Conditional knockout of the Rim1 and Rim2 genes allowed to interrogate more specifically the role of calcium-triggered release. Rims (rab interacting molecules) play a key role in the assembly of calcium channels and their coupling to the SNARE complex alters calcium-triggered release with little effect on constitutive release. When Rim1/Rim2 genes were ablated in the thalamus, layer IV neurons failed to organize into barrel structures, and to form the characteristic asymmetric distribution of their dendrites. More surprisingly, thalamocortical axons still organized in precise topographic maps and formed well differentiated synapses despite considerable reduction of calcium-induced synaptic release. However, this reduction in release probability altered axon targeting in the visual system where axons from both eyes compete for the same target. Thus, genetic tools targeting the exocytosis machinery are allowing to dissect more precisely the contribution of synaptic and non-synaptic mechanisms to activity-dependent circuit wiring.


Asunto(s)
Sistema Nervioso/crecimiento & desarrollo , Neurotransmisores/fisiología , Sinapsis/fisiología , Animales , Axones/fisiología , Exocitosis/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/fisiología , Técnicas de Inactivación de Genes , Ratones , Ratones Noqueados , Proteínas Munc18/genética , Proteínas Munc18/fisiología , Mutación , Neuronas/fisiología , Retina/ultraestructura , Proteínas SNARE/genética , Proteínas SNARE/fisiología , Sensación , Vesículas Sinápticas/fisiología , Tálamo , Visión Ocular
15.
PLoS One ; 10(6): e0129264, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26061731

RESUMEN

There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.


Asunto(s)
Toxinas Botulínicas/toxicidad , Células Madre Embrionarias/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Neuronas Motoras/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Toxinas Botulínicas/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Células Madre Embrionarias/metabolismo , Humanos , Ratones , Neuronas Motoras/metabolismo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Proteínas SNARE/metabolismo
16.
Blood ; 125(10): 1623-32, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25477496

RESUMEN

Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, bleeding diathesis, and other variable symptoms. The bleeding diathesis has been attributed to δ storage pool deficiency, reflecting the malformation of platelet dense granules. Here, we analyzed agonist-stimulated secretion from other storage granules in platelets from mouse HPS models that lack adaptor protein (AP)-3 or biogenesis of lysosome-related organelles complex (BLOC)-3 or BLOC-1. We show that α granule secretion elicited by low agonist doses is impaired in all 3 HPS models. High agonist doses or supplemental adenosine 5'-diphosphate (ADP) restored normal α granule secretion, suggesting that the impairment is secondary to absent dense granule content release. Intravital microscopy following laser-induced vascular injury showed that defective hemostatic thrombus formation in HPS mice largely reflected reduced total platelet accumulation and affirmed a reduced area of α granule secretion. Agonist-induced lysosome secretion ex vivo was also impaired in all 3 HPS models but was incompletely rescued by high agonist doses or excess ADP. Our results imply that (1) AP-3, BLOC-1, and BLOC-3 facilitate protein sorting to lysosomes to support ultimate secretion; (2) impaired secretion of α granules in HPS, and to some degree of lysosomes, is secondary to impaired dense granule secretion; and (3) diminished α granule and lysosome secretion might contribute to pathology in HPS.


Asunto(s)
Plaquetas/fisiología , Síndrome de Hermanski-Pudlak/sangre , Complejo 3 de Proteína Adaptadora/deficiencia , Complejo 3 de Proteína Adaptadora/genética , Complejo 3 de Proteína Adaptadora/fisiología , Adenosina Difosfato/farmacología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Degranulación de la Célula/fisiología , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido , Síndrome de Hermanski-Pudlak/etiología , Síndrome de Hermanski-Pudlak/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lectinas/deficiencia , Lectinas/genética , Lectinas/fisiología , Lisosomas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Selectina-P/sangre , Proteínas SNARE/sangre , Vesículas Secretoras/fisiología , Trombina/farmacología , Trombosis/sangre , Trombosis/etiología , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiología
17.
Curr Top Membr ; 72: 193-230, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24210431

RESUMEN

Exocytosis is catalyzed by the engagement of SNARE proteins embedded in the plasma membrane with complementary SNAREs in the membrane of trafficking vesicles undergoing exocytosis. In most cells studied so far, SNAREs are not randomly distributed across the plasma membrane but are clustered and segregated in discrete membrane domains of defined size, composition, and stability. SNARE clusters have been intensively studied for more than a decade. Different mechanisms have been proposed to be responsible for SNARE clustering such as partitioning into cholesterol-enriched lipid rafts, hydrophobic mismatch, posttranslational modifications of the SNAREs including phosphorylation and palmitoylation, electrostatic protein-protein and protein-lipid interactions, homotypic and heterotypic protein interactions, and anchoring to the cortical cytoskeleton. Although several of these proposed mechanisms are still controversially discussed, it is becoming apparent that independent physicochemical principles must cooperate in a synergistic manner to yield SNARE microdomains. Here, we discuss the architecture and function of SNARE domains. We also discuss the various factors influencing SNARE clustering, resulting in a model that we believe may be of general use to explain domain formation of proteins in the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Proteínas SNARE/metabolismo , Animales , Calcio/metabolismo , Membrana Celular/química , Colesterol/química , Colesterol/metabolismo , Análisis por Conglomerados , Citoesqueleto/química , Citoesqueleto/metabolismo , Exocitosis , Lipoilación , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Ratones , Simulación de Dinámica Molecular , Células PC12 , Fosforilación , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Ratas , Proteínas SNARE/química
18.
Biol Pharm Bull ; 36(9): 1500-2, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23995663

RESUMEN

This study examines the ability of vitamin E to inhibit hyperoxia-induced loss of soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins in the neuronal cytoplasm. Here, the effects of vitamin E on hyperoxia-induced changes in the expressions of N-ethylmaleimide-sensitive factor (NSF) and soluble NSF-attachment protein α (α-SNAP) in the rat brain were analyzed. When rats were subjected to hyperoxia, the expression of both SNARE proteins was markedly decreased compared to normal rats. Vitamin E significantly inhibited the decrease in the expression of NSF in rats subjected to hyperoxia. Rats showed the tendency to improve the loss of α-SNAP by vitamin E-supplementation, although it was not statistically significant. On the other hand, vitamin E deficient rats showed marked loss of these proteins in the brain in the absence of oxidative stress. These results suggest that hyperoxia induces a loss of SNARE proteins, which are involved in membrane docking between synaptic vesicles and pre-synaptic membranes, and that vitamin E prevents the oxidative damage of SNARE proteins. Consequently, it is implied that vitamin E inhibits impaired neurotransmission caused by oxidative stress through the prevention of oxidative damage to SNARE proteins by probably its antioxidant effect.


Asunto(s)
Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Hiperoxia/metabolismo , Proteínas SNARE/metabolismo , Vitamina E/farmacología , Animales , Encéfalo/metabolismo , Citoplasma/metabolismo , Masculino , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Sinaptosomas/metabolismo
19.
Shock ; 39(3): 286-92, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23364427

RESUMEN

Exocytosis of neutrophil granules contributes to acute lung injury (ALI) induced by infection or inflammation, suggesting that inhibition of neutrophil exocytosis in vivo could be a viable therapeutic strategy. This study was conducted to determine the effect of a cell-permeable fusion protein that inhibits neutrophil exocytosis (TAT-SNAP-23) on ALI using an immune complex deposition model in rats. The effect of inhibition of neutrophil exocytosis by intravenous administration of TAT-SNAP-23 on ALI was assessed by albumin leakage, neutrophil infiltration, lung histology, and proteomic analysis of bronchoalveolar lavage fluid (BALF). Administration of TAT-SNAP-23, but not TAT-control, significantly reduced albumin leakage, total protein levels in the BALF, and intra-alveolar edema and hemorrhage. Evidence that TAT-SNAP-23 inhibits neutrophil exocytosis included a reduction in plasma membrane CD18 expression by BALF neutrophils and a decrease in neutrophil granule proteins in BALF. Similar degree of neutrophil accumulation in the lungs and/or BALF suggests that TAT-SNAP-23 did not alter vascular endothelial cell function. Proteomic analysis of BALF revealed that components of the complement and coagulation pathways were significantly reduced in BALF from TAT-SNAP-23-treated animals. Our results indicate that administration of a TAT-fusion protein that inhibits neutrophil exocytosis reduces in vivo ALI. Targeting neutrophil exocytosis is a potential therapeutic strategy to ameliorate ALI.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Exocitosis/efectos de los fármacos , Productos del Gen tat/uso terapéutico , Neutrófilos/efectos de los fármacos , Proteínas Recombinantes de Fusión/uso terapéutico , Proteínas SNARE/uso terapéutico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Antígenos CD18/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Productos del Gen tat/administración & dosificación , Productos del Gen tat/farmacología , Humanos , Masculino , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/fisiología , Proteómica/métodos , Ratas , Ratas Long-Evans , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/farmacología , Proteínas SNARE/administración & dosificación , Proteínas SNARE/farmacología
20.
Biochem J ; 450(3): 537-46, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23252429

RESUMEN

Anti-allergic effects of dietary polyphenols were extensively studied in numerous allergic disease models, but the molecular mechanisms of anti-allergic effects by polyphenols remain poorly understood. In the present study, we show that the release of granular cargo molecules, contained in distinct subsets of granules of mast cells, is specifically mediated by two sets of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, and that various polyphenols differentially inhibit the formation of those SNARE complexes. Expression analysis of RBL-2H3 cells for 11 SNARE genes and a lipid mixing assay of 24 possible combinations of reconstituted SNAREs indicated that the only two active SNARE complexes involved in mast cell degranulation are Syn (syntaxin) 4/SNAP (23 kDa synaptosome-associated protein)-23/VAMP (vesicle-associated membrane protein) 2 and Syn4/SNAP-23/VAMP8. Various polyphenols selectively or commonly interfered with ternary complex formation of these two SNARE complexes, thereby stopping membrane fusion between granules and plasma membrane. This led to the differential effect of polyphenols on degranulation of three distinct subsets of granules. These results suggest the possibility that formation of a variety of SNARE complexes in numerous cell types is controlled by polyphenols which, in turn, might regulate corresponding membrane trafficking.


Asunto(s)
Degranulación de la Célula/efectos de los fármacos , Mastocitos/efectos de los fármacos , Polifenoles/farmacología , Proteínas SNARE/metabolismo , Vesículas Transportadoras/efectos de los fármacos , Células Cultivadas , Gránulos Citoplasmáticos/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Histamina/metabolismo , Humanos , Mastocitos/metabolismo , Mastocitos/fisiología , Complejos Multiproteicos/metabolismo , Polifenoles/metabolismo , Unión Proteica/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Vesículas Transportadoras/clasificación , Vesículas Transportadoras/fisiología , beta-N-Acetilhexosaminidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA