Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 97(4): e0182922, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36943056

RESUMEN

Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.


Asunto(s)
Modelos Moleculares , Rhabdoviridae , Ribonucleoproteínas , Proteínas Virales , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Rhabdoviridae/química , Rhabdoviridae/efectos de los fármacos , Proteínas Virales/química , Proteínas Virales/metabolismo , Estructura Cuaternaria de Proteína , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Microscopía por Crioelectrón , Suramina/farmacología
2.
J Biomol Struct Dyn ; 40(12): 5515-5546, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33526003

RESUMEN

A sudden outbreak of a novel coronavirus SARS-CoV-2 in 2019 has now emerged as a pandemic threatening to efface the existence of mankind. In absence of any valid and appropriate vaccines to combat this newly evolved agent, there is need of novel resource molecules for treatment and prophylaxis. To this effect, flavonol morin which is found in fruits, vegetables and various medicinal herbs has been evaluated for its antiviral potential in the present study. PASS analysis of morin versus reference antiviral drugs baricitinib, remdesivir and hydroxychloroquine revealed that morin displayed no violations of Lipinski's rule of five and other druglikeness filters. Morin also displayed no tumorigenic, reproductive or irritant effects and exhibited good absorption and permeation through GI (clogP <5). In principal component analysis, morin appeared closest to baricitinib in 3D space. Morin displayed potent binding to spike glycoprotein, main protease 3CLPro and papain-like protease PLPro of SARS-CoV-2, SARS-CoV and MERS-CoV using molecular docking and significant binding to three viral-specific host proteins viz. human ACE2, importin-α and poly (ADP-ribose) polymerase (PARP)-1, further lending support to its antiviral efficacy. Additionally, morin displayed potent binding to pro-inflammatory cytokines IL-6, 8 and 10 also supporting its anti-inflammatory activity. MD simulation of morin with SARS-CoV-2 3CLPro and PLPro displayed strong stability at 300 K. Both complexes exhibited constant RMSDs of protein side chains and Cα atoms throughout the simulation run time. In conclusion, morin might hold considerable therapeutic potential for the treatment and management of not only COVID-19, but also SARS and MERS if studied further. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Flavonoides , Flavonoles , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas , SARS-CoV-2 , Proteínas Virales/química
3.
Molecules ; 26(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34834044

RESUMEN

Influenza A virus is the main cause of worldwide epidemics and annual influenza outbreaks in humans. In this study, a virtual screen was performed to identify compounds that interact with the PB2 cap-binding domain (CBD) of influenza A polymerase. A virtual screening workflow based on Glide docking was used to screen an internal database containing 8417 molecules, and then the output compounds were selected based on solubility, absorbance, and structural fingerprints. Of the 16 compounds selected for biological evaluation, six compounds were identified that rescued cells from H1N1 virus-mediated death at non-cytotoxic concentrations, with EC50 values ranging from 2.5-55.43 µM, and that could bind to the PB2 CBD of H1N1, with Kd values ranging from 0.081-1.53 µM. Molecular dynamics (MD) simulations of the docking complexes of our active compounds revealed that each compound had its own binding characteristics that differed from those of VX-787. Our active compounds have novel structures and unique binding modes with PB2 proteins, and are suitable to serve as lead compounds for the development of PB2 inhibitors. An analysis of the MD simulation also helped us to identify the dominant amino acid residues that play a key role in binding the ligand to PB2, suggesting that we should focus on increasing and enhancing the interaction between inhibitors and these major amino acids during lead compound optimization to obtain more active PB2 inhibitors.


Asunto(s)
Antivirales/química , Inhibidores Enzimáticos/química , Subtipo H1N1 del Virus de la Influenza A/enzimología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , ARN Polimerasa Dependiente del ARN , Proteínas Virales , Animales , Evaluación Preclínica de Medicamentos , Humanos , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/química , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química
4.
Biochemistry (Mosc) ; 86(9): 1128-1138, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34565316

RESUMEN

Potato virus Y (PVY) is one of the most common and harmful plant viruses. Translation of viral RNA starts with the interaction between the plant cap-binding translation initiation factors eIF4E and viral genome-linked protein (VPg) covalently attached to the viral RNA. Disruption of this interaction is one of the natural mechanisms of plant resistance to PVY. The multigene eIF4E family in the potato (Solanum tuberosum L.) genome contains genes for the translation initiation factors eIF4E1, eIF4E2, and eIF(iso)4E. However, which of these factors can be recruited by the PVY, as well as the mechanism of this interaction, remain obscure. Here, we showed that the most common VPg variant from the PVY strain NTN interacts with eIF4E1 and eIF4E2, but not with eIF(iso)4E. Based on the VPg, eIF4E1, and eIF4E2 models and data on the natural polymorphism of VPg amino acid sequence, we suggested that the key role in the recognition of potato cap-binding factors belongs to the R104 residue of VPg. To verify this hypothesis, we created VPg mutants with substitutions at position 104 and examined their ability to interact with potato eIF4E factors. The obtained data were used to build the theoretical model of the VPg-eIF4E2 complex that differs significantly from the earlier models of VPg complexes with eIF4E proteins, but is in a good agreement with the current biochemical data.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Proteínas de Plantas/metabolismo , Potyvirus/metabolismo , Proteínas Virales/metabolismo , Sitios de Unión , Factor 4E Eucariótico de Iniciación/química , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Solanum tuberosum/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/química , Proteínas Virales/genética
5.
Biochimie ; 191: 27-32, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34389380

RESUMEN

In the search for anti-SARS-CoV-2 drugs, much attention is given to safe and widely available native compounds. The green tea component epigallocatechin 3 gallate (EGCG) is particularly promising because it reportedly inhibits viral replication and viral entry in vitro. However, conclusive evidence for its predominant activity is needed. We tested EGCG effects on the native virus isolated from COVID-19 patients in two independent series of experiments using VERO cells and two different treatment schemes in each series. The results confirmed modest cytotoxicity of EGCG and its substantial antiviral activity. The preincubation scheme aimed at infection prevention has proven particularly beneficial. We complemented that finding with a detailed investigation of EGCG interactions with viral S-protein subunits, including S2, RBD, and the RBD mutant harboring the N501Y mutation. Molecular modeling experiments revealed N501Y-specific stacking interactions in the RBD-ACE2 complex and provided insight into EGCG interference with the complex formation. Together, these findings provide a molecular basis for the observed EGCG effects and reinforce its prospects in COVID-19 prevention therapy.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Catequina/análogos & derivados , Mutación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Animales , Catequina/farmacología , Chlorocebus aethiops , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/química , Células Vero , Proteínas Virales/química , Proteínas Virales/metabolismo , Internalización del Virus/efectos de los fármacos
6.
J Gen Virol ; 102(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34161221

RESUMEN

In recent years, several recombinant strains of potato virus Y, notably PVYNTN and PVYN:O have displaced the ordinary strain, PVYO, and emerged as the predominant strains affecting the USA potato crop. Previously we reported that recombinant strains were transmitted more efficiently than PVYO when they were acquired sequentially, regardless of acquisition order. In another recent study, we showed that PVYNTN binds preferentially to the aphid stylet over PVYO when aphids feed on a mixture of PVYO and PVYNTN. To understand the mechanism of this transmission bias as well as preferential virus binding, we separated virus and active helper component proteins (HC), mixed them in homologous and heterologous combinations, and then fed them to aphids using Parafilm sachets. Mixtures of PVYO HC with either PVYN:O or PVYNTN resulted in efficient transmission. PVYN:O HC also facilitated the transmission of PVYO and PVYNTN, albeit with reduced efficiency. PVYNTN HC failed to facilitate transmission of either PVYO or PVYN:O. When PVYO HC or PVYN:O HC was mixed with equal amounts of the two viruses, both viruses in all combinations were transmitted at high efficiencies. In contrast, no transmission occurred when combinations of viruses were mixed with PVYNTN HC. Further study evaluated transmission using serial dilutions of purified virus mixed with HCs. While PVYNTN HC only facilitated the transmission of the homologous virus, the HCs of PVYO and PVYN:O facilitated the transmission of all strains tested. This phenomenon has likely contributed to the increase in the recombinant strains affecting the USA potato crop.


Asunto(s)
Áfidos/virología , Cisteína Endopeptidasas/metabolismo , Enfermedades de las Plantas/virología , Potyvirus/genética , Potyvirus/fisiología , Solanum tuberosum/virología , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Animales , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Recombinación Genética , Nicotiana/virología , Proteínas Virales/química , Proteínas Virales/genética
7.
Infect Genet Evol ; 93: 104944, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34052418

RESUMEN

Since the emergence of their primitive strains, the complexity surrounding their pathogenesis, constant genetic mutation and translation are contributing factors to the scarcity of a successful vaccine for coronaviruses till moment. Although, the recent announcement of vaccine breakthrough for COVID-19 renews the hope, however, there remains a major challenge of accessibility to urgently match the rapid global therapeutic demand for curtailing the pandemic, thereby creating an impetus for further search. The reassessment of results from a stream of experiments is of enormous importance in identifying bona fide lead-like candidates to fulfil this quest. This review comprehensively highlights the common pathomechanisms and pharmacological targets of HCoV-OC43, SARS-CoV-1, MERS-CoV and SARS-CoV-2, and potent therapeutic potentials from basic and clinical experimental investigations. The implicated targets for the prevention and treatment include the viral proteases (Mpro, PLpro, 3CLpro), viral structural proteins (S- and N-proteins), non-structural proteins (nsp 3, 8, 10, 14, 16), accessory protein (ns12.9), viroporins (3a, E, 8a), enzymes (RdRp, TMPRSS2, ADP-ribosyltransferase, MTase, 2'-O-MTase, TATase, furin, cathepsin, deamidated human triosephosphate isomerase), kinases (MAPK, ERK, PI3K, mTOR, AKT, Abl2), interleukin-6 receptor (IL-6R) and the human host receptor, ACE2. Notably among the 109 overviewed inhibitors include quercetin, eriodictyol, baicalin, luteolin, melatonin, resveratrol and berberine from natural products, GC373, NP164 and HR2P-M2 from peptides, 5F9, m336 and MERS-GD27 from specific human antibodies, imatinib, remdesivir, ivermectin, chloroquine, hydroxychloroquine, nafamostat, interferon-ß and HCQ from repurposing libraries, some iron chelators and traditional medicines. This review represents a model for further translational studies for effective anti-CoV therapeutic designs.


Asunto(s)
Antivirales/farmacología , Infecciones por Coronavirus/etiología , Coronavirus/patogenicidad , Interacciones Huésped-Patógeno , Antivirales/uso terapéutico , Coronavirus/efectos de los fármacos , Coronavirus/metabolismo , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Coronavirus Humano OC43/efectos de los fármacos , Coronavirus Humano OC43/patogenicidad , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
Nature ; 594(7862): 246-252, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33845483

RESUMEN

The emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology1-10. Integration of such datasets to obtain a holistic view of virus-host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems. Here we report a concurrent multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, we profiled the interactomes of both viruses, as well as their influence on the transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed crosstalk between the perturbations taking place upon infection with SARS-CoV-2 and SARS-CoV at different levels and enabled identification of distinct and common molecular mechanisms of these closely related coronaviruses. The TGF-ß pathway, known for its involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and autophagy was specifically dysregulated by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.innatelab.org ) highlights many hotspots that could be targeted by existing drugs and may be used to guide rational design of virus- and host-directed therapies, which we exemplify by identifying inhibitors of kinases and matrix metalloproteases with potent antiviral effects against SARS-CoV-2.


Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Patógeno , Proteoma/metabolismo , Proteómica , SARS-CoV-2/patogenicidad , Síndrome Respiratorio Agudo Grave/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Animales , Antivirales/farmacología , Autofagia/efectos de los fármacos , COVID-19/inmunología , COVID-19/virología , Línea Celular , Conjuntos de Datos como Asunto , Evaluación Preclínica de Medicamentos , Interacciones Huésped-Patógeno/inmunología , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Fosforilación , Mapas de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Proteoma/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/virología , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitinación , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Viroporinas/metabolismo
9.
PLoS One ; 16(3): e0246319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33661906

RESUMEN

The potential outcome of flavivirus and alphavirus co-infections is worrisome due to the development of severe diseases. Hundreds of millions of people worldwide live under the risk of infections caused by viruses like chikungunya virus (CHIKV, genus Alphavirus), dengue virus (DENV, genus Flavivirus), and zika virus (ZIKV, genus Flavivirus). So far, neither any drug exists against the infection by a single virus, nor against co-infection. The results described in our study demonstrate the inhibitory potential of two flavonoids derived from citrus plants: Hesperetin (HST) against NS2B/NS3pro of ZIKV and nsP2pro of CHIKV and, Hesperidin (HSD) against nsP2pro of CHIKV. The flavonoids are noncompetitive inhibitors and the determined IC50 values are in low µM range for HST against ZIKV NS2B/NS3pro (12.6 ± 1.3 µM) and against CHIKV nsP2pro (2.5 ± 0.4 µM). The IC50 for HSD against CHIKV nsP2pro was 7.1 ± 1.1 µM. The calculated ligand efficiencies for HST were > 0.3, which reflect its potential to be used as a lead compound. Docking and molecular dynamics simulations display the effect of HST and HSD on the protease 3D models of CHIKV and ZIKV. Conformational changes after ligand binding and their effect on the substrate-binding pocket of the proteases were investigated. Additionally, MTT assays demonstrated a very low cytotoxicity of both the molecules. Based on our results, we assume that HST comprise a chemical structure that serves as a starting point molecule to develop a potent inhibitor to combat CHIKV and ZIKV co-infections by inhibiting the virus proteases.


Asunto(s)
Virus Chikungunya/enzimología , Citrus/química , Hesperidina/farmacología , Péptido Hidrolasas/metabolismo , Virus Zika/enzimología , Animales , Virus Chikungunya/efectos de los fármacos , Chlorocebus aethiops , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Simulación del Acoplamiento Molecular , Péptido Hidrolasas/química , Extractos Vegetales/química , Conformación Proteica , Células Vero , Proteínas Virales/química , Proteínas Virales/metabolismo , Virus Zika/efectos de los fármacos
10.
Molecules ; 26(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467029

RESUMEN

The ongoing pandemic of severe acute respiratory syndrome (SARS), caused by the SARS-CoV-2 human coronavirus (HCoV), has brought the international scientific community before a state of emergency that needs to be addressed with intensive research for the discovery of pharmacological agents with antiviral activity. Potential antiviral natural products (NPs) have been discovered from plants of the global biodiversity, including extracts, compounds and categories of compounds with activity against several viruses of the respiratory tract such as HCoVs. However, the scarcity of natural products (NPs) and small-molecules (SMs) used as antiviral agents, especially for HCoVs, is notable. This is a review of 203 publications, which were selected using PubMed/MEDLINE, Web of Science, Scopus, and Google Scholar, evaluates the available literature since the discovery of the first human coronavirus in the 1960s; it summarizes important aspects of structure, function, and therapeutic targeting of HCoVs as well as NPs (19 total plant extracts and 204 isolated or semi-synthesized pure compounds) with anti-HCoV activity targeting viral and non-viral proteins, while focusing on the advances on the discovery of NPs with anti-SARS-CoV-2 activity, and providing a critical perspective.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Antivirales/química , Productos Biológicos/química , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/fisiología , Infecciones por Coronavirus/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , SARS-CoV-2/química , Proteínas Virales/química
11.
Eur J Med Chem ; 208: 112754, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32883638

RESUMEN

The biological effects of flavonoids on mammal cells are diverse, ranging from scavenging free radicals and anti-cancer activity to anti-influenza activity. Despite appreciable effort to understand the anti-influenza activity of flavonoids, there is no clear consensus about their precise mode-of-action at a cellular level. Here, we report the development and validation of a screening assay based on AlphaScreen technology and illustrate its application for determination of the inhibitory potency of a large set of polyols against PA N-terminal domain (PA-Nter) of influenza RNA-dependent RNA polymerase featuring endonuclease activity. The most potent inhibitors we identified were luteolin with an IC50 of 72 ± 2 nM and its 8-C-glucoside orientin with an IC50 of 43 ± 2 nM. Submicromolar inhibitors were also evaluated by an in vitro endonuclease activity assay using single-stranded DNA, and the results were in full agreement with data from the competitive AlphaScreen assay. Using X-ray crystallography, we analyzed structures of the PA-Nter in complex with luteolin at 2.0 Å resolution and quambalarine B at 2.5 Å resolution, which clearly revealed the binding pose of these polyols coordinated to two manganese ions in the endonuclease active site. Using two distinct assays along with the structural work, we have presumably identified and characterized the molecular mode-of-action of flavonoids in influenza-infected cells.


Asunto(s)
Antivirales/química , Endonucleasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Flavonoides/química , Virus de la Influenza A/enzimología , Proteínas Virales/antagonistas & inhibidores , Antivirales/metabolismo , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Endonucleasas/química , Endonucleasas/metabolismo , Pruebas de Enzimas/métodos , Inhibidores Enzimáticos/metabolismo , Flavonoides/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Unión Proteica , Dominios Proteicos , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/metabolismo
12.
J Enzyme Inhib Med Chem ; 35(1): 1539-1544, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32746637

RESUMEN

Coronavirus disease 2019 (COVID-19) has been a pandemic disease of which the termination is not yet predictable. Currently, researches to develop vaccines and treatments is going on globally to cope with this disastrous disease. Main protease (3CLpro) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the good targets to find antiviral agents before vaccines are available. Some flavonoids are known to inhibit 3CLpro from SARS-CoV which causes SARS. Since their sequence identity is 96%, a similar approach was performed with a flavonoid library. Baicalin, herbacetin, and pectolinarin have been discovered to block the proteolytic activity of SARS-CoV-2 3CLpro. An in silico docking study showed that the binding modes of herbacetin and pectolinarin are similar to those obtained from the catalytic domain of SARS-CoV 3CLpro. However, their binding affinities are different due to the usage of whole SARS-CoV-2 3CLpro in this study. Baicalin showed an effective inhibitory activity against SARS-CoV-2 3CLpro and its docking mode is different from those of herbacetin and pectolinarin. This study suggests important scaffolds to design 3CLpro inhibitors to develop antiviral agents or health-foods and dietary supplements to cope with SARS-CoV-2.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Flavonoides/química , Neumonía Viral/tratamiento farmacológico , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química , Antivirales/química , Betacoronavirus , COVID-19 , Diseño de Fármacos , Transferencia Resonante de Energía de Fluorescencia , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Poliproteínas , Inhibidores de Proteasas/química , Unión Proteica , Conformación Proteica , SARS-CoV-2 , Espectrofotometría , Triptófano/química , Tratamiento Farmacológico de COVID-19
13.
Eur J Pharmacol ; 886: 173448, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32768503

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is distinctly infective and there is an ongoing effort to find a cure for this pandemic. Flavonoids exist in many diets as well as in traditional medicine, and their modern subset, indole-chalcones, are effective in fighting various diseases. Hence, these flavonoids and structurally similar indole chalcones derivatives were studied in silico for their pharmacokinetic properties including absorption, distribution, metabolism, excretion, toxicity (ADMET) and anti-SARS-CoV-2 properties against their proteins, namely, RNA dependent RNA polymerase (rdrp), main protease (Mpro) and Spike (S) protein via homology modelling and docking. Interactions were studied with respect to biology and function of SARS-CoV-2 proteins for activity. Functional/structural roles of amino acid residues of SARS-CoV-2 proteins and, the effect of flavonoid and indole chalcone interactions which may cause disease suppression are discussed. The results reveal that out of 23 natural flavonoids and 25 synthetic indole chalcones, 30 compounds are capable of Mpro deactivation as well as potentially lowering the efficiency of Mpro function. Cyanidin may inhibit RNA polymerase function and, Quercetin is found to block interaction sites on the viral spike. These results suggest flavonoids and their modern pharmaceutical cousins, indole chalcones are capable of fighting SARS-CoV-2. The in vitro anti-SARS-CoV-2 activity of these 30 compounds needs to be studied further for complete understanding and confirmation of their inhibitory potential.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Chalconas/química , Chalconas/farmacología , Flavonoides/farmacología , Indoles/química , Simulación del Acoplamiento Molecular , Proteínas Virales/metabolismo , Betacoronavirus/metabolismo , Chalconas/metabolismo , Chalconas/farmacocinética , Simulación por Computador , Flavonoides/metabolismo , Flavonoides/farmacocinética , Conformación Proteica , SARS-CoV-2 , Seguridad , Distribución Tisular , Proteínas Virales/química
14.
Comput Biol Med ; 124: 103936, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32738628

RESUMEN

Virtual screening of phytochemicals was performed through molecular docking, simulations, in silico ADMET and drug-likeness prediction to identify the potential hits that can inhibit the effects of SARS-CoV-2. Considering the published literature on medicinal importance, 154 phytochemicals with analogous structure from limonoids and triterpenoids were selected to search potential inhibitors for the five therapeutic protein targets of SARS-CoV-2, i.e., 3CLpro (main protease), PLpro (papain-like protease), SGp-RBD (spike glycoprotein-receptor binding domain), RdRp (RNA dependent RNA polymerase) and ACE2 (angiotensin-converting enzyme 2). The in silico computational results revealed that the phytochemicals such as glycyrrhizic acid, limonin, 7-deacetyl-7-benzoylgedunin, maslinic acid, corosolic acid, obacunone and ursolic acid were found to be effective against the target proteins of SARS-CoV-2. The protein-ligand interaction study revealed that these phytochemicals bind with the amino acid residues at the active site of the target proteins. Therefore, the core structure of these potential hits can be used for further lead optimization to design drugs for SARS-CoV-2. Also, the medicinal plants containing these phytochemicals like licorice, neem, tulsi, citrus and olives can be used to formulate suitable therapeutic approaches in traditional medicines.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/química , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Limoninas/farmacología , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Triterpenos/farmacología , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Antivirales/farmacocinética , Sitios de Unión , COVID-19 , Biología Computacional , Simulación por Computador , ARN Polimerasa Dependiente de ARN de Coronavirus , Evaluación Preclínica de Medicamentos , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Limoninas/química , Limoninas/farmacocinética , Simulación del Acoplamiento Molecular , Pandemias , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/efectos de los fármacos , Fitoquímicos/química , Fitoquímicos/farmacocinética , Fitoquímicos/farmacología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/efectos de los fármacos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Triterpenos/química , Triterpenos/farmacocinética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas Virales/química , Proteínas Virales/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
15.
Infect Genet Evol ; 85: 104474, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32712315

RESUMEN

Synthetic or natural derived cell-penetrating peptides (CPPs) are vastly investigated as tools for the intracellular delivery of membrane-impermeable molecules. As viruses are intracellular obligate parasites, viral originated CPPs have been considered as suitable intracellular shuttling vectors for cargo transportation. A total of 310 CPPs were identified in the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Screening the proteome of the cause of COVID-19 reveals that SARS-CoV-2 CPPs (SCV2-CPPs) span the regions involved in replication, protein-nucleotide and protein-protein interaction, protein-metal ion interaction, and stabilization of homo/hetero-oligomers. However, to find the most appropriate peptides as drug delivery vectors, one might face several hurdles. Computational analyses showed that 94.3% of the identified SCV2-CPPs are non-toxins, and 38% are neither antigenic nor allergenic. Interestingly, 36.70% of SCV2-CPPs were resistant to all four groups of protease families. Nearly 1/3 of SCV2-CPPs had sufficient inherent or induced helix and sheet conformation leading to increased uptake efficiency. Heliquest lipid-binding discrimination factor revealed that 44.30% of the helical SCV2-CPPs are lipid-binding helices. Although Cys-rich derived CPPs of helicase (NSP13) can potentially fold into a cyclic conformation in endosomes with a higher rate of endosomal release, the most optimal SCV2-CPP candidates as vectors for drug delivery were SCV2-CPP118, SCV2-CPP119, SCV2-CPP122, and SCV2-CPP129 of NSP12 (RdRp). Ten experimentally validated viral-derived CPPs were also used as the positive control to check the scalability and reliability of our protocol in SCV2-CPP retrieval. Some peptides with a cell-penetration ability known as bioactive peptides are adopted as biotherapeutics themselves. Therefore, 59.60%, 29.63%, and 32.32% of SCV2-CPPs were identified as potential antibacterial, antiviral, and antifungals, respectively. While 63.64% of SCV2-CPPs had immuno-modulatory properties, 21.89% were recognized as anti-cancers. Conclusively, the workflow of this study provides a platform for profound screening of viral proteomes as a rich source of biotherapeutics or drug delivery carriers.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Biología Computacional/métodos , SARS-CoV-2/patogenicidad , Antivirales/farmacología , Antivirales/uso terapéutico , Péptidos de Penetración Celular/química , Evaluación Preclínica de Medicamentos , Humanos , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteoma/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Máquina de Vectores de Soporte , Proteínas Virales/química , Proteínas Virales/metabolismo , Replicación Viral
16.
Biomolecules ; 10(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375402

RESUMEN

Pinus densiflora was screened in an ongoing project to discover anti-influenza candidates from natural products. An extensive phytochemical investigation provided 26 compounds, including two new megastigmane glycosides (1 and 2), 21 diterpenoids (3-23), and three flavonoids (24-26). The chemical structures were elucidated by a series of chemical reactions, including modified Mosher's analysis and various spectroscopic measurements such as LC/MS and 1D- and 2D-NMR. The anti-influenza A activities of all isolates were screened by cytopathic effect (CPE) inhibition assays and neuraminidase (NA) inhibition assays. Ten candidates were selected, and detailed mechanistic studies were performed by various assays, such as Western blot, immunofluorescence, real-time PCR and flow cytometry. Compound 5 exerted its antiviral activity not by direct neutralizing virion surface proteins, such as HA, but by inhibiting the expression of viral mRNA. In contrast, compound 24 showed NA inhibitory activity in a noncompetitive manner with little effect on viral mRNA expression. Interestingly, both compounds 5 and 24 were shown to inhibit nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in a dose-dependent manner. Taken together, these results provide not only the chemical profiling of P. densiflora but also anti-influenza A candidates.


Asunto(s)
Antivirales/química , Inhibidores Enzimáticos/química , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Pinus/química , Extractos Vegetales/química , Animales , Antivirales/farmacología , Sitios de Unión , Perros , Inhibidores Enzimáticos/farmacología , Flavonoides/análisis , Células de Riñón Canino Madin Darby , Ratones , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Neuraminidasa/metabolismo , Extractos Vegetales/farmacología , Unión Proteica , Células RAW 264.7 , Terpenos/análisis , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
17.
Eur Rev Med Pharmacol Sci ; 24(8): 4585-4596, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32373999

RESUMEN

In December 2019, an outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in Wuhan, China, and it subsequently spread in many countries around the world. Many efforts have been applied to control and prevent the spread of COVID-19, and many scientific studies have been conducted in a short period of time. Here we present an overview of the viral structure, pathogenesis, diagnosis, and clinical features of COVID-19 based on the current state of knowledge, and we compare its clinical characteristics with SARS and Middle East Respiratory Syndrome (MERS). Current researches on potentially effective treatment alternatives are discussed. We hope this review can help medical workers and researchers around the world contain the current COVID-19 pandemic.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/terapia , Infecciones por Coronavirus/virología , Neumonía Viral/terapia , Neumonía Viral/virología , Enzima Convertidora de Angiotensina 2 , Antivirales/uso terapéutico , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/patología , Humanos , Inmunoterapia , Medicina Tradicional China , Coronavirus del Síndrome Respiratorio de Oriente Medio , Pandemias , Peptidil-Dipeptidasa A/química , Neumonía Viral/diagnóstico , Neumonía Viral/patología , ARN Viral , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave , Proteínas Virales/química
18.
Int J Mol Sci ; 21(10)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408699

RESUMEN

Essential oils have shown promise as antiviral agents against several pathogenic viruses. In this work we hypothesized that essential oil components may interact with key protein targets of the 2019 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A molecular docking analysis was carried out using 171 essential oil components with SARS-CoV-2 main protease (SARS-CoV-2 Mpro), SARS-CoV-2 endoribonucleoase (SARS-CoV-2 Nsp15/NendoU), SARS-CoV-2 ADP-ribose-1″-phosphatase (SARS-CoV-2 ADRP), SARS-CoV-2 RNA-dependent RNA polymerase (SARS-CoV-2 RdRp), the binding domain of the SARS-CoV-2 spike protein (SARS-CoV-2 rS), and human angiotensin-converting enzyme (hACE2). The compound with the best normalized docking score to SARS-CoV-2 Mpro was the sesquiterpene hydrocarbon (E)-ß-farnesene. The best docking ligands for SARS-CoV Nsp15/NendoU were (E,E)-α-farnesene, (E)-ß-farnesene, and (E,E)-farnesol. (E,E)-Farnesol showed the most exothermic docking to SARS-CoV-2 ADRP. Unfortunately, the docking energies of (E,E)-α-farnesene, (E)-ß-farnesene, and (E,E)-farnesol with SARS-CoV-2 targets were relatively weak compared to docking energies with other proteins and are, therefore, unlikely to interact with the virus targets. However, essential oil components may act synergistically, essential oils may potentiate other antiviral agents, or they may provide some relief of COVID-19 symptoms.


Asunto(s)
Infecciones por Coronavirus/terapia , Aceites Volátiles/uso terapéutico , Neumonía Viral/terapia , Proteínas Virales/metabolismo , Enzima Convertidora de Angiotensina 2 , Antivirales/farmacología , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , COVID-19 , Simulación por Computador , Humanos , Simulación del Acoplamiento Molecular , Aceites Volátiles/farmacología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica/efectos de los fármacos , SARS-CoV-2 , Proteínas Virales/química
19.
Nature ; 581(7808): 252-255, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32415276

Asunto(s)
Antivirales/farmacología , Betacoronavirus/química , Betacoronavirus/inmunología , Diseño de Fármacos , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química , Vacunas Virales , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales/química , Azoles/farmacología , Betacoronavirus/efectos de los fármacos , Betacoronavirus/enzimología , Vacunas contra la COVID-19 , China , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Proteasas Similares a la Papaína de Coronavirus , ARN Polimerasa Dependiente de ARN de Coronavirus , Microscopía por Crioelectrón , Cristalización , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Evaluación Preclínica de Medicamentos , Alemania , Ensayos Analíticos de Alto Rendimiento , Humanos , Isoindoles , Ratones , National Institutes of Health (U.S.)/economía , National Institutes of Health (U.S.)/organización & administración , Compuestos de Organoselenio/farmacología , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de Proteasas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sincrotrones , Factores de Tiempo , Reino Unido , Estados Unidos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/inmunología
20.
Comb Chem High Throughput Screen ; 23(8): 797-804, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32342804

RESUMEN

BACKGROUND: ZIKV has been a well-known global threat, which hits almost all of the American countries and posed a serious threat to the entire globe in 2016. The first outbreak of ZIKV was reported in 2007 in the Pacific area, followed by another severe outbreak, which occurred in 2013/2014 and subsequently, ZIKV spread to all other Pacific islands. A broad spectrum of ZIKV associated neurological malformations in neonates and adults has driven this deadly virus into the limelight. Though tremendous efforts have been focused on understanding the molecular basis of ZIKV, the viral proteins of ZIKV have still not been studied extensively. OBJECTIVES: Herein, we report the first and the novel predictor for the identification of ZIKV proteins. METHODS: We have employed Chou's pseudo amino acid composition (PseAAC), statistical moments and various position-based features. RESULTS: The predictor is validated through 10-fold cross-validation and Jackknife testing. In 10- fold cross-validation, 94.09% accuracy, 93.48% specificity, 94.20% sensitivity and 0.80 MCC were achieved while in Jackknife testing, 96.62% accuracy, 94.57% specificity, 97.00% sensitivity and 0.88 MCC were achieved. CONCLUSION: Thus, ZIKVPred-PseAAC can help in predicting the ZIKV proteins efficiently and accurately and can provide baseline data for the discovery of new drugs and biomarkers against ZIKV.


Asunto(s)
Aminoácidos/química , Antivirales/química , Biología Computacional/métodos , Proteínas Virales/química , Virus Zika/química , Algoritmos , Secuencia de Aminoácidos , Antivirales/farmacología , Biomarcadores/metabolismo , Bases de Datos de Proteínas , Evaluación Preclínica de Medicamentos , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA