Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.041
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2089, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453961

RESUMEN

Hyperthermic intraperitoneal chemotherapy's role in ovarian cancer remains controversial, hindered by limited understanding of hyperthermia-induced tumor cellular changes. This limits developing potent combinatory strategies anchored in hyperthermic intraperitoneal therapy (HIPET). Here, we perform a comprehensive multi-omics study on ovarian cancer cells under hyperthermia, unveiling a distinct molecular panorama, primarily characterized by rapid protein phosphorylation changes. Based on the phospho-signature, we pinpoint CDK1 kinase is hyperactivated during hyperthermia, influencing the global signaling landscape. We observe dynamic, reversible CDK1 activity, causing replication arrest and early mitotic entry post-hyperthermia. Subsequent drug screening shows WEE1 inhibition synergistically destroys cancer cells with hyperthermia. An in-house developed miniaturized device confirms hyperthermia and WEE1 inhibitor combination significantly reduces tumors in vivo. These findings offer additional insights into HIPET, detailing molecular mechanisms of hyperthermia and identifying precise drug combinations for targeted treatment. This research propels the concept of precise hyperthermic intraperitoneal therapy, highlighting its potential against ovarian cancer.


Asunto(s)
Hipertermia Inducida , Neoplasias Ováricas , Femenino , Humanos , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Multiómica , Mitosis , Neoplasias Ováricas/terapia , Neoplasias Ováricas/patología
2.
Phytomedicine ; 126: 155445, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412666

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) is the primary cause of end-stage renal disease (ESRD), and the therapeutic strategies for DN are limited. Notoginsenoside Fc (Fc), a novel saponin isolated from Panax Notoginseng (PNG), has been reported to alleviate vascular injury in diabetic rats. However, the protective effects of Fc on DN remain unclear. PURPOSE: To investigate the beneficial effects and mechanisms of Fc on DN. METHODS: Db/db mice were treated with 2.5, 5 and 10 mg·kg-1·d-1 of Fc for 8 weeks. High glucose (HG) induced mouse glomerular endothelial cells (GECs) were treated with 2.5, 5 and 10 µM of Fc for 24 h. RESULTS: Our data found that Fc ameliorated urinary microalbumin level, kidney dysfunction and histopathological damage in diabetic mice. Moreover, Fc alleviated the accumulation of oxidative stress, the collapse of mitochondrial membrane potential and the expression of mitochondrial fission proteins, such as Drp-1 and Fis1, while increased the expression of mitochondrial fusion protein Mfn2. Fc also decreased pyroptosis-related proteins levels, such as TXNIP, NLRP3, cleaved caspase-1, and GSDMD-NT, indicating that Fc ameliorated GECs pyroptosis. In addition, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) expression was increased in diabetic group, which was partially abrogated by Fc. Our data further proved that knockdown of HMGCS2 could restrain HG-induced GECs mitochondrial dysfunction and pyroptosis. These results indicated that the inhibitory effects of Fc on mitochondrial damage and pyroptosis were associated with the suppression of HMGCS2. CONCLUSION: Taken together, this study clearly demonstrated that Fc ameliorated GECs pyroptosis and mitochondrial dysfunction partly through regulating HMGCS2 pathway, which might provide a novel drug candidate for DN.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ginsenósidos , Enfermedades Mitocondriales , Ratas , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Células Endoteliales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Piroptosis , Enfermedades Mitocondriales/metabolismo , Hidroximetilglutaril-CoA Sintasa/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
J Biomol Struct Dyn ; 42(7): 3295-3306, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37279114

RESUMEN

MCM7 (Minichromosome Maintenance Complex Component 7) is a component of the DNA replication licensing factor, which controls DNA replication. The MCM7 protein is linked to tumor cell proliferation and has a function in the development of several human cancers. Several types of cancer may be treated by inhibiting the protein, as it is strongly produced throughout this process. Significantly, Traditional Chinese Medicine (TCM), which has a long history of clinical adjuvant use against cancer, is rapidly gaining traction as a valuable medical resource for the development of novel cancer therapies, including immunotherapy. Therefore, the goal of the research was to find small molecular therapeutic candidates against the MCM7 protein that may be used to treat human cancers. A computational-based virtual screening of 36,000 natural TCM libraries is carried out for this goal using a molecular docking and dynamic simulation technique. Thereby, ∼8 novel potent compounds i.e., ZINC85542762, ZINC95911541, ZINC85542617, ZINC85542646, ZINC85592446, ZINC85568676, ZINC85531303, and ZINC95914464 were successfully shortlisted, each having the capacity to penetrate the cell as potent inhibitors for MCM7 to curb this disorder. These selected compounds were found to have high binding affinities compared to the reference (AGS compound) i.e. < -11.0 kcal/mol. ADMET and pharmacological properties showed that none of these 8 compounds poses any toxic property (carcinogenicity) and have anti-metastatic, and anticancer activity. Additionally, MD simulations were run to assess the compounds' stability and dynamic behavior with the MCM7 complex for about 100 ns. Finally, ZINC95914464, ZINC95911541, ZINC85568676, ZINC85592446, ZINC85531303, and ZINC85542646 are identified as highly stable within the complex throughout the 100 ns simulations. Moreover, the results of binding free energy suggested that the selected virtual hits significantly bind to the MCM7 which implied these compounds may act as a potential MCM7 inhibitor. However, in vitro testing protocols are required to further support these results. Further, assessment through various lab-based trial methods can assist with deciding the action of the compound that will give options in contrast to human cancer immunotherapy.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Medicina Tradicional China , Neoplasias , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas de Ciclo Celular , Proliferación Celular , Neoplasias/tratamiento farmacológico
4.
J Postgrad Med ; 70(1): 56-59, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37706418

RESUMEN

We report a 2.2 year-old-boy, born of consanguineous marriage, referred for short stature, with history of neonatal death and skeletal deformities in his older sibling. Rhizo-mesomelic dwarfism was detected antenatally. Within 24 hours of birth, he developed multiple seizures. Examination revealed severe short stature, dolichocephaly, broad forehead, deep set eyes, low set ears, bulbous nose, small, irregular teeth, pointed chin, and triangular facies. He had rhizomelic shortening, stubby fingers, pes planus, and scanty hair. Neurological evaluation revealed ataxia, hypotonia, and global developmental delay. Skeletal survey radiograph revealed shallow acetabuli, short femurs and humerus, short, broad metacarpals and short cone-shaped phalanges with cupping of phalangeal bases. Clinical exome analysis revealed homozygous mutations involving the POC1A gene and the SLC13A5 gene responsible for SOFT syndrome and Kohlschutter-Tonz syndrome respectively, which were inherited from the parents. Both these syndromes are extremely rare, and their co-occurrence is being reported for the first time.


Asunto(s)
Anomalías Múltiples , Amelogénesis Imperfecta , Demencia , Enanismo , Epilepsia , Osteocondrodisplasias , Simportadores , Masculino , Recién Nacido , Humanos , Preescolar , Amelogénesis Imperfecta/genética , Anomalías Múltiples/genética , Osteocondrodisplasias/genética , Enanismo/genética , Enanismo/diagnóstico , Proteínas del Citoesqueleto , Proteínas de Ciclo Celular
5.
Int J Biol Sci ; 19(16): 5218-5232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928273

RESUMEN

The centromere proteins (CENPs), a critical mitosis-related protein complexes, are involved in the kinetochore assembly and chromosome segregation. In this study, we identified that CENPA was significantly up-regulated in HCC and highly expressed CENPA correlated with poor prognosis for HCC patients. Knockdown of CENPA inhibited HCC cell proliferation and tumor growth in vitro and in vivo. Mechanistically, CENPA transcriptionally activated and cooperated with YY1 to drive the expression of cyclin D1 (CCND1) and neuropilin 2 (NRP2). Moreover, we identified that CENPA can be lactylated at lysine 124 (K124). The lactylation of CENPA at K124 promotes CENPA activation, leading to enhanced expression of its target genes. In summary, CENPA function as a transcriptional regulator to promote HCC via cooperating with YY1. Targeting the CENPA-YY1-CCND1/NRP2 axis may provide candidate therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Proteína A Centromérica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Histonas , Neoplasias Hepáticas/metabolismo , Factor de Transcripción YY1/genética , Proteína A Centromérica/metabolismo
6.
Zhongguo Zhen Jiu ; 43(11): 1287-1292, 2023 Nov 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37984923

RESUMEN

OBJECTIVES: To explore the possible mechanism of Shao's five-needle therapy pretreatment on relieving airway inflammatory response in asthmatic rats. METHODS: Forty SPF-grade SD rats were randomly divided into a blank group, a model group, an acupuncture group, and a medication group, with 10 rats in each group. Except the blank group, asthma model was established by aerosol inhalation of ovalbumin in the other 3 groups. The rats in the acupuncture group were treated with acupuncture at "Dazhui" (GV 14) and bilateral "Feishu" (BL 13) and "Fengmen" (BL 12), with each session lasting for 20 min. Acupuncture was given before each motivating, once daily for 7 consecutive days. The rats in the medication group were treated with intraperitoneal injection of dexamethasone sodium phosphate solution before each motivating, once daily for 7 days. General situation of the rats was observed in each group; ELISA method was used to detect the levels of inflammatory cytokines interleukin (IL)-1ß and IL-18 in serum; immunofluorescence staining method was performed to assess the expression of reactive oxygen species (ROS) in lung tissues; Western blot method was used to measure the protein expression of thioredoxin interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 in lung tissues. RESULTS: The rats in the blank group exhibited normal behavior, while those in the model group showed signs of respiratory distress, ear scratching, cheek rubbing, and dysphoria. Compared with the model group, the rats in the acupuncture group and the medication group showed stable respiration and relatively agile responses. Compared with those in the blank group, the serum levels of IL-18 and IL-1ß were elevated (P<0.01), the expression intensity of ROS was increased, and the protein expressions of TXNIP, NLRP3, ASC and Caspase-1 in lung tissues were increased (P<0.01) in the model group. Compared with those in the model group, the serum levels of IL-18 and IL-1ß were reduced (P<0.01), the expression intensity of ROS was lowered, and the protein expressions of TXNIP, NLRP3, ASC and Caspase-1 in lung tissues were reduced (P<0.01) in the acupuncture group and the medication group. Compared with the medication group, the protein expression of ASC in lung tissue was reduced in the acupuncture group (P<0.05). CONCLUSIONS: Pretreatment of Shao's five-needle therapy could alleviate airway inflammatory response in asthmatic rats by reducing ROS levels and decreasing the aggregation and activation of pathway-related proteins in the ROS/TXNIP/NLRP3 pathway, ultimately leading to decreased secretion of IL-1ß and IL-18. This mechanism may contribute to the effectiveness of Shao's five-needle therapy in preventing and treating asthma.


Asunto(s)
Asma , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Proteínas NLR , Ratas Sprague-Dawley , Asma/genética , Asma/terapia , Asma/metabolismo , Caspasas , Proteínas de Ciclo Celular
7.
Zhen Ci Yan Jiu ; 48(10): 1041-1047, 2023 Oct 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37879955

RESUMEN

OBJECTIVES: To observe the effects of electroacupuncture (EA) at "Fengfu" (GV16), "Taichong" (LR3) and "Zusanli" (ST36) on α-synuclein (α-syn), Occludin, Claudin-1, thioredoxin interaction protein (TXNIP) and Nod-like receptor 3 (NLRP3) in Parkinson's disease (PD) mice, so as to investigate the mechanisms of EA on intestinal barrier function and inflammation in PD mice. METHODS: Thirty six C57BL/6 mice were randomly divided into control, model and EA groups, with 12 mice in each group. PD mice model was induced by rotenone intragastric administration for 28 days. Mice in the EA group were treated with EA (2 Hz, 1 mA) at GV16, LR3 and ST36 for 30 min, once a day for 14 days. The behavioral scores were observed. The total distance of autonomic movement was measured by open field test. The expression level of α-syn in substantia nigra and colon tissue was determined by immunohistochemistry. The colonic morphology and goblet cell distribution were observed by Alcian blue staining. The expression levels of Occludin, Claudin-1, TXNIP and NLRP3 mRNA in colon tissue were detected by real-time fluorescence quantitative PCR. RESULTS: Compared with the control group, the behavioral scores of rats were increased (P<0.01);the total distance of autonomous movement was decreased (P<0.01);the positive expression level of α-syn in the substantia nigra and colon was increased (P<0.01);the goblet cells and crypts in colon tissue were reduced, and the muscular layer was thinner;the expression levels of Occludin and Claudin-1 mRNAs in colon tissue were decreased (P<0.01) while TXNIP and NLRP3 mRNAs were increased (P<0.01) in the model group. Compared with the model group, the surface villi of colon tissue was more complete, the goblet cells and crypts were increased, and the muscular layer was thickened;the other indexes were reversed (P<0.01, P<0.05) in the EA group. CONCLUSIONS: EA at GV16, LR3 and ST36 can reduce the abnormal accumulation of α-syn in the substania nigra and colon tissue of PD mice, alleviate the damage of intestinal barrier, regulate TXNIP/NLRP3 signaling pathway, so as to delay the occurrence and development of PD.


Asunto(s)
Electroacupuntura , Enfermedad de Parkinson , Animales , Ratones , Ratas , Proteínas de Ciclo Celular/metabolismo , Claudina-1 , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Ocludina , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Ratas Sprague-Dawley , ARN Mensajero , Transducción de Señal , Tiorredoxinas
8.
Gynecol Endocrinol ; 39(1): 2237116, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37489849

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most prevalent endocrine disorders in gynecology with severe metabolic abnormalities. Therefore, identifying effective treatments and drugs for PCOS is important. We aimed to investigate effect of the traditional Chinese medicine (TCM) Rubus chingii Hu (R. chingii) on ovarian function and insulin resistance (IR) of PCOS rat models, and to explore the underlying mechanisms. METHODS: A PCOS rat model was established by subcutaneous injection of dehydroepiandrosterone (DHEA) solution for 20 days. PCOS rats were randomly divided into a control group (CON), model group (MOD), metformin group (MET), TCM R. chingii group (RCG), and RCG + Ad-TXNIP groups. After 28 days of treatment, the samples were collected for subsequent experiments. RESULTS: R. chingii treatment alleviated hormone imbalance and IR while improving ovarian pathology in the PCOS model. R. chingi inhibited the activation of the thioredoxin-interacting protein (TXNIP)/NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in the ovarian tissue of PCOS rats. Furthermore, TXNIP overexpression hindered the protective effect of R. chingii intervention in PCOS rats, as evidenced by the increase of homeostasis model assessment of insulin resistance (HOMA-IR), luteinizing hormone (LH), testosterone (T), C-reactive protein (CRP) levels, and atretic follicles. CONCLUSION: R. chingii intervention improved ovarian polycystic development by suppressing the TXNIP/NLRP3 inflammasome, which may be an effective treatment for PCOS.


Asunto(s)
Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Rubus , Animales , Femenino , Humanos , Ratas , Proteínas Portadoras , Proteínas de Ciclo Celular , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Síndrome del Ovario Poliquístico/terapia , Rubus/química
9.
Arch Biochem Biophys ; 743: 109655, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37285895

RESUMEN

Endometrial carcinoma is the most common gynecological tumor in developed countries. Tanshinone IIA is a traditional herbal medicine which is to treat cardiovascular disease and has been shown to have various biological effects, such as anti-inflammatory, antioxidative and antitumor activities. However, there has been no study about the effect of tanshinone IIA on endometrial carcinoma. Thus, the aim of this study was to determine the antitumor activity of tanshinone IIA against endometrial carcinoma and investigate the associated molecular mechanism. We demonstrated that tanshinone IIA induced cell apoptosis and inhibited migration. We further demonstrated that tanshinone IIA activated the intrinsic (mitochondrial) apoptotic pathway. Mechanistically, tanshinone IIA induced apoptosis by upregulating TRIB3 expression and inhibiting the MAPK/ERK signaling pathway. In addition, knockdown of TRIB3 with an shRNA lentivirus accelerated proliferation and attenuated inhibition mediated by tanshinone IIA. Finally, we further demonstrated that tanshinone IIA inhibited tumor growth by inducing TRIB3 expression in vivo. In conclusion, these findings suggest that tanshinone IIA has a significant antitumor effect by inducing apoptosis and may be used as a drug for the treatment of endometrial carcinoma.


Asunto(s)
Abietanos , Neoplasias Endometriales , Humanos , Femenino , Línea Celular Tumoral , Abietanos/farmacología , Abietanos/uso terapéutico , Apoptosis , Neoplasias Endometriales/tratamiento farmacológico , Proteínas Represoras , Proteínas Serina-Treonina Quinasas , Proteínas de Ciclo Celular
10.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3014-3021, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37381959

RESUMEN

Recent studies have shown that the occurrence and development of common liver diseases, including non-alcoholic fatty liver disease, cirrhosis, and liver cancer, are related to liver aging(LA). Therefore, to explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a traditional classic prescription in improving LA with multiple targets, the present study randomly divided 24 rats into a normal group, a model group, a DHZCP group, and a vitamin E(VE) group, with six rats in each group. The LA model was induced by continuous intraperitoneal injection of D-galactose(D-gal) in rats. For the LA model rats, the general situation was evaluated by aging phenotype and body weight(BW). LA was assessed by the pathological characteristics of hepatocyte senescence, hepatic function indexes, the staining characteristics of phosphorylated histone family 2A variant(γ-H2AX), and the expression levels of cell cycle arrest proteins(P21, P53, P16) and senescence-associated secretory phenotype(SASP) in the liver. The activation of the reactive oxygen species(ROS)-mediated phosphatidylinositol-3 kinase(PI3K)/protein kinase B(Akt)/forkhead box protein O4(FoxO4) signaling pathway was estimated by hepatic ROS expression feature and the protein expression levels of the key signaling molecules in the PI3K/Akt/FoxO4 signaling pathway. The results showed that after the treatment with DHZCP or VE for 12 weeks, for the DHZCP and VE groups, the characterized aging phenotype, BW, pathological characteristics of hepatocyte senescence, hepatic function indexes, relative expression of ROS in the liver, protein expression levels of key signaling molecules including p-PI3K, p-Akt, and FoxO4 in the liver, staining characteristics of γ-H2AX, and the protein expression levels of P16, P21, P53, interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in the liver were improved, and the effects of DHZCP and VE were similar. Based on the D-gal-induced LA model in rats, this study demonstrates that DHZCP can ameliorate LA with multiple targets in vivo, and its effects and mechanism are related to regulating the activation of the ROS-mediated PI3K/Akt/FoxO4 signaling pathway in the liver. These findings are expected to provide new pharmacological evidence for the treatment of DHZCP in aging-related liver diseases.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Ratas , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Especies Reactivas de Oxígeno , Proteína p53 Supresora de Tumor/genética , Transducción de Señal , Hígado , Envejecimiento , Proteínas de Ciclo Celular , Interleucina-6
11.
OMICS ; 27(6): 260-272, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37229622

RESUMEN

Gastric cancer (GC) is among the leading causes of cancer-related deaths worldwide. The discovery of robust diagnostic biomarkers for GC remains a challenge. This study sought to identify biomarker candidates for GC by integrating machine learning (ML) and bioinformatics approaches. Transcriptome profiles of patients with GC were analyzed to identify differentially expressed genes between the tumor and adjacent normal tissues. Subsequently, we constructed protein-protein interaction networks so as to find the significant hub genes. Along with the bioinformatics integration of ML methods such as support vector machine, the recursive feature elimination was used to select the most informative genes. The analysis unraveled 160 significant genes, with 88 upregulated and 72 downregulated, 10 hub genes, and 12 features from the variable selection method. The integrated analyses found that EXO1, DTL, KIF14, and TRIP13 genes are significant and poised as potential diagnostic biomarkers in relation to GC. The receiver operating characteristic curve analysis found KIF14 and TRIP13 are strongly associated with diagnosis of GC. We suggest KIF14 and TRIP13 are considered as biomarker candidates that might potentially inform future research on diagnosis, prognosis, or therapeutic targets for GC. These findings collectively offer new future possibilities for precision/personalized medicine research and development for patients with GC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Gástricas , Humanos , Biomarcadores de Tumor/genética , Redes Reguladoras de Genes , Medicina de Precisión , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Biología Computacional/métodos , Aprendizaje Automático , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas de Ciclo Celular/genética
12.
Phytomedicine ; 114: 154785, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37002972

RESUMEN

BACKGROUND: Gallbladder cancer (GBC) is the most aggressively malignant tumor in the bile duct system. The prognosis for patients with GBC is extremely poor. Ponicidin is a diterpenoid compound extracted and purified from the traditional Chinese herb Rabdosia rubescens, and showed promising anti-cancer effects in a variety of tumors. However, Ponicidin has not been investigated in GBC. METHODS: CCK-8, colony formation assay and EdU-488 DNA synthesis assay were performed to investigate the effect of Ponicidin on GBC cells proliferation. Cell invasion and migration assays and wound-healing assay were used to explore the effect of Ponicidin on invasion and migration ability of GBC cells. mRNA-seq was adopted to explore the underlying mechanisms. Western blot and immunohistochemical staining were conducted to detect the protein level. CHIP assay and dual-luciferase assay were used to validate binding motif. Nude mouse model of GBC was used to assess the anti-tumor effect and safety of Ponicidin. RESULTS: Ponicidin inhibited the proliferation and cell invasion and migration of GBC cells in vitro. Moreover, Ponicidin exerted anti-tumor effects by down-regulating the expression of MAGEB2. Mechanically, Ponicidin upregulated the FOXO4 expression and promoted it to accumulate in nucleus to inhibit the transcript of MAGEB2. Furthermore, Ponicidin suppressed tumor growth in the nude mouse model of GBC with excellent safety. CONCLUSION: Ponicidin may be a promising agent for the treatment of GBC effectively and safely.


Asunto(s)
Diterpenos , Neoplasias de la Vesícula Biliar , Animales , Ratones , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/metabolismo , Neoplasias de la Vesícula Biliar/patología , Línea Celular Tumoral , Ratones Desnudos , Diterpenos/farmacología , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Antígenos de Neoplasias , Proteínas de Neoplasias/metabolismo
13.
Chin J Nat Med ; 21(1): 36-46, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36641231

RESUMEN

Bavachin is a dihydroflavonoid compound isolated from Psoralea corylifolia, and exhibits anti-bacterial, anti-inflammatory, anti-tumor and lipid-lowering activities. Recent attention has gradually drawn on bavachin-induced apoptosis in many human cancer cell lines. However, the anti-cancer effects and related mechanisms in colorectal cancer remain unknown. Here, we investigated the effects of bavachin on colorectal cancer in vivo and in vitro. The results showed that bavachin inhibited the proliferation of human colorectal cancer cells and induce apoptosis. These changes were mediated by activating the MAPK signaling pathway, which significantly up-regulated the expression of Gadd45a. Furthermore, Gadd45a silencing obviously attenuated bavachin-mediated cell apoptosis. Inhibition of the MAPK signaling pathway by JNK/ERK/p38 inhibitors also weakened the up-regulation of Gadd45a by bavachin. The anticancer effect of bavachin was also validated using a mouse xenograft model of human colorectal cancer. In conclusion, these findings suggest that bavachin induces the apoptosis of colorectal cancer cells through activating the MAPK signaling pathway.


Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Humanos , Flavonoides/farmacología , Proteínas/metabolismo , Proteínas/farmacología , Sistema de Señalización de MAP Quinasas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacología
14.
Cell Biol Int ; 47(2): 417-427, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36251276

RESUMEN

Ulcerative colitis (UC) is a disorder of the bowel that is characterized by a chronic inflammatory response. The traditional Chinese herbal medicine ferulic acid (FA) is known for its antioxidant, antiapoptotic, and antiinflammatory properties. However, its role in UC is still unclear. Thus, the current study was conducted to investigate the role of FA in UC. Rats were treated with 2,4,6-triabrobenzene sulfonic acid to induce UC and subjected to FA. Human intestinal microvascular endothelial cells (HIMECs) were treated with tumor necrosis factor-α (TNF-α) and pretreated with FA. Pathological changes in colonic tissues were visualized via hematoxylin-eosin staining. Enzyme linked immunosorbent assay was conducted to detect interleukin (IL)-6, IL-12, and IL-1ß levels. Cell morphology was visualized by using a microscope, and viability was detected by using MTT. The percentage of apoptosis was detected via flow cytometry. Western blot analysis was performed to detect the expression of the apoptosis-related proteins thioredoxin-interacting protein (TXNIP) and NOD-like receptor pyrin domain-containing 3 (NLRP3). In vivo FA administration alleviated intestinal injury in UC rats and inhibited inflammatory factor levels (IL-6, IL-12, and IL-1ß), apoptosis-related protein expression (caspase-1 and caspase-3) and the TXNIP/NLRP3 signaling pathway. In vitro, TNF-α treatment reduced HIMEC viability, increased cell apoptosis and inflammatory factor levels and activated the TXNIP/NLRP3 signaling pathway. However, FA treatment restored the viability of HIMECs, reduced TNF-α-induced cell apoptosis and inflammation and inhibited the TXNIP/NLRP3 signaling pathway. Furthermore, with increasing FA concentration, the effects were stronger. In summary, FA inhibits the inflammatory injury of endothelial cells in ulcerative colitis or alleviates TNF-α-induced HIMEC injury by inhibiting the TXNIP/NLRP3 signaling pathway.


Asunto(s)
Colitis Ulcerosa , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Humanos , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Células Endoteliales/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inflamación/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Interleucina-12/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo
15.
Int J Biol Macromol ; 227: 1119-1131, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462588

RESUMEN

Alzheimer's disease (AD) is known as "type 3 diabetes". As thioredoxin binding protein (TXNIP) has been shown to be involved in brain insulin resistance, the present study evaluated the roles of TXNIP, phospho-insulin receptor substrate 1 (P-IRS-1), and phosphatidyl inositol-3 kinase (PI3K) in the pathogenesis of AD. The potential ameliorative effect of bromelain compared to donepezil was evaluated in an aluminum chloride (AlCl3)-induced AD in rats. Behavioral tests demonstrated similar improvements in exploratory activity, cognitive and spatial memory functions, anxiety, and depression levels between rats treated with bromelain and donepezil. Donepezil was superior to bromelain in improving locomotor activity. Histopathological examinations demonstrated neuronal degeneration in the AlCl3 group that was almost normalized by bromelain and donepezil. Moreover, there was deposition of amyloid plaques in the AlCl3 group that was improved by bromelain and donepezil. Acetylcholine esterase levels were significantly increased in rats treated with AlCl3 group and significantly decreased in rats treated with bromelain and donepezil. Furthermore, AlCl3 group showed a significantly increased TXNIP and P-IRS1 and a significantly reduced PI3K levels. These effects were ameliorated by bromelain and donepezil treatment. The present study demonstrates a previously unreported modulatory effect of bromelain on the TXNIP/P-IRS-1/PI3K axis in AD model.


Asunto(s)
Enfermedad de Alzheimer , Ratas , Animales , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Cloruro de Aluminio , Aluminio/toxicidad , Donepezilo , Bromelaínas , Modelos Animales de Enfermedad , Fosfatidilinositol 3-Quinasas , Proteínas de Ciclo Celular
16.
Nutrients ; 14(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36297114

RESUMEN

Diet is a modifiable risk factor for common chronic diseases and mental health disorders, and its effects are under partial genetic control. To estimate the impact of diet on individual health, most epidemiological and genetic studies have focused on individual aspects of dietary intake. However, analysing individual food groups in isolation does not capture the complexity of the whole diet pattern. Dietary indices enable a holistic estimation of diet and account for the intercorrelations between food and nutrients. In this study we performed the first ever genome-wide association study (GWA) including 173,701 individuals from the UK Biobank to identify genetic variants associated with the Dietary Approaches to Stop Hypertension (DASH) diet. DASH was calculated using the 24 h-recall questionnaire collected by UK Biobank. The GWA was performed using a linear mixed model implemented in BOLT-LMM. We identified seven independent single-nucleotide polymorphisms (SNPs) associated with DASH. Significant genetic correlations were observed between DASH and several educational traits with a significant enrichment for genes involved in the AMP-dependent protein kinase (AMPK) activation that controls the appetite by regulating the signalling in the hypothalamus. The colocalization analysis implicates genes involved in body mass index (BMI)/obesity and neuroticism (ARPP21, RP11-62H7.2, MFHAS1, RHEBL1). The Mendelian randomisation analysis suggested that increased DASH score, which reflect a healthy diet style, is causal of lower glucose, and insulin levels. These findings further our knowledge of the pathways underlying the relationship between diet and health outcomes. They may have significant implications for global public health and provide future dietary recommendations for the prevention of common chronic diseases.


Asunto(s)
Enfoques Dietéticos para Detener la Hipertensión , Hipertensión , Insulinas , Humanos , Estudio de Asociación del Genoma Completo , Proteínas Quinasas Activadas por AMP , Bancos de Muestras Biológicas , Hipertensión/genética , Hipertensión/prevención & control , Dieta , Glucosa , Reino Unido , Adenosina Monofosfato , Proteínas de Unión al ADN , Proteínas Oncogénicas , Proteínas de Ciclo Celular
17.
Chem Biol Interact ; 367: 110171, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108716

RESUMEN

Selenium is a trace element that has been shown to inhibit the growth of various cancer cell types. However, its role in cervical cancer and its underlying mechanisms remains largely unknown. Herein, we explored the anti-cervical cancer effect of selenium and its potential mechanisms through xenograft and in vitro experiments. HeLa cell xenografts in female nude mice showed tumor growth retardation, with no obvious liver and kidney toxicity, after being intraperitoneally injected with 3 mg/kg sodium selenite (SS) for 14 days. Compared to the control group, selenium levels in the tumor tissue increased significantly after SS treatment. In vitro experiments, SS inhibited the viability of HeLa and SiHa cells, blocked the cell cycle at the S phase, and enhanced apoptosis. RNA-sequencing, Kyoto encyclopedia of genes and genomes pathway analysis showed that forkhead box protein O (FOXO) was a key regulatory signaling pathway for SS to exhibit anticancer effects. Gene Ontology analysis filtered multiple terms associated with apoptosis, anti-proliferation, and cell cycle arrest. Further research revealed that SS increased intracellular reactive oxygen species (ROS) and impaired mitochondrial function, which activated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) via phosphorylation at Thr172, resulting in activation of FOXO3a and its downstream growth arrest and DNA damage-inducible alpha (GADD45a). In summary, SS exhibited anti-cervical cancer effects, and their mechanisms may be that SS is involved in inducing cell cycle arrest and potentiating cell apoptosis caused by ROS-dependent activation of the AMPK/FOXO3a/GADD45a axis.


Asunto(s)
Selenio , Oligoelementos , Neoplasias del Cuello Uterino , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina/farmacología , Adenosina Monofosfato/farmacología , Animales , Apoptosis , Proteínas de Ciclo Celular , Femenino , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células HeLa , Humanos , Ratones , Ratones Desnudos , ARN , Especies Reactivas de Oxígeno/metabolismo , Selenio/farmacología , Selenito de Sodio/farmacología , Neoplasias del Cuello Uterino/patología
18.
J Vet Sci ; 23(5): e74, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36174978

RESUMEN

BACKGROUND: Previous studies have presented evidence to support the significant association between red meat intake and colon cancer, suggesting that heme iron plays a key role in colon carcinogenesis. Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, exhibits anti-oxidative and anti-cancer effects. However, the effect of EGCG on red meat-associated colon carcinogenesis is not well understood. OBJECTIVES: We aimed to investigate the regulatory effects of hemin and EGCG on colon carcinogenesis and the underlying mechanism of action. METHODS: Hemin and EGCG were treated in Caco2 cells to perform the water-soluble tetrazolium salt-1 assay, lactate dehydrogenase release assay, reactive oxygen species (ROS) detection assay, real-time quantitative polymerase chain reaction and western blot. We investigated the regulatory effects of hemin and EGCG on an azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced colon carcinogenesis mouse model. RESULTS: In Caco2 cells, hemin increased cell proliferation and the expression of cell cycle regulatory proteins, and ROS levels. EGCG suppressed hemin-induced cell proliferation and cell cycle regulatory protein expression as well as mitochondrial ROS accumulation. Hemin increased nuclear factor erythroid-2-related factor 2 (Nrf2) expression, but decreased Keap1 expression. EGCG enhanced hemin-induced Nrf2 and antioxidant gene expression. Nrf2 inhibitor reversed EGCG reduced cell proliferation and cell cycle regulatory protein expression. In AOM/DSS mice, hemin treatment induced hyperplastic changes in colon tissues, inhibited by EGCG supplementation. EGCG reduced the hemin-induced numbers of total aberrant crypts and malondialdehyde concentration in the AOM/DSS model. CONCLUSIONS: We demonstrated that EGCG reduced hemin-induced proliferation and colon carcinogenesis through Nrf2-inhibited mitochondrial ROS accumulation.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Enfermedades de los Roedores , Animales , Antioxidantes , Azoximetano , Células CACO-2 , Carcinogénesis , Catequina/análogos & derivados , Proteínas de Ciclo Celular , Colon , Dextranos , Hemina/farmacología , Humanos , Hierro , Proteína 1 Asociada A ECH Tipo Kelch , Lactato Deshidrogenasas , Malondialdehído , Ratones , Especies Reactivas de Oxígeno , , Sales de Tetrazolio
19.
Cell Rep ; 40(9): 111296, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044856

RESUMEN

The Hippo tumor-suppressor pathway is frequently dysregulated in human cancers and represents a therapeutic target. However, strategies targeting the mammalian Hippo pathway are limited because of the lack of a well-established cell-surface regulator. Here, we show that transmembrane protein KIRREL1, by interacting with both SAV1 and LATS1/2, promotes LATS1/2 activation by MST1/2 (Hippo kinases), and LATS1/2 activation, in turn, inhibits activity of YAP/TAZ oncoproteins. Conversely, YAP/TAZ directly induce the expression of KIRREL1 in a TEAD1-4-dependent manner. Indeed, KIRREL1 expression positively correlates with canonical YAP/TAZ target gene expression in clinical tumor specimens and predicts poor prognosis. Moreover, transgenic expression of KIRREL1 effectively blocks tumorigenesis in a mouse intrahepatic cholangiocarcinoma model, indicating a tumor-suppressor role of KIRREL1. Hence, KIRREL1 constitutes a negative feedback mechanism regulating the Hippo pathway and serves as a cell-surface marker and potential drug target in cancers with YAP/TAZ dependency.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinogénesis , Proteínas de Ciclo Celular , Vía de Señalización Hippo , Proteínas de la Membrana , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colangiocarcinoma/metabolismo , Retroalimentación , Humanos , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Señalizadoras YAP/metabolismo
20.
Phytomedicine ; 104: 154316, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35820305

RESUMEN

BACKGROUND: Celastrol (CEL) has a great potential in the treatment of a wide variety of metabolic diseases. However, whether CEL protects pancreatic ß cells and its underlying mechanism are not yet clear. PURPOSE: This study investigates to determine the effects of CEL on the pathogenesis of pancreatic ß cells damage. METHODS: C57BLKS/Leprdb (db/db) mice and rat insulinoma INS-1 cell line or mouse J774A.1 cell line were used as in vivo and in vitro models for investigating the protective effect of CEL on pancreatic ß cells under high glucose environment and the related mechanism. The phenotypic changes were evaluated by immunofluorescence, immunohistochemical staining, flow cytometry and the measurement of biochemical indexes. The molecular mechanism was explored by biological techniques such as western blotting, qPCR, ChIP-qPCR, co-immunoprecipitation and lentivirus infection. RESULTS: Our results showed that CEL at the high dose (CEL-H, 0.2 mg/kg) protects db/db mice against increased body weight and blood glucose. CEL-H inhibits pancreatic ß cell apoptosis in db/db mice and high glucose-induced INS-1 cells. CEL-H also reduced IL-1ß production in islet macrophages. The further study found that CEL suppressed TXNIP expression and NLRP3 inflammasome activation in pancreatic ß cells and islet macrophages. Importantly, the inhibitory effect of CEL on pancreatic ß cell apoptosis and IL-1ß production was also dependent on TXNIP. Mechanically, CEL inhibits Txnip transcription by promoting the degradation of ChREBP. CONCLUSION: Celastrol inhibits TXNIP expression to protect pancreatic ß cells in vivo and in vitro. Our research pointed out another mechanism by which celastrol functions under the condition leptin signaling is ineffective.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Inflamasomas/metabolismo , Ratones , Triterpenos Pentacíclicos , Ratas , Tiorredoxinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA