Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(26): e2201800119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35737836

RESUMEN

Bacterial tyrosine kinases (BY-kinases) comprise a family of protein tyrosine kinases that are structurally distinct from their functional counterparts in eukaryotes and are highly conserved across the bacterial kingdom. BY-kinases act in concert with their counteracting phosphatases to regulate a variety of cellular processes, most notably the synthesis and export of polysaccharides involved in biofilm and capsule biogenesis. Biochemical data suggest that BY-kinase function involves the cyclic assembly and disassembly of oligomeric states coupled to the overall phosphorylation levels of a C-terminal tyrosine cluster. This process is driven by the opposing effects of intermolecular autophosphorylation, and dephosphorylation catalyzed by tyrosine phosphatases. In the absence of structural insight into the interactions between a BY-kinase and its phosphatase partner in atomic detail, the precise mechanism of this regulatory process has remained poorly defined. To address this gap in knowledge, we have determined the structure of the transiently assembled complex between the catalytic core of the Escherichia coli (K-12) BY-kinase Wzc and its counteracting low-molecular weight protein tyrosine phosphatase (LMW-PTP) Wzb using solution NMR techniques. Unambiguous distance restraints from paramagnetic relaxation effects were supplemented with ambiguous interaction restraints from static spectral perturbations and transient chemical shift changes inferred from relaxation dispersion measurements and used in a computational docking protocol for structure determination. This structurepresents an atomic picture of the mode of interaction between an LMW-PTP and its BY-kinase substrate, and provides mechanistic insight into the phosphorylation-coupled assembly/disassembly process proposed to drive BY-kinase function.


Asunto(s)
Proteínas de Escherichia coli , Fosfoproteínas Fosfatasas , Proteínas Tirosina Quinasas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Tirosina/metabolismo
2.
J Am Chem Soc ; 144(16): 7129-7145, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35416044

RESUMEN

Previously characterized nitrite reductases fall into three classes: siroheme-containing enzymes (NirBD), cytochrome c hemoproteins (NrfA and NirS), and copper-containing enzymes (NirK). We show here that the di-iron protein YtfE represents a physiologically relevant new class of nitrite reductases. Several functions have been previously proposed for YtfE, including donating iron for the repair of iron-sulfur clusters that have been damaged by nitrosative stress, releasing nitric oxide (NO) from nitrosylated iron, and reducing NO to nitrous oxide (N2O). Here, in vivo reporter assays confirmed that Escherichia coli YtfE increased cytoplasmic NO production from nitrite. Spectroscopic and mass spectrometric investigations revealed that the di-iron site of YtfE exists in a mixture of forms, including nitrosylated and nitrite-bound, when isolated from nitrite-supplemented, but not nitrate-supplemented, cultures. Addition of nitrite to di-ferrous YtfE resulted in nitrosylated YtfE and the release of NO. Kinetics of nitrite reduction were dependent on the nature of the reductant; the lowest Km, measured for the di-ferrous form, was ∼90 µM, well within the intracellular nitrite concentration range. The vicinal di-cysteine motif, located in the N-terminal domain of YtfE, was shown to function in the delivery of electrons to the di-iron center. Notably, YtfE exhibited very low NO reductase activity and was only able to act as an iron donor for reconstitution of apo-ferredoxin under conditions that damaged its di-iron center. Thus, YtfE is a high-affinity, low-capacity nitrite reductase that we propose functions to relieve nitrosative stress by acting in combination with the co-regulated NO-consuming enzymes Hmp and Hcp.


Asunto(s)
Proteínas de Escherichia coli , Estrés Nitrosativo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Hierro/química , Óxido Nítrico/metabolismo , Nitrito Reductasas/metabolismo , Nitritos/metabolismo
3.
J Am Chem Soc ; 143(49): 20670-20679, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34846870

RESUMEN

Covalent labeling of proteins in combination with mass spectrometry has been established as a complementary technique to classical structural methods, such as X-ray, NMR, or cryogenic electron microscopy (Cryo-EM), used for protein structure determination. Although the current covalent labeling techniques enable the protein solvent accessible areas with sufficient spatial resolution to be monitored, there is still high demand for alternative, less complicated, and inexpensive approaches. Here, we introduce a new covalent labeling method based on fast fluoroalkylation of proteins (FFAP). FFAP uses fluoroalkyl radicals formed by reductive decomposition of Togni reagents with ascorbic acid to label proteins on a time scale of seconds. The feasibility of FFAP to effectively label proteins was demonstrated by monitoring the differential amino acids modification of native horse heart apomyoglobin/holomyoglobin and the human haptoglobin-hemoglobin complex. The obtained data confirmed the Togni reagent-mediated FFAP is an advantageous alternative method for covalent labeling in applications such as protein footprinting and epitope mapping of proteins (and their complexes) in general. Data are accessible via the ProteomeXchange server with the data set identifier PXD027310.


Asunto(s)
Proteínas de Escherichia coli/química , Haptoglobinas/química , Hemoglobinas/química , Hidrocarburos Fluorados/química , Mioglobina/química , Proteínas Represoras/química , Alquilación , Animales , Escherichia coli/química , Caballos , Humanos , Espectrometría de Masas/métodos , Conformación Proteica
4.
Phys Chem Chem Phys ; 23(32): 17656-17662, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34373871

RESUMEN

In this manuscript the ability of selenium carbohydrates to undergo chalcogen bonding (ChB) interactions with protein residues has been studied at the RI-MP2/def2-TZVP level of theory. An inspection of the Protein Data Bank (PDB) revealed SeA (A = O, C and S) intermolecular contacts involving Se-pyranose ligands and ASP, TYR, SER and MET residues. Theoretical models were built to analyse the strength and directionality of the interaction together with "Atoms in Molecules" (AIM), Natural Bonding Orbital (NBO) and Non Covalent Interactions plot (NCIplot) analyses, which further assisted in the characterization of the ChBs described herein. We expect that the results from this study will be useful to expand the current knowledge regarding biological ChBs as well as to increase the visibility of the interaction among the carbohydrate chemistry community.


Asunto(s)
Lectinas/metabolismo , Monosacáridos/metabolismo , Compuestos de Organoselenio/metabolismo , Agaricales/química , Aspergillus oryzae/química , Bases de Datos de Proteínas , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Enlace de Hidrógeno , Lectinas/química , Modelos Moleculares , Monosacáridos/química , Compuestos de Organoselenio/química , Unión Proteica , Selenio/química , Electricidad Estática , Termodinámica
5.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205216

RESUMEN

Two independent, complementary methods of structural analysis were used to elucidate the effect of divalent magnesium and iron cations on the structure of the protective Dps-DNA complex. Small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-EM) demonstrate that Mg2+ ions block the N-terminals of the Dps protein preventing its interaction with DNA. Non-interacting macromolecules of Dps and DNA remain in the solution in this case. The subsequent addition of the chelating agent (EDTA) leads to a complete restoration of the structure of the complex. Different effect was observed when Fe cations were added to the Dps-DNA complex; the presence of Fe2+ in solution leads to the total complex destruction and aggregation without possibility of the complex restoration with the chelating agent. Here, we discuss these different responses of the Dps-DNA complex on the presence of additional free metal cations, investigating the structure of the Dps protein with and without cations using SAXS and cryo-EM. Additionally, the single particle analysis of Dps with accumulated iron performed by cryo-EM shows localization of iron nanoparticles inside the Dps cavity next to the acidic (hydrophobic) pore, near three glutamate residues.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/ultraestructura , ADN/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Hierro/química , Magnesio/química , Secuencia de Aminoácidos/efectos de los fármacos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Cationes/química , Microscopía por Crioelectrón , ADN/química , ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Dispersión del Ángulo Pequeño , Difracción de Rayos X
6.
Microb Cell Fact ; 20(1): 8, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33494776

RESUMEN

BACKGROUND: Pichia pastoris (Komagataella phaffii) is an important platform for heterologous protein production due to its growth to high cell density and outstanding secretory capabilities. Recent developments in synthetic biology have extended the toolbox for genetic engineering of P. pastoris to improve production strains. Yet, overloading the folding and secretion capacity of the cell by over-expression of recombinant proteins is still an issue and rational design of strains is critical to achieve cost-effective industrial manufacture. Several enzymes are commercially produced in P. pastoris, with phytases being one of the biggest on the global market. Phytases are ubiquitously used as a dietary supplement for swine and poultry to increase digestibility of phytic acid, the main form of phosphorous storage in grains. RESULTS: Potential bottlenecks for expression of E. coli AppA phytase in P. pastoris were explored by applying bidirectional promoters (BDPs) to express AppA together with folding chaperones, disulfide bond isomerases, trafficking proteins and a cytosolic redox metabolism protein. Additionally, transcriptional studies were used to provide insights into the expression profile of BDPs. A flavoprotein encoded by ERV2 that has not been characterised in P. pastoris was used to improve the expression of the phytase, indicating its role as an alternative pathway to ERO1. Subsequent AppA production increased by 2.90-fold compared to the expression from the state of the AOX1 promoter. DISCUSSION: The microbial production of important industrial enzymes in recombinant systems can be improved by applying newly available molecular tools. Overall, the work presented here on the optimisation of phytase production in P. pastoris contributes to the improved understanding of recombinant protein folding and secretion in this important yeast microbial production host.


Asunto(s)
6-Fitasa/biosíntesis , 6-Fitasa/química , Fosfatasa Ácida/biosíntesis , Fosfatasa Ácida/química , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Pichia/genética , Pliegue de Proteína , 6-Fitasa/metabolismo , Fosfatasa Ácida/metabolismo , Disulfuros/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Fúngica de la Expresión Génica , Ingeniería Genética , Chaperonas Moleculares/metabolismo , Regiones Promotoras Genéticas/genética , Transcripción Genética
7.
Anal Bioanal Chem ; 412(17): 4037-4043, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32328689

RESUMEN

A convenient analytical system for protein-ligand interactions under crude conditions was developed using native mass spectrometry (MS). As a model protein, Escherichia coli (E. coli) dihydrofolate reductase (DHFR) with and without a histidine tag was used for the study. First, overexpressed DHFR with a His-tag was roughly purified with a Ni-sepharose resin and subjected to native mass spectrometry with or without incubation with an inhibitor, Methotrexate (MTX). Even only with the minimum cleanup by the Ni-sepharose resin, intact ions of DHFR-nicotinamide adenine dinucleotide phosphate (NADPH) and DHFR-NADPH-ligand complexes were successfully observed. By optimizing the preparation procedures of the crude sample for native MS, e.g., avoiding sonication for cell lysis, we successfully observed intact ions of the specific DHFR-NADPH-MTX ternary complex starting with cultivation of E. coli in ≤ 25 mL medium. When the crude DHFR sample was mixed with two, four, or eight candidate compounds, only ions of the specific protein-ligand complex were observed. This indicates that the present system can be used as a rapid and convenient method for the rough determination of binding of specific ligands to the target protein without the time-consuming purification of protein samples. Moreover, it is important to rapidly determine specific interactions with target proteins under conditions similar to those in "real" biological systems. Graphical abstract.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Antagonistas del Ácido Fólico/farmacología , Metotrexato/farmacología , Tetrahidrofolato Deshidrogenasa/metabolismo , Sitios de Unión , Evaluación Preclínica de Medicamentos/métodos , Escherichia coli/química , Proteínas de Escherichia coli/química , NADP/química , NADP/metabolismo , Unión Proteica , Espectrometría de Masa por Ionización de Electrospray/métodos , Tetrahidrofolato Deshidrogenasa/química
8.
Bioelectromagnetics ; 41(4): 279-288, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32207548

RESUMEN

On the basis of Gram-negative bacterium Escherichia coli models previously published in the literature, the transmembrane voltage induced by the application of an alternating current (AC) electric field on a bacterial suspension is calculated using COMSOL Multiphysics software, in the range 1-20 MHz, for longitudinal and transverse field orientations. The voltages developed on each of the three layers of the cell wall are then calculated using an electrical equivalent circuit. This study shows that the overall voltage on the cell wall, whose order of magnitude is a few tens of µV, is mainly distributed on inner and outer layers, while a near-zero voltage is found on the periplasm, due to its much higher electrical conductivity compared with the other layers. Although the outer membrane electrical conductivity taken in the model is a thousand times higher than that of the inner membrane, the voltage there is about half of that on the inner membrane, due to capacitive effects. It follows that the expression of protein complexes anchored in the inner membrane could potentially be disrupted, inducing in particular a possible perturbation of biological processes related to cellular respiration and proton cycle, and leading to growth inhibition as a consequence. Protein complexes anchored in the outer membrane or constituting a bridge between the three layers of the cell wall, such as some porins, may also undergo the same action, which would add another growth inhibition factor, as a result of deficiency in porin filtration function when the external environment contains biocides. Bioelectromagnetics. 2020;41:279-288 © 2020 Bioelectromagnetics Society.


Asunto(s)
Pared Celular/química , Escherichia coli/citología , Membrana Celular/química , Membrana Celular/metabolismo , Pared Celular/metabolismo , Conductividad Eléctrica , Estimulación Eléctrica , Electrofisiología/métodos , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos
9.
Res Microbiol ; 171(5-6): 185-193, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32057959

RESUMEN

Studying substrate consumption in nutrient-rich conditions is challenging because often the growth medium includes undefined components like yeast extract or peptone. For clear and consistent results, it is necessary to use defined medium, where substrate utilization can be followed. In the present work, Escherichia coli BW25113 batch growth in a medium supplemented with 20 proteinogenic amino acids and glucose was studied. Focus was on the quantitative differences in substrate consumption and proteome composition between minimal and nutrient-rich medium. In the latter, 72% of carbon used for biomass growth came from amino acids and 28% from glucose. Serine was identified as the most consumed substrate with 41% of total carbon consumption. Proteome comparison between nutrient-rich and minimal medium revealed changes in TCA cycle and acetate producing enzymes that together with extracellular metabolite data pointed to serine being consumed mainly for energy generation purposes. Serine removal from the growth medium decreased specific growth rate by 22%. In addition, proteome comparison between media revealed a large shift in amino acid synthesis and translation related proteins. Overall, this work describes in quantitative terms the batch growth carbon uptake profile and proteome allocation of E. coli BW25113 in minimal and nutrient-rich medium.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Acetatos/metabolismo , Carbono/metabolismo , Ciclo del Ácido Cítrico , Medios de Cultivo , Metabolismo Energético , Escherichia coli/genética , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Proteoma/análisis , Serina/metabolismo
10.
Sci Rep ; 9(1): 16940, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729460

RESUMEN

Bacterial periplasmic-binding proteins have been acclaimed as general biosensing platform, but their range of natural ligands is too limited for optimal development of chemical compound detection. Computational redesign of the ligand-binding pocket of periplasmic-binding proteins may yield variants with new properties, but, despite earlier claims, genuine changes of specificity to non-natural ligands have so far not been achieved. In order to better understand the reasons of such limited success, we revisited here the Escherichia coli RbsB ribose-binding protein, aiming to achieve perceptible transition from ribose to structurally related chemical ligands 1,3-cyclohexanediol and cyclohexanol. Combinations of mutations were computationally predicted for nine residues in the RbsB binding pocket, then synthesized and tested in an E. coli reporter chassis. Two million variants were screened in a microcolony-in-bead fluorescence-assisted sorting procedure, which yielded six mutants no longer responsive to ribose but with 1.2-1.5 times induction in presence of 1 mM 1,3-cyclohexanediol, one of which responded to cyclohexanol as well. Isothermal microcalorimetry confirmed 1,3-cyclohexanediol binding, although only two mutant proteins were sufficiently stable upon purification. Circular dichroism spectroscopy indicated discernable structural differences between these two mutant proteins and wild-type RbsB. This and further quantification of periplasmic-space abundance suggested most mutants to be prone to misfolding and/or with defects in translocation compared to wild-type. Our results thus affirm that computational design and library screening can yield RbsB mutants with recognition of non-natural but structurally similar ligands. The inherent arisal of protein instability or misfolding concomitant with designed altered ligand-binding pockets should be overcome by new experimental strategies or by improved future protein design algorithms.


Asunto(s)
Sitios de Unión , Ciclohexanoles/química , Diseño de Fármacos , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Modelos Moleculares , Proteínas de Unión Periplasmáticas/química , Aminoácidos , Evaluación Preclínica de Medicamentos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Biblioteca de Genes , Ligandos , Mutación , Proteínas de Unión Periplasmáticas/antagonistas & inhibidores , Proteínas de Unión Periplasmáticas/genética , Relación Estructura-Actividad
11.
Biochem J ; 476(21): 3125-3139, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31488574

RESUMEN

CoaBC, part of the vital coenzyme A biosynthetic pathway in bacteria, has recently been validated as a promising antimicrobial target. In this work, we employed native ion mobility-mass spectrometry to gain structural insights into the phosphopantothenoylcysteine synthetase domain of E. coli CoaBC. Moreover, native mass spectrometry was validated as a screening tool to identify novel inhibitors of this enzyme, highlighting the utility and versatility of this technique both for structural biology and for drug discovery.


Asunto(s)
Carboxiliasas/química , Evaluación Preclínica de Medicamentos/métodos , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Espectrometría de Masas/métodos , Complejos Multienzimáticos/química , Péptido Sintasas/química , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/metabolismo , Dimerización , Inhibidores Enzimáticos/química , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Cinética , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Péptido Sintasas/antagonistas & inhibidores , Péptido Sintasas/metabolismo , Dominios Proteicos
12.
ACS Chem Biol ; 14(9): 1879-1887, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433162

RESUMEN

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB) and has evolved an incredible ability to survive latently within the human host for decades. The Mtb pathogen encodes for a low number of ATP-binding cassette (ABC) importers for the acquisition of carbohydrates that may reflect the nutrient poor environment within the host macrophages. Mtb UgpB (Rv2833c) is the substrate binding domain of the UgpABCE transporter that recognizes glycerophosphocholine (GPC), indicating that this transporter has a role in recycling glycerophospholipid metabolites. By using a combination of saturation transfer difference (STD) NMR and X-ray crystallography, we report the structural analysis of Mtb UgpB complexed with GPC and have identified that Mtb UgpB not only recognizes GPC but is also promiscuous for a broad range of glycerophosphodiesters. Complementary biochemical analyses and site-directed mutagenesis precisely define the molecular basis and specificity of glycerophosphodiester recognition. Our results provide critical insights into the structural and functional role of the Mtb UgpB transporter and reveal that the specificity of this ABC-transporter is not limited to GPC, therefore optimizing the ability of Mtb to scavenge scarce nutrients and essential glycerophospholipid metabolites via a single transporter during intracellular infection.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Glicerilfosforilcolina/metabolismo , Mycobacterium tuberculosis/química , Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato
13.
Methods Enzymol ; 621: 305-328, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31128785

RESUMEN

In-cell NMR spectroscopy is a powerful tool to study protein structures and interactions under near physiological conditions in both prokaryotic and eukaryotic living cells. The low sensitivity and resolution of in-cell NMR spectra and limited lifetime of cells over the course of an in-cell experiment have presented major hurdles to wide acceptance of the technique, limiting it to a few select systems. These issues are addressed by introducing the use of the CRINEPT pulse sequence to increase the sensitivity and resolution of in-cell NMR spectra and the use of a bioreactor to maintain cell viability for up to 24h. Application of advanced pulse sequences and bioreactor during in-cell NMR experiments will facilitate the exploration of a wide range of biological processes.


Asunto(s)
Reactores Biológicos , Resonancia Magnética Nuclear Biomolecular/instrumentación , Proteínas/química , Supervivencia Celular , Evaluación Preclínica de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos/métodos , Diseño de Equipo , Escherichia coli/química , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Viabilidad Microbiana , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular/métodos , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo , Programas Informáticos
14.
Sci Rep ; 9(1): 6215, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30996281

RESUMEN

Potassium channels selectivity filter (SF) conformation is modulated by several factors, including ion-protein and protein-protein interactions. Here, we investigate the SF dynamics of a single Trp mutant of the potassium channel KcsA (W67) using polarized time-resolved fluorescence measurements. For the first time, an analytical framework is reported to analyze the homo-Förster resonance energy transfer (homo-FRET) within a symmetric tetrameric protein with a square geometry. We found that in the closed state (pH 7), the W67-W67 intersubunit distances become shorter as the average ion occupancy of the SF increases according to cation type and concentration. The hypothesis that the inactivated SF at pH 4 is structurally similar to its collapsed state, detected at low K+, pH 7, was ruled out, emphasizing the critical role played by the S2 binding site in the inactivation process of KcsA. This homo-FRET approach provides complementary information to X-ray crystallography in which the protein conformational dynamics is usually compromised.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Canales de Potasio/química , Canales de Potasio/metabolismo , Conformación Proteica , Anisotropía , Sitios de Unión , Cristalografía por Rayos X/métodos , Polarización de Fluorescencia , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Potasio/metabolismo , Sodio/metabolismo
15.
Biochemistry ; 58(9): 1188-1197, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30714720

RESUMEN

Enolase is a glycolytic metalloenzyme involved in carbon metabolism. The advantage of targeting enolase lies in its essentiality in many biological processes such as cell wall formation and RNA turnover and as a plasminogen receptor. We initially used a DARTS assay to identify enolase as a target in Escherichia coli. The antibacterial activities of α-, ß-, and γ-substituted seven-member ring tropolones were first evaluated against four strains representing a range of Gram-negative bacteria. We observed that the chemical properties and position of the substituents on the tropolone ring play an important role in the biological activity of the investigated compounds. Both α- and ß-substituted phenyl derivatives of tropolone were the most active with minimum inhibitory concentrations in the range of 11-14 µg/mL. The potential inhibitory activity of the synthetic tropolones was further evaluated using an enolase inhibition assay, X-ray crystallography, and molecular docking simulations. The catalytic activity of enolase was effectively inhibited by both the naturally occurring ß-thujaplicin and the α- and ß-substituted phenyl derivatives of tropolones with IC50 values in range of 8-11 µM. Ligand binding parameters were assessed by isothermal titration calorimetry and differential scanning calorimetry techniques and agreed with the in vitro data. Our studies validate the antibacterial potential of tropolones with careful consideration of the position and character of chelating moieties for stronger interaction with metal ions and residues in the enolase active site.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Fosfopiruvato Hidratasa/antagonistas & inhibidores , Tropolona/farmacología , Antibacterianos/química , Calorimetría , Dominio Catalítico , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bacterias Gramnegativas/enzimología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Fosfopiruvato Hidratasa/química , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Tropolona/química
16.
J Comput Chem ; 40(14): 1440-1448, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-30747434

RESUMEN

In conventional "Venus Flytrap" mechanism, substrate-binding proteins (SBPs) interconvert between the open and closed conformations. Upon ligand binding, SBPs form a tightly closed conformation with the ligand bound at the interface of two domains. This mechanism was later challenged by many type III SBPs, such as the vitamin B12 -binding protein BtuF, in which the apo- and holo-state proteins adopt very similar conformations. Here, we combined molecular dynamics simulation and Markov state model analysis to study the conformational dynamics of apo- and B12 -bound BtuF. The results indicate that the crystal structures represent the only stable conformation of BtuF. Meanwhile, both apo- and holo-BtuF undergo large-scale interdomain motions with little energy cost. B12 binding casts little restraints on the interdomain motions, suggesting that ligand binding affinity is enhanced by the remaining conformational entropy of holo-BtuF. These results reveal a new paradigm of ligand recognition mechanism of SBPs. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Proteínas de Escherichia coli/química , Cadenas de Markov , Simulación de Dinámica Molecular , Proteínas de Unión Periplasmáticas/química , Sitios de Unión , Cristalografía por Rayos X , Cinética , Ligandos , Conformación Proteica
17.
Biotechnol Lett ; 41(1): 129-136, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30390191

RESUMEN

OBJECTIVES: Metal-ion independent non-specific nucleases are of high potential for applications in EDTA-containing bioprocessing workflows. RESULTS: A novel extracellular non-specific nuclease EcNuc from the enterobacterium Escherichia coli has been identified. The recombinant gene was expressed and the protein was purified. Maximum activity of the enzyme was detected at 41.7 °C and at an acidic pH of 5.8. EcNuc tolerates EDTA in the reaction buffer at concentrations of up to 20 mM and the activity is not impaired by high concentrations of mono- and divalent metal ions in the absence of EDTA. The viscosity of crude protein extracts after cell lysis in EDTA-containing buffers is reduced when supplemented with EcNuc. CONCLUSION: Proof-of-concept has been demonstrated that a metal-ion independent non-specific nuclease can be applied for removal of nucleic acids in EDTA-containing buffers for the subsequent purification of proteins from crude extracts.


Asunto(s)
Desoxirribonucleasas/química , Ácido Edético/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Desoxirribonucleasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Calor , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
18.
Nat Prod Res ; 33(24): 3507-3514, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29911437

RESUMEN

Chemical modification of medicines from natural product-based molecules has become of interest in recent years. In this study, a series of halogenated azo derivatives 1a-d were synthesised via coupling reaction, followed by Steglich esterification with aspirin (a natural product derivative) to form azo derivatives 2a-d. While, halogenated azo-aspirin 3a-d were synthesised via direct coupling reaction of aspirin and diazonium salt. Bacteriostatic activity was demonstrated against E. coli and S. aureus via turbidimetric kinetic method. Compound 3a-d showed excellent antibacterial activities against E. coli (MIC 75-94 ppm) and S. aureus (MIC 64-89 ppm) compared to ampicillin (MIC 93 and 124 ppm respectively), followed by 1a-d and 2a-d. The presence of reactive groups of -OH, N=N, C=O and halogens significantly contribute excellent interaction towards E. coli and S. aureus. Molecular dockings analysis of 3a against MIaC protein showed binding free energy of -7.2 kcal/mol (E. coli) and -6.6 kcal/mol (S. aureus).


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Aspirina/química , Antibacterianos/síntesis química , Productos Biológicos/química , Evaluación Preclínica de Medicamentos , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos
19.
Appl Microbiol Biotechnol ; 102(22): 9647-9656, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30178201

RESUMEN

Escherichia coli phytase appA, which hydrolyzes phytate, has been widely applied as an important feed supplement, but its resistance to trypsin needs to be improved. Six putative solvent-accessible amino acid residues (K74, K75, K180, R181, K183, and K363), which could be easily attacked by trypsin, were selected to improve trypsin tolerance of Escherichia coli phytase appA. Inspection of the three-dimensional structure and computational design via hydrogen bond analysis, six optimal mutation sites of K74D/K75Q/K180N/R181N/K183S/K363N, which strengthened the hydrogen bonding, were performed to generate three mutants. Results showed that the most beneficial mutant appA-M6 had a specific activity of 3262 U/mg with molecular weight of approximately 52-55 kDa. Similar to appA-WT, the optimal pH (4.5) and temperature (60 °C) of appA-M6 were unchanged. Compared with appA-WT, appA-M6 showed a significant enhancement (p < 0.05) in resistance to trypsin and a 3.8 °C increase in melting temperature (Tm). We concluded that introduction of hydrogen bonds and N-glycosylation modification resulted in decreased enzyme flexibility and increased the enzyme stability against proteolysis and thermal denaturation. The mutant appA-M6 generated in this study could be applied for the large-scale commercial production of phytase and thus could benefit the food and feed industry.


Asunto(s)
6-Fitasa/química , 6-Fitasa/genética , Fosfatasa Ácida/química , Fosfatasa Ácida/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , 6-Fitasa/metabolismo , Fosfatasa Ácida/metabolismo , Secuencias de Aminoácidos , Estabilidad de Enzimas , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosilación , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Ingeniería de Proteínas , Temperatura , Tripsina/química
20.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30030232

RESUMEN

How enzymes behave in cells is likely different from how they behave in the test tube. Previous in vitro studies find that osmolytes interact weakly with folate. Removal of the osmolyte from the solvation shell of folate is more difficult than removal of water, which weakens binding of folate to its enzyme partners. To examine if this phenomenon occurs in vivo, osmotic stress titrations were performed with Escherichia coli Two strategies were employed: resistance to an antibacterial drug and complementation of a knockout strain by the appropriate gene cloned into a plasmid that allows tight control of expression levels as well as labeling by a degradation tag. The abilities of the knockout and complemented strains to grow under osmotic stress were compared. Typically, the knockout strain could grow to high osmolalities on supplemented medium, while the complemented strain stopped growing at lower osmolalities on minimal medium. This pattern was observed for an R67 dihydrofolate reductase clone rescuing a ΔfolA strain, for a methylenetetrahydrofolate reductase clone rescuing a ΔmetF strain, and for a serine hydroxymethyltransferase clone rescuing a ΔglyA strain. Additionally, an R67 dihydrofolate reductase clone allowed E. coli DH5α to grow in the presence of trimethoprim until an osmolality of ∼0.81 is reached, while cells in a control titration lacking antibiotic could grow to 1.90 osmol.IMPORTANCEE. coli can survive in drought and flooding conditions and can tolerate large changes in osmolality. However, the cell processes that limit bacterial growth under high osmotic stress conditions are not known. In this study, the dose of four different enzymes in E. coli was decreased by using deletion strains complemented by the gene carried in a tunable plasmid. Under conditions of limiting enzyme concentration (lower than that achieved by chromosomal gene expression), cell growth can be blocked by osmotic stress conditions that are normally tolerated. These observations indicate that E. coli has evolved to deal with variations in its osmotic environment and that normal protein levels are sufficient to buffer the cell from environmental changes. Additional factors involved in the osmotic pressure response may include altered protein concentration/activity levels, weak solute interactions with ligands which can make it more difficult for proteins to bind their substrates/inhibitors/cofactors in vivo, and/or viscosity effects.


Asunto(s)
Escherichia coli/enzimología , Escherichia coli/metabolismo , Ácido Fólico/metabolismo , 5,10-Metilenotetrahidrofolato Reductasa (FADH2)/química , 5,10-Metilenotetrahidrofolato Reductasa (FADH2)/genética , 5,10-Metilenotetrahidrofolato Reductasa (FADH2)/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicina Hidroximetiltransferasa/química , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Cinética , Ósmosis , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA