Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Immunol ; 15: 1319698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646543

RESUMEN

This study explored the impacts of supplementation of different levels of coated methionine (Met) in a high-plant protein diet on growth, blood biochemistry, antioxidant capacity, digestive enzymes activity and expression of genes related to TOR signaling pathway in gibel carp (Carassius auratus gibeilo). A high-plant protein diet was formulated and used as a basal diet and supplemented with five different levels of coated Met at 0.15, 0.30, 0.45, 0.60 and 0.75%, corresponding to final analyzed Met levels of 0.34, 0.49, 0.64, 0.76, 0.92 and 1.06%. Three replicate groups of fish (initial mean weight, 11.37 ± 0.02 g) (20 fish per replicate) were fed the test diets over a 10-week feeding period. The results indicated that with the increase of coated Met level, the final weight, weight gain (WG) and specific growth rate initially boosted and then suppressed, peaking at 0.76% Met level (P< 0.05). Increasing dietary Met level led to significantly increased muscle crude protein content (P< 0.05) and reduced serum alanine aminotransferase activity (P< 0.05). Using appropriate dietary Met level led to reduced malondialdehyde concentration in hepatopancreas (P< 0.05), improved superoxide dismutase activity (P< 0.05), and enhanced intestinal amylase and protease activities (P< 0.05). The expression levels of genes associated with muscle protein synthesis such as insulin-like growth factor-1, protein kinase B, target of rapamycin and eukaryotic initiation factor 4E binding protein-1 mRNA were significantly regulated, peaking at Met level of 0.76% (P< 0.05). In conclusion, supplementing optimal level of coated Met improved on fish growth, antioxidant capacity, and the expression of TOR pathway related genes in muscle. The optimal dietary Met level was determined to be 0.71% of the diet based on quadratic regression analysis of WG.


Asunto(s)
Alimentación Animal , Antioxidantes , Suplementos Dietéticos , Metionina , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Metionina/administración & dosificación , Serina-Treonina Quinasas TOR/metabolismo , Antioxidantes/metabolismo , Alimentación Animal/análisis , Carpa Dorada/crecimiento & desarrollo , Carpa Dorada/genética , Carpa Dorada/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos
2.
Mar Drugs ; 22(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38667779

RESUMEN

With the aim to upcycle fish side-streams, enzymatic hydrolysis is often applied to produce protein hydrolysates with bioactive properties or just as a protein source for food and feed. However, the production of hydrolysates generates a side-stream. For underutilized fish and fish backbone this side-stream will contain fish bones and make it rich in minerals. The aim of this study was to assess the relative bioaccessibility (using the standardized in vitro model INFOGEST 2.0) of minerals in a dietary supplement compared to bone powder generated after enzymatic hydrolysis of three different fish side-streams: undersized whole hake, cod and salmon backbones consisting of insoluble protein and bones. Differences in the bioaccessibility of protein between the powders were also investigated. The enzyme hydrolysis was carried out using different enzymes and hydrolysis conditions for the different fish side-streams. The content and bioaccessibility of protein and the minerals phosphorus (P), calcium (Ca), potassium (K) and magnesium (Mg) were measured to evaluate the potential of the powder as an ingredient in, e.g., dietary supplements. The bone powders contained bioaccessible proteins and minerals. Thus, new side-streams generated from enzymatic hydrolysis can have possible applications in the food sector due to bioaccessible proteins and minerals.


Asunto(s)
Huesos , Suplementos Dietéticos , Minerales , Alimentos Marinos , Animales , Huesos/metabolismo , Hidrólisis , Salmón/metabolismo , Disponibilidad Biológica , Proteínas de Peces/metabolismo , Peces/metabolismo , Hidrolisados de Proteína/química , Polvos
3.
Sci Total Environ ; 923: 171475, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38453063

RESUMEN

Climbazole is an azole biocide that has been widely used in formulations of personal care products. Climbazole can cause developmental toxicity and endocrine disruption as well as gut disturbance in aquatic organisms. However, the mechanisms behind gut toxicity induced by climbazole still remain largely unclear in fish. Here, we evaluate the gut effects by exposing grass carp (Ctenopharyngodon idella) to climbazole at levels ranging from 0.2 to 20 µg/L for 42 days by evaluating gene transcription and expression, biochemical analyses, correlation network analysis, and molecular docking. Results showed that climbazole exposure increased cyp1a mRNA expression and ROS level in the three treatment groups. Climbazole also inhibited Nrf2 and Keap1 transcripts as well as proteins, and suppressed the transcript levels of their subordinate antioxidant molecules (cat, sod, and ho-1), increasing oxidative stress. Additionally, climbazole enhanced NF-κB and iκBα transcripts and proteins, and the transcripts of NF-κB downstream pro-inflammatory factors (tnfα, and il-1ß/6/8), leading to inflammation. Climbazole increased pro-apoptosis-related genes (fadd, bad1, and caspase3), and decreased anti-apoptosis-associated genes (bcl2, and bcl-xl), suggesting a direct reaction to apoptosis. The molecular docking data showed that climbazole could form stable hydrogen bonds with CYP1A. Mechanistically, our findings suggested that climbazole can induce inflammation and oxidative stress through CYP450s/ROS/Nrf2/NF-κB pathways, resulting in cell apoptosis in the gut of grass carp.


Asunto(s)
Carpas , Suplementos Dietéticos , Imidazoles , Animales , Suplementos Dietéticos/análisis , Dieta , FN-kappa B , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Inmunidad Innata , Azoles/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Inflamación/inducido químicamente , Inflamación/veterinaria , Estrés Oxidativo , Apoptosis , Carpas/metabolismo
4.
J Agric Food Chem ; 72(9): 4977-4990, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38386875

RESUMEN

Ochratoxin A (OTA) is a common mycotoxin in food and feed that seriously harms human and animal health. This study investigated the effect of OTA on the muscle growth of juvenile grass carp (Ctenopharyngodon idella) and its possible mechanism in vitro. Our results have the following innovative findings: (1) Dietary OTA increased the expression of increasing phase I metabolic enzymes and absorbing transporters while reducing the expression of efflux transporters, thereby increasing their residue in muscles; (2) OTA inhibited the expressions of cell cycle and myogenic regulatory factors (MyoD, MyoG, and MyHC) and induced ferroptosis by decreasing the mRNA and protein expressions of FTH, TFR1, GPX4, and Nrf2 both in vivo and in vitro; and (3) the addition of DFO improved OTA-induced ferroptosis of grass carp primary myoblasts and promoted cell proliferation, while the addition of AKT improved OTA-inhibited myoblast differentiation and fusion, thus inhibiting muscle growth. Overall, this study provides a potential research target to further mitigate the myotoxicity of OTA.


Asunto(s)
Carpas , Ferroptosis , Enfermedades de los Peces , Ocratoxinas , Animales , Humanos , Suplementos Dietéticos , Inmunidad Innata , Transducción de Señal , Carpas/genética , Carpas/metabolismo , Dieta , Músculos/metabolismo , Alimentación Animal/análisis , Proteínas de Peces/metabolismo
5.
Fish Shellfish Immunol ; 146: 109414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296006

RESUMEN

This experiment was conducted to investigate the impacts of dietary selenium yeast (SeY) on the growth performance, fish body composition, metabolic ability, antioxidant capability, immunity and inflammatory responses in juvenile black carp (Mylopharyngodn piceus). The base diet was supplemented with 0.00, 0.30 and 0.60 g/kg SeY (0.04, 0.59 and 1.15 mg/kg of selenium) to form three isonitrogenous and isoenergetic diets for juvenile black carp with a 60-day. Adequate dietary SeY (0.30 and 0.60 g/kg) could significantly increase the weight gain (WG), special growth rate (SGR) compared to the SeY deficient groups (0.00 g/kg) (P < 0.05). Meanwhile, 0.30 and 0.60 g/kg SeY elevated the mRNA levels of selenoprotein T2 (SEPT2), selenoprotein H (SEPH), selenoprotein S (SEPS) and selenoprotein M (SEPM) in the liver and intestine compared with the SeY deficient groups (P < 0.05). Adequate dietary SeY could promote glucose catabolism and utilization through activating glucose transport (GLUT2), glycolysis (GCK, HK, PFK, PK, PDH), tricarboxylic acid cycle (ICDH and MDH), glycogen synthesis (LG, GCS and GBE) and IRS/PI3K/AKT signal pathway molecules (IRS2b, PI3Kc and AKT1) compared with the SeY deficient groups (P < 0.05). Similarly, adequate dietary SeY could improve lipid transport and triglycerides (TG) synthesis through increasing transcription amounts of CD36, GK, DGAT, ACC and FAS in the fish liver compared with the SeY deficient groups (P < 0.05). In addition, adequate SeY could markedly elevate activities of antioxidant enzymes (T-SOD, CAT, GR, GPX) and contents of T-AOC and GSH, while increased transcription amounts of Nrf2, Cu/Zn-SOD, CAT, and GPX in fish liver and intestine (P < 0.05). However, adequate SeY notably decreased contents of MDA, and the mRNA transcription levels of Keap1 in the intestine compared with the SeY deficient groups (P < 0.05). Adequate SeY markedly increased amounts or levels of the immune factors (ALP, ACP, LZM, C3, C4 and IgM) and the transcription levels of innate immune-related functional genes in the liver and intestine (LZM, C3 and C9) compared to the SeY deficient groups (P < 0.05). Moreover, adequate SeY could notably reduce levels of IL-8, IL-1ß, and IFN-γ and elevate TGF-1ß levels in fish intestine (P < 0.05). The transcription levels of MAPK13, MAPK14 and NF-κB p65 were notably reduced in fish intestine treated with 0.30 and 0.60 g/kg SeY (P < 0.05). In conclusion, these results suggested that 0.30 and 0.60 g/kg SeY could not only improve growth performance, increase Se, glucose and lipid metabolic abilities, enhance antioxidant capabilities and immune responses, but also alleviate inflammation, thereby supplying useful reference for producing artificial feeds in black carp.


Asunto(s)
Carpas , Selenio , Animales , Antioxidantes/metabolismo , Carpas/genética , Carpas/metabolismo , Selenio/metabolismo , Saccharomyces cerevisiae/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Inmunidad Innata , Fosfatidilinositol 3-Quinasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , ARN Mensajero , Glucosa , Selenoproteínas/metabolismo , Lípidos , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
6.
Gene ; 896: 148056, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38042217

RESUMEN

In farmed fish, diets rich in palm oil have been observed to promote abnormal lipid build-up in the liver, subsequently leading to physiological harm and disease onset. Emerging research suggests that integrating phospholipids into the feed could serve as a potent countermeasure against hepatic impairments induced by vegetable oil consumption. Phosphatidylcholine is the most abundant type among phospholipids. In the metabolic processes of mammal, lysophosphatidylcholine acyltransferase 1 (LPCAT1), crucial for phosphatidylcholine remodeling, demonstrates a marked affinity towards palmitic acid (PA). Nonetheless, aspects concerning the cloning, tissue-specific distribution, and affinity of the LPCAT1 gene to diverse oil sources have yet to be elucidated in the large yellow croaker (Larimichthys crocea). Within the scope of this study, we successfully isolated and cloned the cDNA of the LPCAT1 gene from the large yellow croaker. Subsequent analysis revealed distinct gene expression patterns of LPCAT1 across ten different tissues of the species. The fully sequenced coding DNA sequence (CDS) of LPCAT1 spans 1503 bp and encodes a sequence of 500 amino acids. Comparative sequence alignment indicates that LPCAT1 shares a 69.75 % amino acid similarity with its counterparts in other species. Although LPCAT1 manifests across various tissues of the large yellow croaker, its predominance is markedly evident in the liver and gills. Furthermore, post exposure of the large yellow croaker's hepatocytes to varied fatty acids, PA has a strong response to LPCAT1. Upon the addition of appropriate lysolecithin to palm oil feed, the mRNA expression of LPCAT1 in the liver cells of the large yellow croaker showed significant variations compared to other subtypes. Concurrently, the mRNA expression of pro-inflammatory genes il-1ß, il-6, il-8, tnf-α and ifn-γ in the liver tissue of the large yellow croaker decreased. Interestingly, they exhibit the same trend of change. In conclusion, we have cloned the LPCAT1 gene on fish successfully and find the augmented gene response of LPCAT1 in hepatocytes under PA treatment first. The results of this study suggest that LPCAT1 may be associated with liver inflammation in fish and offer new insights into mitigating liver diseases in fish caused by palm oil feed.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa , Ácidos Grasos , Perciformes , Animales , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Aciltransferasas/metabolismo , Clonación Molecular , Ácidos Grasos/metabolismo , Proteínas de Peces/metabolismo , Mamíferos/genética , Aceite de Palma/metabolismo , Perciformes/genética , Perciformes/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolípidos/metabolismo , ARN Mensajero/genética
7.
Fish Shellfish Immunol ; 141: 109068, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37699494

RESUMEN

Autophagy is a conserved cellular self-digestion process and is essential for individual growth, cellular metabolism and inflammatory responses. It was responsive to starvation, pathogens infection and environmental stress. However, the information on the regulation of autophagy in fish hepatic intermediary metabolism, antioxidant system, and immune responses were limited. In the present study, turbot with inhibited autophagy flux was built by dietary chloroquine. The hepatic metabolic response, antioxidant enzymes and immune responses were explored. Results showed that dietary chloroquine induced the expression of Beclin 1, SQSTM and LC-3II, and effectively inhibited autophagy flux. Autophagy dysfunction depressed fish growth and feed utilization, while it induced clusters of liver lipid droplets. The genes involved in lipolysis and fatty acid ß-oxidation, as well as the lipogenesis-related genes in chloroquine group were depressed. The phosphorylation of AMPK was activated in chloroquine group, and the genes involved in glycolysis were induced. The hepatic content of malonyldialdehyde and the activities of SOD and CAT were induced when autophagy was inhibited. The content of Complement 3, Complement 4 and Immunoglobulin M, as well as the activity of lysozyme in plasma were depressed in chloroquine group. Dietary chloroquine induced the expression of toll-like receptors and stimulated the expression of myd88 and nf-κb p65, as well as the pro-inflammatory cytokines, such as tnf-α and il-1ß. The expression of anti-inflammatory cytokine tgf-ß was depressed in the chloroquine group. Our results would extend the knowledge on the role of autophagy in teleost and assist in improving fishery production.


Asunto(s)
Antioxidantes , Peces Planos , Animales , Antioxidantes/metabolismo , Suplementos Dietéticos , Inmunidad Innata , Proteínas de Peces/metabolismo , Dieta/veterinaria , Citocinas/metabolismo , Alimentación Animal/análisis
8.
Food Chem ; 422: 136223, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37121206

RESUMEN

To further explain the improvement effect of threonine (Thr) on the fillet quality of fish, a 9-week feeding experiment was conducted. After feeding graded levels of Thr (2.38, 5.38, 8.38, 11.38, 14.38 and 17.38 g/kg), the compositions of fillet hydrolyzed amino acid and fatty acid, and the muscle hardness associated with collagen biosynthesis were mainly analyzed in grass carp (Ctenopharyngodon idella). The results showed that Thr increased the pH value, changed the amino acids and fatty acid composition of fillets, especially essential amino acid (EAA), C22:6n3 (DHA) and C20:5n3 (EPA). Furthermore, this study revealed for the first time that the improvement of muscle hardness by Thr was associated with collagen biosynthesis, and the TGF-ß1/Smads, LARP6a and Hsp47 regulate transcriptional processes, translation initiation and post-translational modifications in collagen biosynthesis, respectively. This study offered a basis for exploring the contribution of Thr in improving muscle quality in sub-adult grass carp.


Asunto(s)
Carpas , Enfermedades de los Peces , Animales , Treonina , Carpas/metabolismo , Dureza , Dieta , Aminoácidos , Músculos/metabolismo , Ácidos Grasos , Colágeno , Alimentación Animal/análisis , Suplementos Dietéticos , Proteínas de Peces/metabolismo , Inmunidad Innata
9.
Aquat Toxicol ; 257: 106424, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36863152

RESUMEN

Aquafeeds are susceptible to contamination caused by aflatoxin B1 (AFB1). The gill of fish is an important respiratory organ. However, few studies have investigated the effects of dietary AFB1 exposure on gill. This study aimed to discuss the effects of AFB1 on the structural and immune barrier of grass carp gill. Dietary AFB1 increased reactive oxygen species (ROS) levels, protein carbonyl (PC) and malondialdehyde (MDA) contents, which consequently caused oxidative damage. In contrast, dietary AFB1 decreased antioxidant enzymes activities, relative genes expression (except MnSOD) and the contents of glutathione (GSH) (P < 0.05), which are partly regulated by NF-E2-related factor 2 (Nrf2/Keap1a). Moreover, dietary AFB1 caused DNA fragmentation. The relative genes of apoptosis (except Bcl-2, McL-1 and IAP) were significantly upregulated (P < 0.05), and apoptosis was likely upregulated through p38 mitogen-activated protein kinase (p38MAPK). The relative expressions of genes associated with tight junction complexes (TJs) (except ZO-1 and claudin-12) were significantly decreased (P < 0.05), and TJs were likely regulated by myosin light chain kinase (MLCK). Overall, dietary AFB1 disrupted the structural barrier of gill. Furthermore, AFB1 increased gill sensitivity to F. columnare, increased Columnaris disease and decreased the production of antimicrobial substances (P < 0.05) in grass carp gill, and upregulated the expression of genes involved with pro-inflammatory factors (except TNF-α and IL-8) and the pro-inflammatory response partly attributed to the regulation by nuclear factor κB (NF-κB). Meanwhile, the anti-inflammatory factors were downregulated (P < 0.05) in grass carp gill after challenge with F. columnare, which was partly attributed to the target of rapamycin (TOR). These results suggested that AFB1 aggravated the disruption of the immune barrier of grass carp gill after being challenge with F. columnare. Finally, the upper limit of safety of AFB1 for grass carp, based on Columnaris disease, was 31.10 µg/kg diet.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , FN-kappa B/metabolismo , Suplementos Dietéticos/análisis , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Aflatoxina B1/toxicidad , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/farmacología , Carpas/metabolismo , Branquias/metabolismo , Inmunidad Innata , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Contaminantes Químicos del Agua/toxicidad , Transducción de Señal , Dieta/veterinaria , Antioxidantes/metabolismo , Glutatión , Alimentación Animal/análisis
10.
Br J Nutr ; 130(2): 185-201, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35508921

RESUMEN

To assess the role of dietary creatine on myofibre characteristics and protein synthesis in muscle, we fed grass carp (Ctenopharyngodon idellus, initial body weight: 88·47 ± 1·44 g) creatine-supplemented diets (1·84, 5·91, 8·48 and 15·44 g/kg diet) for 8 weeks. Creatine supplementation did not affect growth performance, but significantly increased creatine contents in muscle and liver. At 8·48 g/kg, creatine decreased the activities of alanine transaminase and aspartate aminotransferase in serum and improved hardness and chewiness of muscle due to shorter myofibre mean diameter, higher myofibre density and the frequencies of the diameters of classes I and III and collagen content, longer sarcomere length and upregulated mRNA levels of slow myosin heavy chains. Creatine supplementation upregulated the mRNA expressions of myogenic regulatory factors. The 8·48 g/kg creatine-supplemented diet significantly increased the contents of protein, total amino acids (AA), essential AA and free flavour AAs in muscle, the protein levels of insulin-like growth factor I, myogenic differentiation antigen and PPAR-γ coactlvator-1α in muscle and stimulated the phosphorylation of target of rapamycin (TOR) pathway in muscle. In summary, 8·48 mg/kg creatine improved fish health and skeletal muscle growth and increased hardness and protein synthesis in muscle of grass carp by affecting myofibre characteristics and the TOR signalling pathway. A second-order regression model revealed that the optimal dietary creatine supplementation of grass carp ranges between 8·48 and 12·04 g/kg.


Asunto(s)
Carpas , Suplementos Dietéticos , Animales , Creatina , Proteínas Musculares , Carpas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Dieta , ARN Mensajero/metabolismo , Músculos/metabolismo , Alimentación Animal/análisis
11.
Food Chem ; 399: 133799, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998490

RESUMEN

Flesh quality is evaluated according to nutritional value and sensory quality. Cinnamaldehyde (CIN) improves mammalian meat quality, but research relating this to aquaculture is scarce. In this study, five doses of CIN (0, 36, 72, 108, 144 mg/kg diet) were fed to grass carp (Ctenopharyngodon idella) for 60 days. The results show that CIN supplementation increased nutritional value by increasing crude protein content. CIN also improved the sensory quality by increasing the pH and collagen content, decreasing shear force, lactate, and cooking loss. These changes may be related to changes in muscle fiber growth by increasing myofiber diameter. The increased myofiber diameter induced by CIN is associated with TOR mRNA and protein levels, and down-regulated FOXO3a mRNA levels, which might be associated with PTP1B/IGF1/PI3K/AKTs-TOR/FOXO3a signaling. Based on muscle crude protein content, optimal CIN supplementation dosage was 88.01 mg/kg.


Asunto(s)
Carpas , Enfermedades de los Peces , Acroleína/análogos & derivados , Alimentación Animal/análisis , Animales , Carpas/genética , Carpas/metabolismo , Dieta , Suplementos Dietéticos , Enfermedades de los Peces/genética , Proteínas de Peces/metabolismo , Inmunidad Innata , Mamíferos/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/genética , Transducción de Señal
12.
J Sci Food Agric ; 103(3): 1172-1182, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36085562

RESUMEN

BACKGROUND: Deterioration of flesh quality has bad effects on consumer satisfaction. Therefore, effects of safe mannan-oligosaccharides (MOS) on flesh quality of grass carp (Ctenopharyngodon idella) muscle were studied. A total of 540 healthy fish (215.85 ± 0.30 g) were randomly divided into six groups and fed six separate diets with graded levels of MOS (0, 200, 400, 600, 800 and 1000 mg kg-1 ) for 60 days. This study aimed at investigating the benefits of dietary MOS on flesh quality (fatty acids, amino acids and physicochemical properties) and the protection mechanism regarding antioxidant status. RESULTS: Optimal MOS could improve tenderness (27.4%), pH (5.5%) while decreasing cooking loss (16.6%) to enhance flesh quality. Meanwhile, optimal MOS improved flavor inosine 5'-monophosphate (IMP) of 11.8%, sweetness and umami-associated amino acid, healthy unsaturated fatty acid (UFA) of 14.9% and n-3 polyunsaturated fatty acids (n-3 PUFAs) especially C20:5n-3 (15.8%) and C22:6n-3 (38.3%). Furthermore, the mechanism that MOS affected pH, tenderness and cooking loss could be partly explained by the reduced lactate, cathepsin and oxidation, respectively. The enhanced flesh quality was also associated with enhanced antioxidant ability concerning improving antioxidant enzymes activities and the corresponding transcriptional levels, which were regulated through NF-E2-related factor 2 (Nrf2) and target of rapamycin (TOR) signaling. Based on pH24h , cooking loss, shear force and DHA (docosahexaenoic acid, C22:6n-3), optimal MOS levels for grass carp were estimated to be 442.75, 539.53, 594.73 and 539.53 mg kg-1 , respectively. CONCLUSION: Dietary MOS is a promising alternative strategy to improve flesh quality of fish muscle. © 2022 Society of Chemical Industry.


Asunto(s)
Carpas , Enfermedades de los Peces , Animales , Aminoácidos , Alimentación Animal/análisis , Antioxidantes/metabolismo , Carpas/metabolismo , Dieta , Suplementos Dietéticos , Proteínas de Peces/metabolismo , Mananos
13.
Viruses ; 14(10)2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36298859

RESUMEN

Interferon γ (IFN-γ) is now considered to be one of the key molecules in the regulation of innate and adaptive immunity. The function of IFN-γ is best described in humans, but less of IFN-γ in fish species has been described at protein level. In the present study, IFN-γ from Gadus macrocephalus (GmIFN-γ) has been examined in terms of bioinformatics, prokaryotic expression, yeast expression, antiviral activity and immune regulatory function. The cDNA of GmIFN-γ contains an open reading frame of 570 nucleotides, coding 189 amino acids. The mature protein contains a nuclear localization signal motif and an obvious IFN-γ signature sequence at the C-terminal. GmIFN-γ is very similar to that of Atlantic cod, with homology up to 89.89%, but less than 32% to other species. GmIFN-γ can be detected in the gills, spleen, intestine, brain and kidney. Interestingly, during early development, a strong signal of GmIFN-γ was not detected until 40 days post hatching. Prokaryotic expression plasmid pET-32a-GmIFN-γ was constructed, and the expression products in BL21 were confirmed by Mass Spectrometry. Meanwhile, the plasmid pGAPZA-GmIFN-γ with Myc tag was constructed and transmitted into Pichia pastoris yeast GS115, and the products were tested using Western blot. The purified GmIFN-γ from either BL21 or yeast has a strong antivirus (Spring viremia of carp virus) effect. The vector of pcDNA3.1-GmIFN-γ was expressed in EPC cell lines; high transcript levels of MHC class I chain-related protein A (MICA) gene were detected; and the exogenous GmIFN-γ protein could also induce MICA expression, indicating that GmIFN-γ could stimulate immune response. The yeast GS115 with GmIFN-γ protein, which is an inclusion body, was given to zebrafish orally, and the transcript of zebrafish IFN-γ was upregulated significantly; however, genes of the interferon type-I signal pathway were not well stimulated.


Asunto(s)
Proteínas de Peces , Interferón gamma , Animales , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Pez Cebra , ADN Complementario/genética , Saccharomyces cerevisiae/genética , Señales de Localización Nuclear/genética , Clonación Molecular , Regulación de la Expresión Génica , Secuencia de Bases , Antivirales , Nucleótidos , Aminoácidos/genética
14.
Ecotoxicol Environ Saf ; 244: 114081, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113268

RESUMEN

Excessive use of hard-to-degrade pesticides threatens the ecological health of aquatic systems. This study aimed to investigate difenoconazole (DFZ) residues in the environment induced neurotoxicity in carp and the underlying mechanisms. A total of thirty-six carps were divided into three groups and exposed to 0, 0.5, and 2.0 mg/L DFZ for 96 h, respectively. The alterations in behavior and blood-brain barrier (BBB) were examined, and potential mechanisms were explored using immunological assays and biochemical methods. The results showed that DFZ exposure caused behavioral freezing, reduced feeding, and neuronal necrosis in carp. Mechanistically, DFZ triggered ROS accumulation and destroyed the balance between oxidation and antioxidation with increased lipid peroxidation product MDA contents and reduced antioxidant enzymes SOD and CAT activities in the carp brain by inhibiting the NF-E2-related factor 2 (Nrf2) pathway. The activation of oxidative stress further reduced tight junction proteins and MMP levels, thereby destroying BBB and leading to DFZ leakage into the brain. Increased BBB permeability additionally led to DFZ activation of nuclear factor kappa-B signaling-mediated inflammatory cytokine storm, exacerbating neuroinflammation. Meanwhile, DFZ exposure activated mitochondria-associated apoptosis in the carp's brain by up-regulating Bcl-2 associated X protein, cleaved-caspase3, and cytochrome C and decreasing B-cell lymphoma-2 levels. Interestingly, the carp's brain initiated a protective autophagic response via the PI3K/AKT/TOR pathway intending to counteract the neurotoxicity of DFZ. Overall, we concluded that accumulation of DFZ at high concentrations in the aquatic systems disrupted the BBB and resulted in neurotoxicity in carp through inhibition of Nrf2 pathway-mediated ROS accumulation. This study provides a reference for monitoring DFZ residues in the environment and a new target for the treatment of DFZ-induced neurotoxicity in carp.


Asunto(s)
Carpas , Plaguicidas , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Barrera Hematoencefálica/metabolismo , Carpas/metabolismo , Citocromos c/metabolismo , Dieta , Suplementos Dietéticos/análisis , Dioxolanos , Proteínas de Peces/metabolismo , Inmunidad Innata , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno , Superóxido Dismutasa/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Triazoles
15.
Front Immunol ; 13: 1010221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177013

RESUMEN

In recent years, mannose oligosaccharide (MOS) as a functional additive is widely used in aquaculture, to enhance fish immunity. An evaluation of the effect of dietary MOS supplementation on the immune barrier function and related signaling molecules mechanism of grass carp (Ctenopharyngodon idella) was undertaken in the present study. Six diets with graded amounts of MOS supplementation (0, 200, 400, 600, 800, and 1000 mg/kg) were fed to 540 grass carp over 60 days. To examine the immune response and potential mechanisms of MOS supplementation on the intestine, a challenge test was conducted using injections of Aeromonas hydrophila for 14 days. Results of the study on the optimal supplementation with MOS were found as follows (1) MOS enhances immunity partly related to increasing antibacterial substances content and antimicrobial peptides expression; (2) MOS attenuates inflammatory response partly related to regulating the dynamic balance of intestinal inflammatory cytokines; (3) MOS regulates immune barrier function may partly be related to modulating TLRs/MyD88/NFκB and TOR/S6K1/4EBP signalling pathways. Finally, the current study concluded that MOS supplementation could improve fish intestinal immune barrier function under Aeromonas hydrophila infected conditions.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila/fisiología , Alimentación Animal/análisis , Animales , Antibacterianos , Carpas/metabolismo , Citocinas/metabolismo , Dieta , Suplementos Dietéticos , Proteínas de Peces/metabolismo , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunidad Innata , Intestinos , Mananos , Manosa , Factor 88 de Diferenciación Mieloide/metabolismo , Oligosacáridos
16.
J Anim Sci ; 100(10)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985277

RESUMEN

This aim of this study was to investigate the effects of dietary aucubin on the growth, flesh quality, and metabolomics of grass carp (Ctenopharyngodon idella). Five diets were designed with the aucubin inclusion of 0 (control diet), 0.2, 0.4, 0.6, and 0.8 g/kg (Auc-0.2, Auc-0.4, Auc-0.6, Auc-0.8) and were fed to grass carp with an initial body weight of 17.0 ± 0.2 g for 60 d. The results indicated that dietary aucubin did not significantly affect the growth performance of grass carp (P > 0.05). Compared to the control, dietary supplementation with 0.2 to 0.8 g/kg aucubin increased flesh hardness, chewiness, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and the contents of total free amino acids (TFAA) and n-3 polyunsaturated fatty acids (n-3 PUFA) (P < 0.05). The contents of malondialdehyde (MDA) and lactic acid (LD) in the flesh were significantly decreased by the addition of 0.4 to 0.6 g/kg aucubin and by the addition of 0.6 to 0.8 g/kg aucubin (P < 0.05), respectively, while the content of delicious amino acids (DAA) was significantly enhanced by the addition of 0.4 to 0.8 g/kg aucubin (P < 0.05). Moreover, the contents of collagen and C22:6n3 (DHA) in the flesh of the Auc-0.8 group were significantly higher than those of the control (P < 0.05). In the metabolomics profiling of flesh, 133 and 135 named differential metabolites were identified in the Auc-0.4 and Auc-0.8 groups, respectively, compared to the control, and these metabolites were found to be involved in the second-grade pathways of "lipid metabolism" and "amino acid metabolism". Regarding gene expression, the mRNA levels of CuZn-SOD, CAT, COL1A1, COL1A2, Smad4, and FAS in flesh were upregulated in the Auc-0.4 and Auc-0.8 groups, and the expression levels of GPx, Nrf2, and TGF-ß1 mRNA were also upregulated in the Auc-0.8 group (P < 0.05). In summary, dietary aucubin did not promote growth, but improved the flesh quality of grass carp, which might be associated with the TGF-ß/Smad and Nrf2 pathways. The recommended supplementation level of aucubin in the diet of grass carp was 0.6 to 0.8 g/kg.


Aucubin is an iridoid glycoside that is widely distributed in green plants and exhibits various biological activities such as antioxidant, anti-inflammatory, and protecting the liver. In previous studies, we explored the effects of different dietary levels of iridoids including geniposide and geniposide acid, on the flesh quality of grass carp. As aucubin shares a similar chemical structure to that of geniposide and geniposide acid, it was speculated that aucubin might exhibit the same function of promoting flesh quality in fish. Our study was conducted to explore the effects on the growth and flesh quality of grass carp. We found that dietary aucubin did not affect the growth of grass carp but improved flesh quality by increasing the contents of collagen, free amino acids, and n-3 PUFA; increasing the activities of CAT, SOD, and GPx; and decreasing the contents of MDA and PC in flesh, which might be associated with the TGF-ß/Smad and Nrf2 pathways.


Asunto(s)
Carpas , Animales , Factor 2 Relacionado con NF-E2/genética , Proteínas de Peces/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos , Dieta/veterinaria , Glutatión Peroxidasa/genética , Superóxido Dismutasa , Aminoácidos , ARN Mensajero/metabolismo , Inmunidad Innata
17.
Fish Shellfish Immunol ; 125: 161-170, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35561948

RESUMEN

Promoting circular economy by transforming food residues into alternative high-value protein sources for aquaculture feed is a new way to develop alternative raw materials for fishmeal. This study systematically evaluated the effects of chicken intestinal hydrolysates (CIH) on the intestinal immune health of common carp through growth performance, antioxidant capacity, and intestinal immunity analysis in order to replace fishmeal. Five iso-nitrogenous and iso-lipidic experimental feeds were formulated to replace 0% (CIH-0), 25% (CIH-25), 50% (CIH-50), 75% (CIH-75) and 100% (CIH-100) of the fishmeal with CIH. Each experimental diet was fed to triplicate groups of 30 carp for 8 weeks. The results revealed that no significant differences in the final body weight, weight gain rate, feed coefficient radio, feed intake and protein efficiency ratio were found among the CIH-0, CIH-25, and CIH-50 groups, while the final body weight and weight gain rate in the CIH-75 and CIH-100 groups were significantly decreased and the feed coefficient radio was significantly increased. The aspartate aminotransferase of all CIH groups were significantly decrease, and the total protein, albumin did not differ among the CIH-0, CIH-25, CIH-50, and CIH-75 groups. The trypsin content was significantly increased in the CIH-75 and CIH-100 groups. No significant differences in the antioxidant index (catalase, glutathione peroxidase and malonaldehyde) were found among all CIH groups compared with the CIH-0 group. The expression levels of pro-inflammatory cytokines IL-1ß and TNF-α were significantly down-regulated in the CIH-50 group and anti-inflammatory cytokines IL-10 and TGF-ß2 were significantly up-regulated in the CIH-50 and CIH-75 groups. No significant differences in the expression levels of claudin-1, claudin-7 and claudin-11 were observed between the CIH-0 and CIH-50 groups, while the expression levels of ZO-1, occludin and MLCK were significantly up-regulated in the CIH-50 group compared with the CIH-0 group. The expression level of claudin-1 was down-regulated in the CIH-75 and CIH-100 groups. Hence, the study demonstrated the potential of CIH as a novel protein source for replacing fishmeal, and replacing 50% of fishmeal with CIH did not significantly influence the growth performance, immune responses, and intestinal barrier of common carp (Cyprinus carpio).


Asunto(s)
Carpas , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Peso Corporal , Carpas/metabolismo , Pollos , Claudina-1 , Citocinas , Dieta/veterinaria , Suplementos Dietéticos/análisis , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Intestinos , Aumento de Peso
18.
Front Immunol ; 13: 833455, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401542

RESUMEN

In this study, we have investigated the influence of vitamin A on gill barrier function of grass carp (Ctenopharyngodon idella) infected with Flavobacterium columnare. The fish were fed different concentrations of vitamin A diets for 10 weeks and then infected with F. columnare by immersion. We observed that optimal vitamin A significantly prevented gill rot morbidity in fish infected with F. columnare. Further investigations revealed that vitamin A boosted the gill immunity by increasing the contents of complements (C3 and C4), activities of acid phosphatase (ACP) and lysozyme, mRNAs of ß-defensin-1, liver-expressed antimicrobial peptide 2A and 2B (LEAP-2A and LEAP-2B), hepcidin, and anti-inflammatory cytokines like transforming growth factor ß1 (TGF-ß1), TGF-ß2, interleukin-10 (IL-10), and IL-11. It also enhanced the levels of various related signaling molecules including inhibitor protein κBα (IκBα), target of rapamycin (TOR), and ribosome protein S6 kinase 1 (S6K1) but downregulated the expression of pro-inflammatory cytokines including IL-1ß, IL-8, tumor necrosis factor α (TNF-α), and interferon γ2 (IFN-γ2) and related signaling molecules including nuclear factor κB p65 (NF-κB p65) (rather than NF-κB p52), IκB kinase ß (IKKß), IKKγ (rather than IKKα), eIF4E-binding protein 1 (4E-BP1), and 4E-BP2 mRNA levels in fish gills. In addition, dietary vitamin A markedly lowered the concentrations of reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl (PC), increased both the activities and mRNAs of copper/zinc superoxide dismutase (Cu/ZnSOD), MnSOD, glutathione transferases (GSTs), glutathione peroxidase (GPx), and glutathione reductase (GR) associated with upregulation of NF-E2-related factor 2 (Nrf2) mRNAs and downregulation of Kelch-like-ECH-associated protein (Keap1a) and Keap1b mRNAs. Moreover, vitamin A decreased the mRNAs of different apoptotic mediators [caspases 8, 9, 3 (rather than 7)] associated with downregulation of signaling molecule p38 mitogen-activated protein kinase (p38MAPK) mRNAs in fish gills. Besides, vitamin A promoted tight junction (TJ) complex mRNAs [including claudin-b, -c, -3, -7, -12, occludin, and zonula occludens-1 (ZO-1)] that have been linked to the downregulation of myosin light chain kinase (MLCK) signaling. Taken together, the current study demonstrated for the first time that vitamin A markedly enhanced gill health associated with immune modulation and physical barrier protection. Based on protecting fish against gill rot morbidity, ACP activity, and against lipid peroxidation, optimum vitamin A concentrations in on-growing grass carp (262-997 g) were found to be 1,991, 2,188, and 2,934 IU/kg diet, respectively.


Asunto(s)
Carpas , Branquias , Alimentación Animal/análisis , Animales , Carpas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Suplementos Dietéticos/análisis , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Flavobacterium , Vitamina A/metabolismo
19.
Fish Shellfish Immunol ; 124: 525-533, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35489592

RESUMEN

The present study was performed to determine the effects of Aeromonas hydrophila infection on intestinal -histopathology, innate immune response and changes in antioxidant capacity of blunt snout bream (Megalobrama amblycephala). A series of histopathological changes, innate immune enzyme activities, antioxidant enzyme activities, and the corresponding mRNA relative genes expressions in intestines were measured at 0, 1, 2, and 3 weeks post-treatment of Aeromonas hydrophila (1✕107 CFU mL-1) infection. The results showed that Aeromonas hydrophila induced changes in intestinal morphology, including the decreased muscularis thickness, the proliferated goblet cells, and the atrophied intestine villi height. Moreover, the innate immune enzymes activities in serum such as acid phosphatase, alkaline phosphatase, lysozyme activities and immunoglobulin M were significantly reduced after infection at 1week, 2week and 3week. The contents of complement 3 and complement 4 were significantly decreased after infection as well. In addition, the antioxidant enzymes activities, including superoxide dismutase, catalase and glutathione peroxidase in the experimental groups were significantly decreased compared with the control group, whereas the content of malondialdehyde was significantly increased after infection at 1week, 2week and 3week. Furthermore, the mRNA relative expressions of the inflammatory cytokines such as tumor necrosis factor-α, interleukins-1ß, interferon-γ, and interleukins-6 were significantly increased after infection with Aeromonas hydrophila. The TJ-related gene expressions in the intestine of zonula occluden-1, occludin, occludin-1, occludin-2 were significantly reduced throughout the infection period. The mRNA relative expressions of signal transducers and activators of transcription 4 and janus kinase-3 in the intestine were significantly ascended compared with the non-infected group. Overall, the results elucidated that the intestine tissue injury and innate immune response reduction, as well as antioxidant capacity attenuation were occurred against Aeromonas hydrophila infection of the blunt snout bream.


Asunto(s)
Cyprinidae , Cipriniformes , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila/fisiología , Animales , Antioxidantes/metabolismo , Cyprinidae/genética , Cipriniformes/genética , Suplementos Dietéticos , Proteínas de Peces/metabolismo , Inmunidad Innata , Interleucinas/metabolismo , Intestinos , Ocludina/metabolismo , Ocludina/farmacología , ARN Mensajero/metabolismo
20.
Molecules ; 27(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35056658

RESUMEN

The supply of nutrients, such as antioxidant agents, to fish cells still represents a challenge in aquaculture. In this context, we investigated solid lipid nanoparticles (SLN) composed of a combination of Gelucire® 50/13 and Precirol® ATO5 to administer a grape seed extract (GSE) mixture containing several antioxidant compounds. The combination of the two lipids for the SLN formation resulted in colloids exhibiting mean particle sizes in the range 139-283 nm and zeta potential values in the range +25.6-43.4 mV. Raman spectra and X-ray diffraction evidenced structural differences between the free GSE and GSE-loaded SLN, leading to the conclusion that GSE alters the structure of the lipid nanocarriers. From a biological viewpoint, cell lines from gilthead seabream and European sea bass were exposed to different concentrations of GSE-SLN for 24 h. In general, at appropriate concentrations, GSE-SLN increased the viability of the fish cells. Furthermore, regarding the gene expression in those cells, the expression of antioxidant genes was upregulated, whereas the expression of hsp70 and other genes related to the cytoskeleton was downregulated. Hence, an SLN formulation containing Gelucire® 50/13/Precirol® ATO5 and GSE may represent a compelling platform for improving the viability and antioxidant properties of fish cells.


Asunto(s)
Antioxidantes/administración & dosificación , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Extracto de Semillas de Uva/administración & dosificación , Liposomas/administración & dosificación , Nanopartículas/administración & dosificación , Polifenoles/administración & dosificación , Vitis/química , Animales , Antioxidantes/farmacología , Acuicultura , Proteínas de Peces/genética , Peces , Extracto de Semillas de Uva/farmacología , Liposomas/química , Nanopartículas/química , Estrés Oxidativo , Polifenoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA