Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.844
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 691-701, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621873

RESUMEN

Mentha canadensis, as a plant with medicinal and culinary uses, holds significant economic value. Jasmonic acid signaling repressor JAZ protein has a crucial role in regulating plant response to adversity stresses. The M. canadensis McJAZ8 gene is cloned and analyzed for protein characterization, protein interactions, and expression patterns, so as to provide genetic resources for molecular breeding of M. canadensis for stress tolerance. This experiment will analyze the protein structural characteristics, subcellular localization, protein interactions, and gene expression of McJAZ8 using bioinformatics, yeast two-hybrid(Y2H), transient expression in tobacco leaves, qRT-PCR, and other technologies. The results show that:(1)The full length of the McJAZ8 gene is 543 bp, encoding 180 amino acids. The McJAZ8 protein contains conserved TIFY and Jas domains and exhibits high homology with Arabidopsis thaliana AtJAZ1 and AtJAZ2.(2)The McJAZ8 protein is localized in the nucleus and cytoplasm.(3)The Y2H results show that McJAZ8 interacts with itself or McJAZ1/3/4/5 proteins to form homologous or heterologous dimers.(4)McJAZ8 is expressed in different tissue, with the highest expression level in young leaves. In terms of leaf sequence, McJAZ8 shows the highest expression level in the fourth leaf and the lowest expression level in the second leaf.(5) In leaves and roots, the expression of McJAZ8 is upregulated to varying degrees under methyl jasmonate(MeJA), drought, and NaCl treatments. The expression of McJAZ8 shows an initial upregulation followed by a downregulation pattern under CdCl_2 treatment. In leaves, the expression of McJAZ8 tends to gradually decrease under CuCl_2 treatment, while in roots, it initially decreases and then increases before decreasing again. In both leaves and roots, the expression of McJAZ8 is downregulated to varying degrees under AlCl_(3 )treatment. This study has enriched the research on jasmonic acid signaling repressor JAZ genes in M. canadensis and provided genetic resources for the molecular breeding of M. canadensis.


Asunto(s)
Ciclopentanos , Perfilación de la Expresión Génica , Mentha , Oxilipinas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Filogenia , Estrés Fisiológico/genética
2.
Physiol Plant ; 176(2): e14293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38641970

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs in eukaryotes. Plant endogenous miRNAs play pivotal roles in regulating plant development and defense responses. MicroRNA394 (miR394) has been reported to regulate plant development, abiotic stresses and defense responses. Previous reports showed that miR394 responded to P. infestans inoculation in potato, indicating that miR394 may be involved in defense responses. In this study, we further investigated its role in potato defense against P. infestans. Stable expression of miR394 in tobacco and potato enhances the susceptibility to P. infestans, which is accompanied with the reduced accumulation of ROS and down-regulation of the PTI (pattern-triggered immunity) marker genes. Besides well-known target StLCR, miR394 also targets StA/N-INVE, which encodes a chloroplast Alkaline/Neutral Invertases (A/N-INVE). Both StLCR and StA/N-INVE positively regulate late blight resistance, while miR394 degrades them. Interestingly, StA/N-INVE is located in the chloroplast, indicating that miR394 may manipulate chloroplast immunity. Degradation of StA/N-INVE may affect the chloroplast function and hence lead to the compromised ROS (reactive oxygen species) burst and reduced retrograde signaling from the chloroplast to the nucleus and cytoplasm. In summary, this study provides new information that miR394 targets and degrades StA/N-INVE and StLCR, which are positive regulators, to enhance potato susceptibility to P. infestans.


Asunto(s)
MicroARNs , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Plantas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
BMC Plant Biol ; 24(1): 333, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664694

RESUMEN

BACKGROUND: The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS: In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS: Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.


Asunto(s)
Camellia sinensis , Ritmo Circadiano , Fotosíntesis , Fotosíntesis/genética , Camellia sinensis/genética , Camellia sinensis/fisiología , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Familia de Multigenes , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Fotoperiodo
4.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1494-1505, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621933

RESUMEN

Mentha canadensis is a traditional Chinese herb with great medicinal and economic value. Abscisic acid(ABA) receptor PYLs have important roles in plant growth and development and response to adversity. The M. canadensis McPYL4 gene was cloned, and its protein characteristics, gene expression, and protein interactions were analyzed, so as to provide genetic resources for genetic improvement and molecular design breeding for M. canadensis resistance. Therefore, the protein characteristics, subcellular localization, gene expression pattern, and protein interactions of McPYL4 were analyzed by bioinformatics analysis, transient expression of tobacco leaves, RT-qPCR, and yeast two-hybrid(Y2H) techniques. The results showed that the McPYL4 gene was 621 bp in length, encoding 206 amino acids, and its protein had the conserved structural domain of SRPBCC and was highly homologous with Salvia miltiorrhiza SmPYL4. McPYL4 protein was localized to the cell membrane and nucleus. The McPYL4 gene was expressed in all tissue of M. canadensis, with the highest expression in roots, followed by leaves, and it showed a pattern of up-regulation followed by down-regulation in leaves 1-8. In both leaves and roots, the McPYL4 gene responded to the exogenous hormones ABA, MeJA, and the treatments of drought, AlCl_3, NaCl, CdCl_2, and CuCl_2. Moreover, McPYL4 was up-regulated for expression in both leaves and roots under the MeJA treatment, as well as in leaves treated with AlCl_3 stress for 1 h, whereas McPYL4 showed a tendency to be down-regulated in both leaves and roots under other treatments. Protein interactions showed that McPYL4 interacted with AtABI proteins in an ABA-independent manner. This study demonstrated that McPYL4 responded to ABA, JA, and several abiotic stress treatments, and McPYL4 was involved in ABA signaling in M. canadensis and thus in the regulation of leaf development and various abiotic stresses in M. canadensis.


Asunto(s)
Ácido Abscísico , Mentha , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Sequías
5.
Biochem Biophys Res Commun ; 709: 149840, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38564941

RESUMEN

As one of the largest transcription factor (TF) families in plants, the NAC (NAM, ATAF1/2, and CUC2) family plays important roles in response pathways to various abiotic and biotic stresses, such as drought, high salinity, low temperature, and pathogen infection. Although, there are a number of reviews on the involvement of NAC TF in plant responses to biotic and abiotic stresses, most of them are focused on the model plants Arabidopsis thaliana and Oryza sativa, and there is a lack of systematic evaluation of specific species. Solanaceae, the world's third most significant cash crop, has been seriously affected by environmental disturbances in recent years in terms of yield and quality, posing a severe threat to global food security. This review focuses on the functional roles of NAC transcription factors in response to external stresses involved in five important Solanaceae crops: tomato, potato, pepper, eggplant and tobacco, and analyzes the affinities between them. It will provide resources for stress-resistant breeding of Solanaceae crops using transgenic technology.


Asunto(s)
Solanum tuberosum , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Productos Agrícolas/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Sequías
6.
BMC Plant Biol ; 24(1): 229, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561653

RESUMEN

BACKGROUND: BAHD acyltransferases are among the largest metabolic protein domain families in the genomes of terrestrial plants and play important roles in plant growth and development, aroma formation, and biotic and abiotic stress responses. Little is known about the BAHDs in the tea plant, a cash crop rich in secondary metabolites. RESULTS: In this study, 112 BAHD genes (CsBAHD01-CsBAHD112) were identified from the tea plant genome, with 85% (98/112) unevenly distributed across the 15 chromosomes. The number of BAHD gene family members has significantly expanded from wild tea plants to the assamica type to the sinensis type. Phylogenetic analysis showed that they could be classified into seven subgroups. Promoter cis-acting element analysis revealed that they contain a large number of light, phytohormones, and stress-responsive elements. Many members displayed tissue-specific expression patterns. CsBAHD05 was expressed at more than 500-fold higher levels in purple tea leaves than in green tea leaves. The genes exhibiting the most significant response to MeJA treatment and feeding by herbivorous pests were primarily concentrated in subgroups 5 and 6. The expression of 23 members of these two subgroups at different time points after feeding by tea green leafhoppers and tea geometrids was examined via qPCR, and the results revealed that the expression of CsBAHD93, CsBAHD94 and CsBAHD95 was significantly induced after the tea plants were subjected to feeding by both pricking and chewing pests. Moreover, based on the transcriptome data for tea plants being fed on by these two pests, a transcriptional regulatory network of different transcription factor genes coexpressed with these 23 members was constructed. CONCLUSIONS: Our study provides new insights into the role of BAHDs in the defense response of tea plants, and will facilitate in-depth studies of the molecular function of BAHDs in resistance to herbivorous pests.


Asunto(s)
Aminas , Camellia sinensis , Disulfuros , Camellia sinensis/metabolismo , Filogenia , Genoma de Planta , Té/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1076-1088, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658150

RESUMEN

Flavin-containing monooxygenase (FMO) is the key enzyme in the biosynthesis pathway of CSOs with sulfur oxidation. In order to explore the molecular regulatory mechanism of FMO in the synthesis of onion CSOs, based on transcriptome database and phylogenetic analysis, one AcFMO gene that may be involved in alliin synthesis was obtained, the AcFMO had a cDNA of 1 374 bp and encoded 457 amino acids, which was evolutionarily closest to the AsFMO of garlic. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) indicated that AcFMO was the highest in the flowers and the lowest in the leaf sheaths. The results of subcellular localization showed that the AcFMO gene product was widely distributed throughout the cell A yeast expression vector was constructed, and the AcFMO gene was ecotopically overexpressed in yeast to further study the enzyme function in vitro and could catalyze the synthesis of alliin by S-allyl-l-cysteine. In summary, the cloning and functional identification of AcFMO have important reference value for understanding the biosynthesis of CSOs in onions.


Asunto(s)
Clonación Molecular , Cisteína/análogos & derivados , Cebollas , Cebollas/genética , Cebollas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cisteína/biosíntesis , Cisteína/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Secuencia de Aminoácidos , Filogenia , Disulfuros/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
BMC Plant Biol ; 24(1): 249, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38580941

RESUMEN

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) belongs to Polygonaceae family and has attracted increasing attention owing to its high nutritional value. UDP-glycosyltransferases (UGTs) glycosylate a variety of plant secondary metabolites to control many metabolic processes during plant growth and development. However, there have been no systematic reports of UGT superfamily in F. tataricum. RESULTS: We identified 173 FtUGTs in F. tataricum based on their conserved UDPGT domain. Phylogenetic analysis of FtUGTs with 73 Arabidopsis UGTs clustered them into 21 families. FtUGTs from the same family usually had similar gene structure and motif compositions. Most of FtUGTs did not contain introns or had only one intron. Tandem repeats contributed more to FtUGTs amplification than segmental duplications. Expression analysis indicates that FtUGTs are widely expressed in various tissues and likely play important roles in plant growth and development. The gene expression analysis response to different abiotic stresses showed that some FtUGTs were involved in response to drought and cadmium stress. Our study provides useful information on the UGTs in F. tataricum, and will facilitate their further study to better understand their function. CONCLUSIONS: Our results provide a theoretical basis for further exploration of the functional characteristics of FtUGTs and for understanding the growth, development, and metabolic model in F. tataricum.


Asunto(s)
Fagopyrum , Humanos , Filogenia , Fagopyrum/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Plant Physiol Biochem ; 210: 108634, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642440

RESUMEN

Zhe-Maidong, a cultivar of Ophiopogon japonicus is a prominent traditional herbal medicine rich in saponins. This study explored the mechanism of saponin biosynthesis and its role in alleviating Cd-induced oxidative damage in the Zhe-Maidong cultivar using three experimental groups undergoing Cd stress. In the Cd-contaminated soil treatment, total saponins were 1.68 times higher than those in the control. The saponin content in the Cd-2 and Cd-3 treatments was approximately twice as high as that in the Cd-CK treatment. These findings revealed that Cd stress leads to total saponin accumulation. Metabolomic analysis identified the accumulated saponins, primarily several monoterpenoids, diterpenoids, and triterpenoids. The increased saponins exhibited an antioxidant ability to prevent the accumulation of Cd-induced reactive oxygen species (ROS). Subsequent saponin application experiments provided strong evidence that saponin played a crucial role in promoting superoxide dismutase (SOD) activity and reducing ROS accumulation. Transcriptome analysis revealed vital genes for saponin synthesis under Cd stress, including SE, two SSs, and six CYP450s, positively correlated with differentially expressed metabolite (DEM) levels in the saponin metabolic pathway. Additionally, the TF-gene regulatory network demonstrated that bHLH1, bHLH3, mTERF, and AUX/IAA transcript factors are crucial regulators of hub genes involved in saponin synthesis. These findings significantly contribute to our understanding of the regulatory network of saponin synthesis and its role in reducing oxidative damage in O. japonicum when exposed to Cd stress.


Asunto(s)
Cadmio , Metaboloma , Ophiopogon , Estrés Oxidativo , Saponinas , Transcriptoma , Saponinas/metabolismo , Saponinas/farmacología , Cadmio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Metaboloma/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Ophiopogon/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Antioxidantes/metabolismo
10.
Int J Biol Macromol ; 266(Pt 1): 131012, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522709

RESUMEN

Medicinal tropane alkaloids (TAs), including hyoscyamine, anisodamine and scopolamine, are essential anticholinergic drugs specifically produced in several solanaceous plants. Atropa belladonna is one of the most important medicinal plants that produces TAs. Therefore, it is necessary to cultivate new A. belladonna germplasm with the high content of TAs. Here, we found that the levels of TAs were elevated under low nitrogen (LN) condition, and identified a LN-responsive bHLH transcription factor (TF) of A. belladonna (named LNIR) regulating the biosynthesis of TAs. The expression level of LNIR was highest in secondary roots where TAs are synthesized specifically, and was significantly induced by LN. Further research revealed that LNIR directly activated the transcription of hyoscyamine 6ß-hydroxylase gene (H6H) by binding to its promoter, which converts hyoscyamine into anisodamine and subsequently epoxidizes anisodamine to form scopolamine. Overexpression of LNIR upregulated the expression levels of TA biosynthesis genes and consequently led to the increased production of TAs. In summary, we functionally identified a LN-responsive bHLH gene that facilitated the development of A. belladonna with high-yield TAs under the decreased usage of nitrogen fertilizer.


Asunto(s)
Atropa belladonna , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta , Nitrógeno , Tropanos , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Atropa belladonna/metabolismo , Atropa belladonna/genética , Tropanos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinales/metabolismo , Plantas Medicinales/genética , Hiosciamina/metabolismo , Hiosciamina/genética , Escopolamina/metabolismo , Regiones Promotoras Genéticas
11.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542445

RESUMEN

Panax ginseng C. A. Meyer (Ginseng) is one of the most used traditional Chinese herbal medicines, with its roots being used as the main common medicinal parts; its therapeutic potential has garnered significant attention. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) is a family of early auxin-responsive genes capable of regulating root development in plants through the auxin signaling pathway. In the present study, 84 Aux/IAA genes were identified from the ginseng genome and their complexity and diversity were determined through their protein domains, phylogenetic relationships, gene structures, and cis-acting element predictions. Phylogenetic analyses classified PgIAA into six subgroups, with members in the same group showing greater sequence similarity. Analyses of interspecific collinearity suggest that segmental duplications likely drove the evolution of PgIAA genes, followed by purifying selection. An analysis of cis-regulatory elements suggested that PgIAA family genes may be involved in the regulation of plant hormones. RNA-seq data show that the expression pattern of Aux/IAA genes in Ginseng is tissue-specific, and PgIAA02 and PgIAA36 are specifically highly expressed in lateral, fibrous, and arm roots, suggesting their potential function in root development. The PgIAA02 overexpression lines exhibited an inhibition of lateral root growth in Ginseng. In addition, yeast two-hybrid and subcellular localization experiments showed that PgIAA02 interacted with PgARF22/PgARF36 (ARF: auxin response factor) in the nucleus and participated in the biological process of root development. The above results lay the foundation for an in-depth study of Aux/IAA and provide preliminary information for further research on the role of the Aux/IAA gene family in the root development of Ginseng.


Asunto(s)
Panax , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Panax/genética , Panax/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Regulación de la Expresión Génica de las Plantas
12.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542459

RESUMEN

The lipoxygenases (LOXs) are non-heme iron-containing dioxygenases that play an important role in plant growth and defense responses. There is scarce knowledge regarding the LOX gene family members and their involvement in biotic and abiotic stresses in potato. In this study, a total of 17 gene family members (StLOXs) in potato were identified and clustered into three subfamilies: 9-LOX type I, 13-LOX type I, and 13-LOX type II, with eleven, one, and five members in each subfamily based on phylogenetic analysis. By exploiting the RNA-seq data in the Potato Genome Sequencing Consortium (PGSC) database, the tissue-specific expressed and stress-responsive StLOX genes in double-monoploid (DM) potato were obtained. Furthermore, six candidate StLOX genes that might participate in drought and salt response were determined via qPCR analysis in tetraploid potato cultivars under NaCl and PEG treatment. Finally, the involvement in salt stress response of two StLOX genes, which were significantly up-regulated in both DM and tetraploid potato under NaCl and PEG treatment, was confirmed via heterologous expression in yeast under salt treatment. Our comprehensive analysis of the StLOX family provides a theoretical basis for the potential biological functions of StLOXs in the adaptation mechanisms of potato to stress conditions.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Tetraploidía , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
13.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542463

RESUMEN

DNA-binding with one finger (Dof) proteins comprise a large family that play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Although the Dof TF has been identified in a variety of species, its systemic analysis in potato (Solanum tuberosum L.) is lacking and its potential role in abiotic stress responses remains unclear. A total of 36 potential Dof genes in potato were examined at the genomic and transcriptomic levels in this work. Five phylogenetic groups can be formed from these 36 Dof proteins. An analysis of cis-acting elements revealed the potential roles of Dofs in potato development, including under numerous abiotic stress conditions. The cycling Dof factors (CDFs) might be the initial step in the abiotic stress response signaling cascade. In potato, five CDFs (StCDF1/StDof19, StCDF2/StDof4, StCDF3/StDof11, StCDF4/StDof24, and StCDF5/StDof15) were identified, which are homologs of Arabidopsis CDFs. The results revealed that these genes were engaged in a variety of abiotic reactions. Moreover, an expression analysis of StDof genes in two potato cultivars ('Long10' (drought tolerant) and 'DXY' (drought susceptible)) of contrasting tolerances under drought stress was carried out. Further, a regulatory network mediated by lncRNA and its target Dofs was established. The present study provides fundamental knowledge for further investigation of the roles of Dofs in the adaptation of potato to drought stress, aiming to provide insights into a viable strategy for crop improvement and stress-resistance breeding.


Asunto(s)
Arabidopsis , Solanum tuberosum , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Resistencia a la Sequía , Filogenia , Fitomejoramiento , Arabidopsis/genética , Sequías , ADN/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Molecules ; 29(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542970

RESUMEN

Currently, little is known about the characteristics of polyphenol oxidase from wheat bran, which is closely linked to the browning of wheat product. The wheat PPO was purified by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange column, and Superdex G-75 chromatography column. Purified wheat PPO activity was 11.05-fold higher, its specific activity was 1365.12 U/mg, and its yield was 8.46%. SDS-PAGE showed that the molecular weight of wheat PPO was approximately 21 kDa. Its optimal pH and temperature were 6.5 and 35 °C for catechol as substrate, respectively. Twelve phenolic substrates from wheat and green tea were used for analyzing the substrate specificity. Wheat PPO showed the highest affinity to catechol due to its maximum Vmax (517.55 U·mL-1·min-1) and low Km (6.36 mM) values. Docking analysis revealed strong affinities between catechol, gallic acid, EGCG, and EC with binding energies of -5.28 kcal/mol, -4.65 kcal/mol, -4.21 kcal/mol, and -5.62 kcal/mol, respectively, for PPO. Sodium sulfite, ascorbic acid, and sodium bisulfite dramatically inhibited wheat PPO activity. Cu2+ and Ca2+ at 10 mM were considered potent activators and inhibitors for wheat PPO, respectively. This report provides a theoretical basis for controlling the enzymatic browning of wheat products fortified with green tea.


Asunto(s)
Catecol Oxidasa , Fibras de la Dieta , Catecol Oxidasa/química , Fibras de la Dieta/análisis , Concentración de Iones de Hidrógeno , Cinética , Proteínas de Plantas/metabolismo , Catecoles/análisis , Especificidad por Sustrato ,
15.
Plant Physiol Biochem ; 208: 108473, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430784

RESUMEN

Alternative splicing (AS) was an important post-transcriptional mechanism that involved in plant resistance to adversity stress. WRKY transcription factors function as transcriptional activators or repressors to modulate plant growth, development and stress response. However, the role of alternate splicing of WRKY in cold tolerance is poorly understood in tea plants. In this study, we found that the CsWRKY21 transcription factor, a member of the WRKY IId subfamily, was induced by low temperature. Subcellular localization and transcriptional activity assays showed that CsWRKY21 localized to the nucleus and had no transcriptional activation activity. Y1H and dual-luciferase reporter assays showed that CsWRKY21 suppressed expression of CsABA8H and CsUGT by binding with their promoters. Transient overexpression of CsABA8H and CsUGT reduced abscisic acid (ABA) content in tobacco leaves. Furthermore, we discovered that CsWRKY21 undergoes AS in the 5'UTR region. The AS transcript CsWRKY21-b was induced at low temperature, up to 6 folds compared to the control, while the full-length CsWRKY21-a transcript did not significantly change. Western blot analysis showed that the retention of introns in the 5'UTR region of CsWRKY21-b led to higher CsWRKY21 protein content. These results revealed that alternative splicing of CsWRKY21 involved in cold tolerance of tea plant by regulating the protein expression level and then regulating the content of ABA, and provide insights into molecular mechanisms of low temperature defense mediated by AS in tea plant.


Asunto(s)
Empalme Alternativo , Proteínas de Plantas , Empalme Alternativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones no Traducidas 5' , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frío , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico
16.
Cell Rep ; 43(3): 113913, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38442016

RESUMEN

The self-incompatibility system evolves in angiosperms to promote cross-pollination by rejecting self-pollination. Here, we show the involvement of Exo84c in the SI response of both Brassica napus and Arabidopsis. The expression of Exo84c is specifically elevated in stigma during the SI response. Knocking out Exo84c in B. napus and SI Arabidopsis partially breaks down the SI response. The SI response inhibits both the protein secretion in papillae and the recruitment of the exocyst complex to the pollen-pistil contact sites. Interestingly, these processes can be partially restored in exo84c SI Arabidopsis. After incompatible pollination, the turnover of the exocyst-labeled compartment is enhanced in papillae. However, this process is perturbed in exo84c SI Arabidopsis. Taken together, our results suggest that Exo84c regulates the exocyst complex vacuolar degradation during the SI response. This process is likely independent of the known SI pathway in Brassicaceae to secure the SI response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Brassicaceae/genética , Brassicaceae/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Polen/metabolismo , Transporte de Proteínas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Plant Physiol Biochem ; 208: 108523, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38492487

RESUMEN

The development of pollen is critical to male reproduction in flowering plants. Acyl-CoA synthetase (ACOS) genes play conserved functions in regulating pollen development in various plants. Our previous work found that knockout of the SlACOS1 gene in tomato might decrease fruit setting. The current study further revealed that SlACOS1 was important to pollen development and male fertility. The SlACOS1 gene was preferentially expressed in the stamen of the flower with the highest expression at the tetrad stage of anther development. Mutation of the SlACOS1 gene by the CRISPR/Cas9-editing system reduced pollen number and viability as well as fruit setting. The tapetum layer exhibited premature degradation and the pollen showed abnormal development appearing irregular, shriveled, or anucleate in Slacos1 mutants at the tetrad stage. The fatty acid metabolism in anthers was significantly impacted by mutation of the SlACOS1 gene. Furthermore, targeted fatty acids profiling using GC-MS found that contents of most fatty acids except C18:1 and C18:2 were reduced. Yeast complementation assay demonstrated that the substrate preferences of SlACOS1 were C16:0 and C18:0 fatty acids. Male fertility of Slacos1 mutant could be slightly restored by applying exogenous palmitic acid, a type of C16:0 fatty acid. Taken together, SlACOS1 played important roles on pollen development and male fertility by regulating the fatty acid metabolism and the development of tapetum and tetrad. Our findings will facilitate unraveling the mechanism of pollen development and male fertility in tomato.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen , Flores/metabolismo , Fertilidad/genética , Ácidos Grasos , Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
BMC Genomics ; 25(1): 283, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500027

RESUMEN

MYB transcription factors play an extremely important regulatory role in plant responses to stress and anthocyanin synthesis. Cloning of potato StMYB-related genes can provide a theoretical basis for the genetic improvement of pigmented potatoes. In this study, two MYB transcription factors, StMYB113 and StMYB308, possibly related to anthocyanin synthesis, were screened under low-temperature conditions based on the low-temperature-responsive potato StMYB genes family analysis obtained by transcriptome sequencing. By analyzed the protein properties and promoters of StMYB113 and StMYB308 and their relative expression levels at different low-temperature treatment periods, it is speculated that StMYB113 and StMYB308 can be expressed in response to low temperature and can promote anthocyanin synthesis. The overexpression vectors of StMYB113 and StMYB308 were constructed for transient transformation tobacco. Color changes were observed, and the expression levels of the structural genes of tobacco anthocyanin synthesis were determined. The results showed that StMYB113 lacking the complete MYB domain could not promote the accumulation of tobacco anthocyanins, while StMYB308 could significantly promote the accumulation involved in tobacco anthocyanins. This study provides a theoretical reference for further study of the mechanism of StMYB113 and StMYB308 transcription factors in potato anthocyanin synthesis.


Asunto(s)
Solanum tuberosum , Factores de Transcripción , Factores de Transcripción/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Antocianinas , Temperatura , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética
19.
Cell Rep ; 43(4): 113987, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38517888

RESUMEN

Cultivating drought-tolerant tea varieties enhances both yield and quality of tea plants in northern China. However, the mechanisms underlying their drought tolerance remain largely unknown. Here we identified a key regulator called CsREV, which differentially regulates xylem patterns between leaves and stems, thereby conferring drought tolerance in tea plants. When drought occurs, upregulation of CsREV activates the CsVND7a-dependent xylem vessel differentiation. However, when drought persists, the vessel differentiation is hindered as CsVND7a is downregulated by CsTCP4a. This, combined with the CsREV-promoted secondary-cell-wall thickness of xylem vessel, leads to the enhanced curling of leaves, a characteristic closely associated with plant drought tolerance. Notably, this inhibitory effect of CsTCP4a on CsVND7a expression is absent in stems, allowing stem xylem vessels to continuously differentiate. Overall, the CsREV-CsTCP4-CsVND7 module is differentially utilized to shape the xylem patterns in leaves and stems, potentially balancing water transportation and utilization to improve tea plant drought tolerance.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Proteínas de Plantas , Tallos de la Planta , Xilema , Xilema/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Camellia sinensis/fisiología , Camellia sinensis/genética , Camellia sinensis/metabolismo , Adaptación Fisiológica
20.
Sci Rep ; 14(1): 5618, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454094

RESUMEN

The hazel allergen Cor a 1 is a PR-10 protein, closely related to the major birch pollen allergen Bet v 1. Hazel allergies are caused by cross-reactive IgE antibodies originally directed against Bet v 1. Despite the importance of PR-10 proteins in allergy development, their function and localization in the plant remain largely elusive. Therefore, the presence of Cor a 1 mRNA and proteins was investigated in different tissues, i.e., the female flower, immature and mature nuts, catkins, and pollen. Four yet unknown Cor a 1 isoallergens, i.e., Cor a 1.0501-1.0801, and one new Cor a 1.03 variant were discovered and characterized. Depending on the isoallergen, the occurrence and level of mRNA expression varied in different tissues, suggesting different functions. Interestingly, Cor a 1.04 previously thought to be only present in nuts, was also detected in catkins and pollen. The corresponding Cor a 1 genes were expressed in Escherichia coli. The purified proteins were analysed by CD and NMR spectroscopy. Immunoblots and ELISAs to determine their allergenic potential showed that the new proteins reacted positively with sera from patients allergic to birch, hazel and elder pollen and were recognized as novel isoallergens/variants by the WHO/IUIS Allergen Nomenclature Sub-Committee.


Asunto(s)
Corylus , Hipersensibilidad , Humanos , Anciano , Alérgenos , Proteínas de Plantas/metabolismo , Polen/metabolismo , Betulaceae/metabolismo , Betula/metabolismo , ARN Mensajero , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA