RESUMEN
Although cold preservation remains the gold standard in organ transplantation, cold stress-induced cellular injury is a significant problem in clinical orthotopic liver transplantation (OLT). Because a recent study showed that cold stress activates ferroptosis, a form of regulated cell death, we investigated whether and how ferroptosis determines OLT outcomes in mice and humans. Treatment with ferroptosis inhibitor (ferrostatin-1) during cold preservation reduced lipid peroxidation (malondialdehyde; MDA), primarily in liver sinusoidal endothelial cells (LSECs), and alleviated ischemia/reperfusion injury in mouse OLT. Similarly, ferrostatin-1 reduced cell death in cold-stressed LSEC cultures. LSECs deficient in nuclear factor erythroid 2-related factor 2 (NRF2), a critical regulator of ferroptosis, were susceptible to cold stress-induced cell death, concomitant with enhanced endoplasmic reticulum (ER) stress and expression of mitochondrial Ca2+ uptake regulator (MICU1). Indeed, supplementing MICU1 inhibitor reduced ER stress, MDA expression, and cell death in NRF2-deficient but not WT LSECs, suggesting NRF2 is a critical regulator of MICU1-mediated ferroptosis. Consistent with murine data, enhanced liver NRF2 expression reduced MDA levels, hepatocellular damage, and incidence of early allograft dysfunction in human OLT recipients. This translational study provides a clinically applicable strategy in which inhibition of ferroptosis during liver cold preservation mitigates OLT injury by protecting LSECs from peritransplant stress via an NRF2-regulatory mechanism.
Asunto(s)
Ciclohexilaminas , Ferroptosis , Trasplante de Hígado , Fenilendiaminas , Ratones , Humanos , Animales , Trasplante de Hígado/efectos adversos , Células Endoteliales/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Respuesta al Choque por Frío , Hígado/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismoRESUMEN
OBJECTIVES: To find biochemical and molecular markers can assist in identifying serious liver damage of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) patients. METHODS: 138 patients under 13 days to 1.1 year old diagnosed of NICCD in our center from 2004 to 2020. Base on the abnormal liver laboratory tests, we divided 138 patients into three groups: acute liver failure (ALF), liver dysfunction, and non-liver dysfunction groups, then compared their clinical, biochemical and, molecular data. RESULTS: 96â¯% of 138 patients had high levels of citrulline and high ratio of threonine to serine, which is the distinctive feature of plasma amino acid profile for NICCD. A total of 18.1â¯% of 138 patients had evidence of ALF who presented the most severity hepatic damage, 51.5â¯% had liver dysfunction, and the remaining 30.4â¯% presented mild clinical symptoms (non-liver dysfunction). In ALF group, the levels of citrulline, tyrosine, TBIL, ALP, and γ-GT was significantly elevated, and the level of ALB and Fisher ratio was pronounced low. Homozygous mutations of 1,638_1660dup, IVS6+5G.A, or IVS16ins3kb in SLC25A13 gene were only found in ALF and liver dysfunction groups. Supportive treatment including medium-chain triglyceride supplemented diet and fresh frozen plasma could be life-saving and might reverse ALF. CONCLUSIONS: High level of citrulline, tyrosine, TBIL, ALP, γ-GT, and ammonia, low level of albumin, and low Fisher ratio were predictors to suggest severe liver damage in NICCD patients who may go on to develop fatal metabolic disorder. Early identification and proper therapy is particularly important for these patients.
Asunto(s)
Citrulinemia , Enfermedades del Recién Nacido , Hepatopatías , Humanos , Lactante , Recién Nacido , Colestasis Intrahepática/genética , Citrulina , Citrulinemia/genética , Citrulinemia/diagnóstico , Pueblos del Este de Asia , Proteínas de Transporte de Membrana Mitocondrial/genética , Mutación , Tirosina , Hepatopatías/genéticaRESUMEN
Fluoroacetic acid (FAA) is a poison commonly used for the lethal control of invasive species in Australia and New Zealand. Despite its widespread use and long history as a pesticide, no effective treatment for accidental poisoning exists. Although it is known to inhibit the tricarboxylic acid (TCA) cycle, specific details of FAA toxicology have remained elusive, with hypocalcemia suggested to be involved in the neurological symptoms prior to death. Here, we study the effects of FAA on cell growth and mitochondrial function using the filamentous fungi Neurospora crassa as model organism. FAA toxicosis in N. crassa is characterized by an initial hyperpolarization and subsequent depolarization of the mitochondrial membranes, followed by a significant intracellular decrease in ATP and increase in Ca2+. The development of mycelium was markedly affected within 6 h, and growth impaired after 24 h of FAA exposure. Although the activity of mitochondrial complexes I, II and IV was impaired, the activity of citrate synthase was not affected. Supplementation with Ca2+ exacerbated the effects of FAA in cell growth and membrane potential. Our findings suggest that an imbalance created in the ratio of ions within the mitochondria may lead to conformational changes in ATP synthase dimers due to mitochondrial Ca2+ uptake, that ultimately result in the opening of the mitochondrial permeability transition pore (MPTP), a decrease in membrane potential, and cell death. Our findings suggest new approaches for the treatment research, as well as the possibility to use N. crassa as a high-throughput screening assay to evaluate a large number of FAA antidote candidates.
Asunto(s)
Neurospora crassa , Neurospora crassa/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ácido Cítrico , Homeostasis , Citratos , Adenosina Trifosfato , Calcio/metabolismoRESUMEN
Mitochondrial cytopathies, among which the Leigh syndrome (LS), are caused by variants either in the mitochondrial or the nuclear genome, affecting the oxidative phosphorylation process. The aim of the present study consisted in defining the molecular diagnosis of a group of Tunisian patients with LS. Six children, belonging to five Tunisian families, with clinical and imaging presentations suggestive of LS were recruited. Whole mitochondrial DNA and targeted next-generation sequencing of a panel of 281 nuclear genes involved in mitochondrial physiology were performed. Bioinformatic analyses were achieved in order to identify deleterious variations. A single m.10197G>A (p.Ala47Thr) variant was found in the mitochondrial MT-ND3 gene in one patient, while the others were related to autosomal homozygous variants: two c.1412delA (p.Gln471ArgfsTer42) and c.1264A>G (p.Thr422Ala) in SLC19A3, one c.454C>G (p.Pro152Ala) in SLC25A19 and one c.122G>A (p.Gly41Asp) in ETHE1. Our findings demonstrate the usefulness of genomic investigations to improve LS diagnosis in consanguineous populations and further allow for treating the patients harboring variants in SLC19A3 and SLC25A19 that contribute to thiamine transport, by thiamine and biotin supplementation. Considering the Tunisian genetic background, the newly identified variants could be screened in patients with similar clinical presentation in related populations.
Asunto(s)
Enfermedad de Leigh , Biotina/genética , Niño , ADN Mitocondrial/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/genética , Mutación , Proteínas de Transporte Nucleocitoplasmático/genética , TiaminaRESUMEN
BACKGROUND: Lung cancer has the highest mortality rate among all cancer types. In combination with multiple chemotherapeutic options, traditional Chinese medicine has proven indispensable for the comprehensive treatment of lung cancer. PURPOSE: To investigate the effects of Hedyotis diffusa on lung adenocarcinoma cell lines and a BALB/c nude mouse xenograft model, and determine whether HDI could induce ferroptosis in lung adenocarcinoma cells along with the underlying mechanism. METHODS: The anti-tumor activity of HDI was determined in vitro by cell counting kit-8, clonogenic, and transwell assays. Subsequently, electron microscopy, a lipid reactive oxygen species assay, ferrous ion staining, and a malondialdehyde assay were performed to determine the effect on ferroptosis in lung adenocarcinoma cells. The mechanism was then further investigated using small molecule inhibitors, siRNA, and plasmid overexpression in vitro. Finally, the effects of HDI were assessed in tumor-bearing BALB/c nude mice, and HE staining was performed to observe tissue damage after HDI treatment. RESULTS: In vitro experiments showed that HDI could inhibit the viability of lung adenocarcinoma cells and induce lung adenocarcinoma cells ferroptosis via mechanisms independent of GPX4 and PUFA-PLS pathways but closely associated with VDAC2/3. HDI regulated VDAC2/3 activity by promoting Bax via inhibiting Bcl2, thereby inducing ferroptosis in lung adenocarcinoma cells. Furthermore, in vivo experiments showed that HDI significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice with less organ damage and toxicity, and significantly increased the expression of the ferroptosis-related indicators 4HNE, TFR, and HMOX1 in tumor tissue. CONCLUSION: HDI can significantly reduce the survival of lung adenocarcinoma cells in vitro, inhibit the growth of subcutaneously transplanted tumors in BALB/c nude mice in vivo, and induce ferroptosis in lung adenocarcinoma cells via Bcl2 inhibition to promote Bax regulation of VDAC2/3.
Asunto(s)
Adenocarcinoma del Pulmón , Ferroptosis , Hedyotis , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/tratamiento farmacológico , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Desnudos , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Proto-Oncogénicas c-bcl-2 , Canal Aniónico 2 Dependiente del Voltaje , Canales Aniónicos Dependientes del Voltaje , Proteína X Asociada a bcl-2RESUMEN
Wuzi-Yanzong-Wan (WZYZW) is a classic prescription for male infertility. Our previous investigation has demonstrated that it can inhibit sperm apoptosis via affecting mitochondria, but the underlying mechanisms are unclear. The purpose of the present study was to explore the actions of WZYZW on mitochondrial permeability transition pore (mPTP) in mouse spermatocyte cell line (GC-2 cells) opened by atractyloside (ATR). At first, WZYZW-medicated serum was prepared from rats following oral administration of WZYZW for 7 days. GC-2 cells were divided into control group, model group, positive group, as well as 5%, 10%, 15% WZYZW-medicated serum group. Cyclosporine A (CsA) was used as a positive control. 50 µmol·L-1 ATR was added after drugs incubation. Cell viability was assessed using CCK-8. Apoptosis was detected using flow cytometry and TUNEL method. The opening of mPTP and mitochondrial membrane potential (MMP) were detected by Calcein AM and JC-1 fluorescent probe respectively. The mRNA and protein levels of voltage-dependent anion channel 1 (VDAC1), cyclophilin D (CypD), adenine nucleotide translocator (ANT), cytochrome C (Cyt C), caspase 3, 9 were detected by RT-PCR (real time quantity PCR) and Western blotting respectively. The results demonstrated that mPTP of GC-2 cells was opened after 24 hours of ATR treatment, resulting in decreased MMP and increased apoptosis. Pre-protection with WZYZ-medicated serum and CsA inhibited the opening of mPTP of GC-2 cells induced by ATR associated with increased MMP and decreased apoptosis. Moreover, the results of RT-qPCR and WB suggested that WZYZW-medicated serum could significantly reduce the mRNA and protein levels of VDAC1 and CypD, Caspase-3, 9 and CytC, as well as a increased ratio of Bcl/Bax. However, ANT was not significantly affected. Therefore, these findings indicated that WZYZW inhibited mitochondrial mediated apoptosis by attenuating the opening of mPTP in GC-2 cells. WZYZW-medicated serum inhibited the expressions of VDAC1 and CypD and increased the expression of Bcl-2, which affected the opening of mPTP and exerted protective and anti-apoptotic effects on GC-2 cell induced by ATR.
Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Animales , Masculino , Ratones , Ratas , Atractilósido/farmacología , Peptidil-Prolil Isomerasa F , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ARN MensajeroRESUMEN
The effect of Kigelia africana on mitochondrial membrane permeability transition has not been explored. In this study, the effect of a solvent fraction of Kigelia africana leaf extract on mitochondrial membrane permeability transition of rat brain and liver was evaluated. A methanol extract of K. africana leaves was fractionated into different solvents by vacuum liquid chromatography and following preliminary screening, the dichloromethane:ethylacetate (1:1) fraction was selected for further assays. Constituent phytochemicals in the fraction were revealed by thin-layer chromatography and further purification was carried out to characterize the compounds. Brain and liver mitochondria were isolated and used for mitochondrial membrane permeability transition and adenosine triphosphatase assays. Exogenous Ca2+ and Al3+ were used to trigger the mitochondrial membrane permeability transition opening. Physicochemical properties revealed by thin-layer chromatography showed that the isolated compounds were flavonoids. The extract inhibited mitochondrial membrane permeability transition opening in the presence and absence of triggering agents in brain and liver mitochondria. It also inhibited mitochondrial lipid peroxidation and adenosine triphosphatase activity. These results suggest that the extract can limit the rate of apoptosis via inhibition of mitochondrial membrane permeability transition which is pivotal to the mitochondrial apoptotic pathway and is an important therapeutic target in some pathological conditions.
Asunto(s)
Membranas Mitocondriales , Poro de Transición de la Permeabilidad Mitocondrial , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/farmacología , Permeabilidad , Extractos Vegetales/química , Ratas , Ratas WistarRESUMEN
Sorafenib is the standard first-line drug for the treatment of advanced hepatocellular carcinoma (HCC), however, its therapeutic efficacy is not satisfactory due to primary or secondary resistance of HCC cells. In the present study, we identified Metaxin 1 (MTX1) as a new regulator of sorafenib resistance in HCC through genome-scale CRISPR activation (CRISPRa) screening. We found that MTX1 was frequently upregulated in HCC tissues and overexpression of MTX1 promoted HCC cell proliferation in vitro and in vivo. As well, MTX1 overexpression increased cell growth rate and decreased cell apoptosis upon sorafenib treatment. Consistently, the resistance induced by MTX1 was also observed in subcutaneous xenograft tumor model. Clinically, high expression of MTX1 was closely related with poor outcomes in HCC patients who received sorafenib treatment. Mechanistically, overexpression of MTX1 could promote HCC cell autophagy via interacting with and inhibiting CDGSH iron sulfur domain 1 (CISD1), an autophagy negative regulator. Taken together, our findings suggest that MTX1 is upregulated in HCC and contributes to sorafenib resistance via a possible mechanism involving CISD1 mediated autophagy.
Asunto(s)
Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Hepáticas/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Sorafenib/uso terapéutico , Animales , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Proliferación Celular , Células Cultivadas , Citometría de Flujo , Mutación con Ganancia de Función , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos , Microscopía Electrónica , Reacción en Cadena en Tiempo Real de la Polimerasa , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
There is a pressing need for molecular targets and biomarkers in gastric cancer (GC). We aimed at identifying aberrations in L-arginine metabolism with therapeutic and diagnostic potential. Systemic metabolites were quantified using mass spectrometry in 293 individuals and enzymes' gene expression was quantified in 29 paired tumor-normal samples using qPCR and referred to cancer pathology and molecular landscape. Patients with cancer or benign disorders had reduced systemic arginine, citrulline, and ornithine and elevated symmetric dimethylarginine and dimethylamine. Citrulline and ornithine depletion was accentuated in metastasizing cancers. Metabolite diagnostic panel had 91% accuracy in detecting cancer and 70% accuracy in differentiating cancer from benign disorders. Gastric tumors had upregulated NOS2 and downregulated ASL, PRMT2, ORNT1, and DDAH1 expression. NOS2 upregulation was less and ASL downregulation was more pronounced in metastatic cancers. Tumor ASL and PRMT2 expression was inversely related to local advancement. Enzyme up- or downregulation was greater or significant solely in cardia subtype. Metabolic reprogramming in GC includes aberrant L-arginine metabolism, reflecting GC subtype and pathology, and is manifested by altered interplay of its intermediates and enzymes. Exploiting L-arginine metabolic pathways for diagnostic and therapeutic purposes is warranted. Functional studies on ASL, PRMT2, and ORNT1 in GC are needed.
Asunto(s)
Arginina/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Gástricas/metabolismo , Anciano , Argininosuccinatoliasa/biosíntesis , Diferenciación Celular , Citrulina/metabolismo , ADN Complementario/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Masculino , Espectrometría de Masas , Metabolómica , Persona de Mediana Edad , Proteínas de Transporte de Membrana Mitocondrial/biosíntesis , Metástasis de la Neoplasia , Óxido Nítrico Sintasa de Tipo II , Ornitina/metabolismo , Reacción en Cadena de la Polimerasa , Proteína-Arginina N-Metiltransferasas/biosíntesis , Reproducibilidad de los Resultados , Neoplasias Gástricas/tratamiento farmacológico , TranscriptomaRESUMEN
Hepatocellular carcinoma (HCC) represents a global health challenge with limited therapeutic options. Anti-angiogenic immune checkpoint inhibitor-based combination therapy has been introduced for progressed HCC, but improves survival only in a subset of HCC patients. Tyrosine-kinase inhibitors (TKI) such as sorafenib represent an alternative treatment option but have only modest efficacy. Using different HCC cell lines and HCC tissues from various patients reflecting HCC heterogeneity, we investigated whether the sorafenib response could be enhanced by combination with pro-apoptotic agents, such as TNF-related apoptosis-inducing ligand (TRAIL) or the BH3-mimetic ABT-737, which target the death receptor and mitochondrial pathway of apoptosis, respectively. We found that both agents could enhance sorafenib-induced cell death which was, however, dependent on specific BH3-only proteins. TRAIL augmented sorafenib-induced cell death only in NOXA-expressing HCC cells, whereas ABT-737 enhanced the sorafenib response also in NOXA-deficient cells. ABT-737, however, failed to augment sorafenib cytotoxicity in the absence of BIM, even when NOXA was strongly expressed. In the presence of NOXA, BIM-deficient HCC cells could be in turn strongly sensitized for cell death induction by the combination of sorafenib with TRAIL. Accordingly, HCC tissues sensitive to apoptosis induction by sorafenib and TRAIL revealed enhanced NOXA expression compared to HCC tissues resistant to this treatment combination. Thus, our results suggest that BH3-only protein expression determines the treatment response of HCC to different sorafenib-based drug combinations. Individual profiling of BH3-only protein expression might therefore assist patient stratification to certain TKI-based HCC therapies.
Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Sorafenib/uso terapéutico , Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2/metabolismo , Compuestos de Bifenilo/farmacología , Carcinoma Hepatocelular/patología , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Antígeno Ki-67/metabolismo , Neoplasias Hepáticas/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Nitrofenoles/farmacología , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sorafenib/farmacología , Sulfonamidas/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacologíaRESUMEN
Glioblastoma multiforme (GBM) is the most frequent, lethal, and aggressive tumor of the central nervous system in adults. In this study, we found for the first time that moschamindole (MCD), a rare phenolic amide with 8/6/6/5/5 rings, is a major bioactive constituent derived from Phragmites communis Trin (Poaceae) that exhibits a potential cytotoxic effect on both TMZ-resistant GBM cell lines and xenograft models. MCD-induced intrinsic apoptosis signals and mitochondrial dysfunction were confirmed by cell cycle arrest, caspase-3/7 activation, and membrane potential depolarization. Furthermore, investigations exploring the mechanism showed that MCD specifically inhibits Mia40-mediated oxidative folding of mitochondrial intermembrane space (IMS) proteins via PCR assay and immunoblot analysis. MCD relies on its positive charge to associate with mitochondrial oxidative respiration, thus blocking energy metabolism and inducing apoptosis. Overexpression and upregulation of Mia40 were proven to reverse MCD-induced apoptosis and were correlated with the chemoresistance of GBM in vitro and in vivo, respectively. Taken together, our study demonstrates that Mia40 is a potential target of the chemoresistance of glioblastoma and suggests that MCD might be a potential agent for the individualized treatment of chemoresistant GBM based on mitochondrial metabolic characteristics and Mia40 expression.
Asunto(s)
Apoptosis/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Mitocondrias/metabolismo , Animales , Glioblastoma/patología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
AIM AND OBJECTIVE: To study the effect of Gupi Xiaoji Prescription (GXP) on hepatitis B virus(HBV)-related liver cancer through network pharmacology coupled with in vitro experiments and explore their related mechanisms. MATERIALS AND METHODS: Gupi Xiaoji Prescription's chemical constituents and the action targets of its six medicinal components were identified using several databases. These included the Traditional Chinese Medicine Systems Pharmacology Database ï¼TCMSP), the Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM), and the Traditional Chinese Medicine Integrated Database (TCMID), while GeneCards and OMIM were used to compile relevant liver cancer disease targets. Pathway enrichment of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), analysis of potential targets, and analysis of the enriched pathways in literature were executed in R. The Hepatocellular carcinoma (HCC)-derived HepG2.2.15 cell line stably expresses and replicates HBV. In vitro experiments with HepG2.2.15 were used to verify GXP's effects on HBV-related liver cancer, while the human liver cancer cell line HepG2 was used as the control. RESULTS: 171 active ingredients and 259 potential drug targets were screened from GXP, involving 181 pathways in vitro. These assays identified Polyphyllin I as an effective GXP component. Notably, GXP inhibited cell proliferation and metastasis in a concentration-dependent manner (P < 0.01). In comparison with the vehicle group, the fluorescence intensity of each drug group was significantly weakened (P < 0.01), while the drug group Mitofusins 1(MFN1) and protein expression level of Mitofusins 2 (MFN2) increased significantly. The protein expression level of Mitochondrial fission protein 1 (FIS1) and Optic Atrophy 1 (OPA1) also showed significant decreases (P < 0.01). Molecular docking revealed Fructus saponins I's high affinity with FIS1, MFN1, MFN2, and OPA1. CONCLUSION: The network pharmacology results indicate that Gupi Xiaoji Prescription may treat liver cancer by regulating mitochondrial division and fusion of key genes to disrupt liver cancer cells' energy metabolism. In vitro experiments also verified that GXP could inhibit the proliferation and migration of HepG2.2.15 cells by up-regulating MFN1 and MFN2, down-regulating the expression of FIS1 and OPA1 in addition to damaging mitochondria. Consistent with network pharmacology and molecular docking results, Polyphyllin I may be the most active compound of the formula's components. It also shows that Traditional Chinese medicine (TCM) plays a significant, targeted role in the treatment of HBV-related liver cancer.
Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Hepatitis B/complicaciones , Hepatitis B/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/etiología , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , GTP Fosfohidrolasas/metabolismo , Hepatitis B/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Medicina Tradicional China , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Mapas de Interacción de ProteínasRESUMEN
OBJECTIVES: Biallelic mutations in the SLC25A19 gene impair the function of the thiamine mitochondrial carrier, leading to two distinct clinical phenotypes. Homozygosity for the c.530G > C mutation is invariably associated to Amish lethal microcephaly. The second phenotype, reported only in 8 patients homozygous for different non-Amish mutations (c.373G > A, c.580T > C, c.910G > A, c.869T > A, c.576G > C), is characterized by bilateral striatal necrosis and peripheral polyneuropathy. We report a new patient with the non-Amish SLC25A19 phenotype showing compound heterozygosity for the new variant c.673G > A and the known mutation c.373G > A. CASE PRESENTATION: The natural history of non-Amish SLC25A19 deficiency is characterized by acute episodes of fever-induced encephalopathy accompanied by isolated lactic acidosis and Leigh-like features at magnetic resonance imaging (MRI). Acute episodes are prevented by high-dose thiamine treatment (600 mg/day). As shown in the new case, both mild clinical signs and basal ganglia involvement can precede the acute encephalopathic onset of the disease, potentially allowing treatment anticipation and prevention of acute brain damage. Peripheral axonal neuropathy, observed in 7 out of 9 patients, is not improved by thiamine therapy. In two early treated patients, however, peripheral neuropathy did not occur even on long-term follow-up, suggesting a potential preventive role of treatment anticipation also at the peripheral level. CONCLUSIONS: Non-Amish SLC25A19 deficiency is an extra-rare cause of Leigh syndrome responsive to thiamine treatment. Ex adiuvantibus thiamine treatment is mandatory in any patient with Leigh-like features.
Asunto(s)
Encefalopatías/patología , Cuerpo Estriado/patología , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Mutación , Necrosis , Fenotipo , Polineuropatías/patología , Encefalopatías/complicaciones , Humanos , Lactante , Masculino , Proteínas de Transporte de Membrana Mitocondrial/genética , Polineuropatías/complicaciones , PronósticoRESUMEN
OBJECTIVE: To investigate the protective effects of Shexiang Tongxin Dropping Pill (, STDP) following sodium laurate-induced coronary microembolization (CME) in rats. METHODS: Forty rats were divided into 4 groups: the control (sham) group, CME group, low-dose STDP pretreatment group (20 mg·kg-1·d-1), and high-dose STDP pretreatment group (40 mg·kg-1·d-1). The rats were intragastric administrated with STDP 2 weeks before operation. Moreover, the histopathological alterations were observed using optical microscopy and transmission electron microscopy. Antioxidant biomarkers were analyzed by enzyme-linked immunosorbent assay. Mitochondrial functions including the mitochondrial permeability transition pore (mPTP) mtDNA copy number were determined and proteins of AKT/GSK3ß were analyzed by Western blot. RESULTS: The rats in the CME group showed a significant increase in the fibrinogen-like protein 2 expression level and mitochondrial dysfunction and a decrease in the expression level of antioxidant biomarkers (superoxide dismutase and catalase, P<0.01 for all). In contrast, the rats in the low- and high-dose STDP pretreatment groups showed a significant decrease in coronary microthrombi (P<0.05); moreover, STDP restored the antioxidant-related protein activities and mitochondrial function, inhibited mPTP opening, decreased AKT-Ser473 phosphorylation, and increased GSK3ß-Ser9 phosphorylation (P<0.05 or P<0.01). CONCLUSION: STDP may be useful for treatment of CME, possibly via regulation of mPTP opening and AKT/GSK3ß phosphorylation.
Asunto(s)
Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Proto-Oncogénicas c-akt , Animales , Medicamentos Herbarios Chinos , Glucógeno Sintasa Quinasa 3 , Proteínas de Transporte de Membrana Mitocondrial , Fosforilación , RatasRESUMEN
INTRODUCTION: Long-term outcome is postulated to be different in isolated methylmalonic aciduria caused by mutations in the MMAA gene (cblA type) compared with methylmalonyl-CoA mutase deficiency (mut), but case definition was previously difficult. METHOD: Cross-sectional analysis of data from the European Registry and Network for Intoxication type Metabolic Diseases (Chafea no. December 1, 2010). RESULTS: Data from 28 cblA and 95 mut patients in most cases confirmed by mutation analysis (including 4 new mutations for cblA and 19 new mutations for mut). Metabolic crisis is the predominant symptom leading to diagnosis in both groups. Biochemical disturbances during the first crisis were similar in both groups, as well as the age at diagnosis. Z scores of body height and body weight were similar in both groups at birth, but were significantly lower in the mut group at the time of last visit. Glomerular filtration rate was significantly higher in cblA; and as a consequence, chronic renal failure and related complications were significantly less frequent and renal function could be preserved even in older patients. Neurological complications were predominantly found in the mut subgroup. Methylmalonic acidemia (MMA) levels in urine and plasma were significantly lower in cblA. 27/28 cblA patients were reported to be responsive to cobalamin, only 86% of cblA patients were treated with i.m. hydroxocobalamin. In total, 73% of cblA and 98% of mut patients followed a calculated diet with amino acid supplements in 27% (cblA) and 69% (mut). During the study interval, six patients from the mut group died, while all cblA patients survived. CONCLUSION: Although similar at first, cblA patients respond to hydroxocobalamin treatment, subsequently show significantly lower levels of MMA and a milder course than mut patients.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo/genética , Metilmalonil-CoA Mutasa/deficiencia , Proteínas de Transporte de Membrana Mitocondrial/genética , Vitamina B 12/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/mortalidad , Niño , Estudios Transversales , Femenino , Tasa de Filtración Glomerular , Humanos , Fallo Renal Crónico/etiología , Masculino , Ácido Metilmalónico/sangre , Ácido Metilmalónico/orina , Metilmalonil-CoA Mutasa/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , MutaciónRESUMEN
Targeting energy metabolism holds the potential to effectively treat a variety of malignant diseases, and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) is a key regulator of energy metabolism. However, PGC1α's role in cancer, especially in hepatocellular carcinoma (HCC) remains largely unknown. In the present study, we reported that PGC1α was significantly downregulated in HCC cell lines and specimens. Moreover, reduced expression of PGC1α in tumor cells was correlated with poor prognosis. PGC1α overexpression substantially inhibited cell proliferation and induced apoptosis in vitro and in vivo. On the contrary, the knockdown of PGC1α produced the opposite effect. The mechanism was at least partially due to the upregulation of mitochondrial pyruvate carrier 1 (MPC1) caused by PGC1α, which promoted mitochondrial biogenesis by binding to nuclear respiratory factor 1 (NRF1). Consequently, the production of cellular reactive oxygen species (ROS) caused by mitochondrial oxidation was elevated above a critical threshold for survival. Furthermore, we found that PGC1α could enhance the antitumor activity of sorafenib and doxorubicin in HCC through ROS accumulation-mediated cell death. These results indicate that PGC1α/NRF1-MPC1 axis is involved in HCC progression and could be a promising target for HCC treatment.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Doxorrubicina/farmacología , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Proteínas de Transporte de Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Factor Nuclear 1 de Respiración/genética , Factor Nuclear 1 de Respiración/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sorafenib/farmacologíaRESUMEN
Mitochondrial calcium uptake 1 (MICU1) is a pivotal molecule in maintaining mitochondrial homeostasis under stress conditions. However, it is unclear whether MICU1 attenuates mitochondrial stress in angiotensin II (Ang-II)-induced cardiac hypertrophy or if it has a role in the function of melatonin. Here, small-interfering RNAs against MICU1 or adenovirus-based plasmids encoding MICU1 were delivered into left ventricles of mice or incubated with neonatal murine ventricular myocytes (NMVMs) for 48 h. MICU1 expression was depressed in hypertrophic myocardia and MICU1 knockdown aggravated Ang-II-induced cardiac hypertrophy in vivo and in vitro. In contrast, MICU1 upregulation decreased cardiomyocyte susceptibility to hypertrophic stress. Ang-II administration, particularly in NMVMs with MICU1 knockdown, led to significantly increased reactive oxygen species (ROS) overload, altered mitochondrial morphology, and suppressed mitochondrial function, all of which were reversed by MICU1 supplementation. Moreover, peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α)/MICU1 expression in hypertrophic myocardia increased with melatonin. Melatonin ameliorated excessive ROS generation, promoted mitochondrial function, and attenuated cardiac hypertrophy in control but not MICU1 knockdown NMVMs or mice. Collectively, our results demonstrate that MICU1 attenuates Ang-II-induced cardiac hypertrophy by inhibiting mitochondria-derived oxidative stress. MICU1 activation may be the mechanism underlying melatonin-induced protection against myocardial hypertrophy.
Asunto(s)
Antioxidantes/farmacología , Proteínas de Unión al Calcio/genética , Cardiomegalia/genética , Melatonina/farmacología , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/genética , Angiotensina II/toxicidad , Animales , Proteínas de Unión al Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Corazón/efectos de los fármacos , Técnicas In Vitro , Ratones , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vasoconstrictores/toxicidadRESUMEN
BACKGROUND: Congenital sideroblastic anemia (CSA) constitutes an uncommon category of inherited anemia often associated with pathologic iron accumulation. Pathogenic variants in several genes have been identified as causative for CSA. Autosomal recessive pathogenic variants in the mitochondrial glycine transporter SLC25A38 have been implicated in a subset of patients with CSA. PROCEDURE: We describe seven individuals of Canadian Cree descent with a known or inferred homozygous novel founder missense variant in SLC25A38 (c.560G>A, p.Arg187Gln). RESULTS: All individuals presented as young children (median age 6 months) with severe microcytic, hypochromic anemia associated with pretransfusion iron overload, requiring red cell transfusion support and iron chelation. Six individuals received pyridoxine supplementation; two demonstrating transient partial responses. Three individuals underwent allogeneic hematopoietic stem cell transplantation (HSCT). One individual with significant iron loading died in the posttransplant period due to complications of sepsis. The other two individuals remain transfusion-free following HSCT. CONCLUSIONS: Despite a common genetic etiology, phenotypic variability was noted in this cohort. A transient response to pyridoxine was noted in two individuals but should not be considered a long-term therapeutic strategy. HSCT was curative when performed before significant iron loading occurred. Early identification of CSA and timely HSCT can result in excellent long-term outcomes.
Asunto(s)
Anemia Sideroblástica/terapia , Enfermedades Genéticas Ligadas al Cromosoma X/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Proteínas de Transporte de Membrana Mitocondrial/genética , Mutación , Anemia Sideroblástica/genética , Anemia Sideroblástica/patología , Preescolar , Femenino , Estudios de Seguimiento , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Lactante , Masculino , Pronóstico , Estudios RetrospectivosRESUMEN
Rationale: Malignant ascites caused by cancer cells results in poor prognosis and short average survival time. No effective treatment is currently available for malignant ascites. In this study, the effects of lentinan (LNT)-functionalized selenium nanoparticles (Selene) on malignant ascites were evaluated. Furthermore, the mechanism of Selene targeting mitochondria of tumor cells were also investigated. Methods: Selene were synthesized and characterized by TEM, AFM and particle size analysis. The OVCAR-3 and EAC cells induced ascites models were used to evaluate the effects of Selene on malignant ascites. Proteomic analysis, immunofluorescence, TEM and ICP-MS were used to determine the location of Selene in tumor cells. Mitochondrial membrane potential, ROS, ATP content, and caspase-1/3 activity were detected to evaluate the effect of Selene on mitochondrial function and cell apoptosis. Immunofluorescence, Co-IP, pull-down, duolink, Western blot, and FPLC were used to investigate the pathway of Selene targeting mitochondria. Results: Selene could effectively inhibit ascites induced by OVCAR-3 and EAC cells. Selene was mainly located in the mitochondria of tumor cells and induced apoptosis of tumor cells. The LNT in Selene was involved in caveolae-mediated endocytosis through the interaction between toll-like receptor-4 (TLR4) and caveolin 1 (CAV1). Furthermore, the Selene in the endocytic vesicles could enter the mitochondria via the mitochondrial membrane fusion pathway, which was mediated by TLR4/TNF receptor associated factor 3 (TRAF3)/mitofusin-1 (MFN1) protein complex. Conclusion: Selene is a candidate anticancer drug for the treatment of malignant ascites. And TLR4/TRAF3/MFN1 may be a specific nano-drug delivery pathway that could target the mitochondria.
Asunto(s)
GTP Fosfohidrolasas/metabolismo , Lentinano/farmacología , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Nanopartículas/química , Selenio/farmacología , Factor 3 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caveolas/efectos de los fármacos , Caveolas/metabolismo , Línea Celular Tumoral , Endocitosis/efectos de los fármacos , Femenino , Humanos , Lentinano/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Selenio/química , Transducción de Señal/efectos de los fármacosRESUMEN
Although structurally related, mitochondrial carrier family (MCF) proteins catalyze the specific transport of a range of diverse substrates including nucleotides, amino acids, dicarboxylates, tricarboxylates, cofactors, vitamins, phosphate and H+. Despite their name, they do not, however, always localize to the mitochondria, with plasma membrane, peroxisomal, chloroplast and thylakoid and endoplasmic reticulum localizations also being reported. The existence of plastid-specific MCF proteins is suggestive that the evolution of these proteins occurred after the separation of the green lineage. That said, plant-specific MCF proteins are not all plastid-localized, with members also situated at the endoplasmic reticulum and plasma membrane. While by no means yet comprehensive, the in vivo function of a wide range of these transporters is carried out here, and we discuss the employment of genetic variants of the MCF as a means to provide insight into their in vivo function complementary to that obtained from studies following their reconstitution into liposomes.