RESUMEN
Faced with the worldwide spread of multidrug-resistant (MDR) bacterial strains, together with a lack of any appropriate treatment, urgent steps to combat infectious diseases should be taken. Usually, bacterial components are studied to understand, by analogy, the functioning of human proteins. However, molecular data from bacteria gathered over the past decades provide a sound basis for the search for novel approaches in medical care. With this current work, we want to direct attention to inhibition of the vSGLT glucose transporter from Vibrio parahaemolyticus belonging to the sodium solute symporter (SSS) family, to block sugar transport into the bacterial cell and, as a consequence, to limit its growth. Potential bacteriostatic properties can be drawn from commercially available drugs developed for human diseases. This goal can also be reached with natural components from traditional herbal medicine. The presented data from the numerical analysis of 44 known inhibitors of sodium glucose symporters shed light on potential novel approaches in fighting Gram-negative multidrug-resistant microorganisms. Graphical abstract Molecular view on vSGLT channel inhibition by gneyulin B, the compound of natural origin.
Asunto(s)
Modelos Moleculares , Relación Estructura-Actividad Cuantitativa , Proteínas de Transporte de Sodio-Glucosa/química , Estilbenos/química , Antisepsia/métodos , Sitios de Unión , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Ligandos , Unión Proteica , Conformación Proteica , Proteínas de Transporte de Sodio-Glucosa/antagonistas & inhibidores , Estilbenos/farmacología , Vibrio parahaemolyticus/metabolismoRESUMEN
Little is known about insect intestinal sugar absorption, in spite of the recent findings, and even less has been published regarding water absorption. The aim of this study was to shed light on putative transporters of water and glucose in the insect midgut. Glucose and water absorptions by the anterior ventriculus of Dysdercus peruvianus midgut were determined by feeding the insects with a glucose and a non-absorbable dye solution, followed by periodical dissection of insects and analysis of ventricular contents. Glucose absorption decreases glucose/dye ratios and water absorption increases dye concentrations. Water and glucose transports are activated (water 50%, glucose 33%) by 50 mM K(2)SO(4) and are inhibited (water 46%, glucose 82%) by 0.2 mM phloretin, the inhibitor of the facilitative hexose transporter (GLUT) or are inhibited (water 45%, glucose 35%) by 0.1 mM phlorizin, the inhibitor of the Na(+)-glucose cotransporter (SGLT). The results also showed that the putative SGLT transports about two times more water relative to glucose than the putative GLUT. These results mean that D. peruvianus uses a GLUT-like transporter and an SGLT-like transporter (with K(+) instead of Na(+)) to absorb dietary glucose and water. A cDNA library from D. peruvianus midgut was screened and we found one sequence homologous to GLUT1, named DpGLUT, and another to a sodium/solute symporter, named DpSGLT. Semi-quantitative RT-PCR studies revealed that DpGLUT and DpSGLTs mRNA were expressed in the anterior midgut, where glucose and water are absorbed, but not in fat body, salivary gland and Malpighian tubules. This is the first report showing the involvement of putative GLUT and SGLT in both water and glucose midgut absorption in insects.
Asunto(s)
Tracto Gastrointestinal/metabolismo , Glucosa/metabolismo , Hemípteros/anatomía & histología , Hemípteros/metabolismo , Proteínas de Insectos/metabolismo , Agua/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Transporte Biológico/efectos de los fármacos , Clonación Molecular , ADN Complementario/genética , Femenino , Proteínas Facilitadoras del Transporte de la Glucosa/química , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Hemípteros/efectos de los fármacos , Humanos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Absorción Intestinal/efectos de los fármacos , Datos de Secuencia Molecular , Potasio/farmacología , Proteínas de Transporte de Sodio-Glucosa/química , Proteínas de Transporte de Sodio-Glucosa/genética , Proteínas de Transporte de Sodio-Glucosa/metabolismoRESUMEN
[(3)H]Fructose and [(3)H]glucose transport were determined in brush-border membrane vesicles (BBMV), basolateral membrane vesicles (BLMV) and isolated cells (E, R, F, B) of H. americanus (Atlantic lobster) hepatopancreas. Glucose transport in BBMV was equilibrative in the absence of sodium and concentrative in the presence of sodium. Sodium-dependent glucose transport by BBMV was not inhibited by a tenfold molar excess of fructose. Glucose transport by BLMV was equilibrative and sodium independent. Fructose uptake by BBMV and BLMV was equilibrative in the absence of sodium and concentrative in the presence of sodium. This enhancement was not affected by a tenfold molar excess of glucose in the presence of sodium. E-, F- and B-cells showed sodium-dependent uptake of fructose, while R-cells did not. Sodium-dependent fructose uptake by E-cells was not inhibited by a tenfold molar excess of glucose or mannose. Western blot analysis of BBMV, BLMV and E-, R-, F- and B-cells using rabbit polyclonal antibodies directed against epitopes of mammalian GLUT2, GLUT5, SGLT1 and SGLT4 indicated the presence of cross-reacting lobster proteins. Sequence alignment of the mammalian proteins with translated, lobster expressed sequence tags also indicated significant identity between species. Comparison of fructose and glucose uptake in the absence and presence of sodium by BBMV, BLMV and isolated cells indicated the presence of a distinct sodium-dependent transport activity for each sugar in the Atlantic lobster.