Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Biol Interact ; 393: 110944, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38518851

RESUMEN

Ferroptosis is a form of programmed cell death involved in various types of acute kidney injury (AKI). It is characterized by inactivation of the selenoprotein, glutathione peroxidase 4 (GPX4), and upregulation of acyl-CoA synthetase long-chain family member 4 (ACSL4). Since urinary selenium binding protein 1 (SBP1/SELENBP1) is a potential biomarker for AKI, this study investigated whether SBP1 plays a role in AKI. First, we showed that SBP1 is expressed in proximal tubular cells in normal human kidney, but is significant downregulated in cases of AKI in association with reduced GPX4 expression and increased ACSL4 expression. In mouse renal ischemia-reperfusion injury (I/R), the rapid downregulation of SBP1 protein levels preceded downregulation of GPX4 and the onset of necrosis. In vitro, hypoxia/reoxygenation (H/R) stimulation in human proximal tubular epithelial (HK-2) cells induced ferroptotic cell death in associated with an acute reduction in SBP1 and GPX4 expression, and increased oxidative stress. Knockdown of SBP1 reduced GPX4 expression and increased the susceptibility of HK-2 cells to H/R-induced cell death, whereas overexpression of SBP1 reduced oxidative stress, maintained GPX4 expression, reduced mitochondrial damage, and reduced H/R-induced cell death. Finally, selenium deficiency reduced GPX4 expression and promoted H/R-induced cell death, whereas addition of selenium was protective against H/R-induced oxidative stress. In conclusion, SBP1 plays a functional role in hypoxia-induced tubular cell death. Enhancing SBP1 expression is a potential therapeutic approach for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Selenio , Animales , Humanos , Ratones , Lesión Renal Aguda/inducido químicamente , Células Epiteliales/metabolismo , Hipoxia , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Selenio/farmacología , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo
2.
Mol Med ; 29(1): 121, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684566

RESUMEN

BACKGROUND: As the tissue with the highest selenium content in the body, the occurrence and development of thyroid cancer are closely related to selenium and selenoproteins. Selenium-binding protein 1 (SBP1) has been repeatedly implicated in several cancers, but its role and molecular mechanisms in thyroid cancer remains largely undefined. METHODS: The expression of SBP1, sodium/iodide symporter (NIS) and thioredoxin (TXN) were analyzed in clinical samples and cell lines. Cell counting kit-8 (CCK-8) and tube formation assays were used to analyze the cell viability and tube formation of cells. Immunofluorescence was used to determine the expression of the NIS. Co-immunoprecipitation (Co-IP) assay was carried out to verify the interaction of SBP1 with TXN. The mouse xenograft experiment was performed to investigate the growth of thyroid cancer cells with SBP1 knockdown in vivo. RESULTS: SBP1 was significantly increased in human thyroid cancer tissues and cells, especially in anaplastic thyroid cancer. Overexpression of SBP1 promoted FTC-133 cell proliferation, and the culture supernatant of SBP1-overexpression FTC-133 cells promoted tube formation of human retinal microvascular endothelial cells. Knockdown of SBP1, however, inhibited cell proliferation and tube formation. Furthermore, overexpression of SBP1 inhibited cellular differentiation of differentiated thyroid cancer cell line FTC-133, as indicated by decreased expression of thyroid stimulating hormone receptors, thyroglobulin and NIS. Knockdown of SBP1, however, promoted differentiation of BHT101 cells, an anaplastic thyroid cancer cell line. Notably, TXN, a negative regulator of NIS, was found to be significantly upregulated in human thyroid cancer tissues, and it was positively regulated by SBP1. Co-IP assay implied a direct interaction of SBP1 with TXN. Additionally, TXN overexpression reversed the effect of SBP1 knockdown on BHT101 cell viability, tube formation and cell differentiation. An in vivo study found that knockdown of SBP1 promoted the expression of thyroid stimulating hormone receptors, thyroglobulin and NIS, as well as inhibited the growth and progression of thyroid cancer tumors. CONCLUSION: SBP1 promoted tumorigenesis and dedifferentiation of thyroid cancer through positively regulating TXN.


Asunto(s)
Selenio , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Animales , Humanos , Ratones , Carcinogénesis/genética , Transformación Celular Neoplásica , Células Endoteliales , Receptores de Tirotropina , Tiorredoxinas , Tiroglobulina , Carcinoma Anaplásico de Tiroides/genética , Neoplasias de la Tiroides/genética , Proteínas de Unión al Selenio/metabolismo
3.
Cancer Med ; 12(16): 17149-17170, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37606338

RESUMEN

BACKGROUND: Selenium is an essential trace element in the human body. In epidemiological and clinical studies, Se supplementation significantly reduced the incidence of lung cancer in individuals with low baseline Se levels. The significant action of selenium is based on the selenium-containing protein as a mediator. Of note, the previous studies reported that the expression of selenium-binding protein 1 (SELENBP1) was obviously decreased in many human cancer tissues including non-small cell lung cancer (NSCLC). However, its roles in the origin and development of NSCLC are still unclear. METHODS: The expression of SELENBP1 was measured by qRT-PCR, Western blotting and IHC in our collected clinical NSCLC tissues and cell lines. Next, the CCK-8, colony formation, wound-haeling, Millicell, Transwell, FCM assay, and in vivo xenograft model were performed to explore the function of SELENBP1 in NSCLC. The molecular mechanisms of SELENBP1 were investigated by Western blotting or IF assay. RESULTS: We further identified that the expression of SELENBP1 was significantly decreased in NSCLC tissues in TCGA database and 45 out of 59 collected clinical NSCLC tissues compared with adjacent nontumor tissues, as well as in four NSCLC cell lines compared with normal lung cells. Particularly, we unexpectedly discovered that SELENBP1 was obviously expressed in alveolar type 2 (AT-II) cells for the first time. Then, a series of in vitro experiments uncovered that overexpression of SELENBP1 inhibited the proliferation, migration, and invasion of NSCLC cells, and induced cell apoptosis. Moreover, overexpression of SELENBP1 also inhibited growth and induced apoptosis of NSCLC cells in vivo. Mechanistically, we demonstrated that overexpression of SELENBP1 inhibited the malignant characteristics of NSCLC cells in part via inactivating the PI3K/AKT/mTOR signal pathway. Meanwhile, we found that overexpression of SELENBP1 inducing the apoptosis of NSCLC cells was associated with the activation of caspase-3 signaling pathway under nonhigh level of oxidative stress, but overexpression of SELENBP1 facilitating the cell apoptosis might be related to its combining with GPX1 and colocalizing in the nucleus under high level of oxidative stress. CONCLUSIONS: Our findings highlighted that SELENBP1 was an important tumor suppressor during the origin and development of NSCLC. It may help to discover novel biomarkers or drug therapy targets for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Selenio , Humanos , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Fosfatidilinositol 3-Quinasas , Selenio/farmacología , Proteínas de Unión al Selenio/genética
4.
Arch Biochem Biophys ; 732: 109451, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36334799

RESUMEN

The contribution of selenium and selenoproteins in prostate cancer etiology remains elusive, potentially due to insufficient information regarding the biochemical pathways in which they are involved. There are twenty-five human selenocysteine-containing proteins or selenoproteins as well as a smaller class of selenium-containing proteins that do not include selenocysteine, and their cancer-associated aberrations, both genetic and functional, have evoked special interest, although their contribution to the metabolic reprogramming of prostate cancers remains has not been extensively studied. While benign prostate tissue exhibits a glycolytic phenotype, neoplastic events restore the truncated tricarboxylic acid cycle and enhance oxidative phosphorylation. Two selenium-containing proteins, selenium binding protein 1 and selenoprotein F, affect prostate cancer phenotypes by modulating tumor cell metabolic profiles with significant effects on mitochondrial biology, including oxidative phosphorylation and ATP synthesis. One of the pathways affected by both proteins is the activation of adenosine monophosphate kinase and its downstream signaling with concomitant induction of glycolysis. This review focuses on highlighting the role of these two proteins in modulating the bioenergetic profile of prostate cancer and in maintaining the metabolic plasticity of these cells rendering growth advantage and possible therapeutic resistance.


Asunto(s)
Neoplasias de la Próstata , Proteínas de Unión al Selenio , Selenio , Selenoproteínas , Humanos , Masculino , Metabolismo Energético , Neoplasias de la Próstata/patología , Proteínas de Unión al Selenio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo
5.
BMC Gastroenterol ; 22(1): 437, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253721

RESUMEN

BACKGROUND: Selenium-binding protein 1 (SELENBP1), a member of the selenium-containing protein family, plays an important role in malignant tumorigenesis and progression. However, it is currently lacking research about relationship between SELENBP1 and immunotherapy in colorectal cancer (CRC). METHODS: We first analyzed the expression levels of SELENBP1 based on the Cancer Genome Atlas (TCGA), Oncomine andUALCAN. Chisq.test, Fisher.test, Wilcoxon-Mann-Whitney test and logistic regression were used to analyze the relationship of clinical characteristics with SELENBP1 expression. Then Gene ontology/ Kyoto encyclopedia of genes and genomes (GO/KEGG), Gene set enrichment analysis (GSEA) enrichment analysis to clarify bio-processes and signaling pathways. The cBioPortal was used to perform analysis of mutation sites, types, etc. of SELENBP1. In addition, the correlation of SELENBP1 gene with tumor immune infiltration and prognosis was analyzed using ssGSEA, ESTIMATE, tumor immune dysfunction and rejection (TIDE) algorithm and Kaplan-Meier (KM) Plotter database. Quantitative real-time PCR (qRT-PCR) and western blotting (WB) were used to validate the expression of SELENBP1 in CRC samples and matched normal tissues. Immunohistochemistry (IHC) was further performed to detect the expression of SELENBP1 in CRC samples and matched normal tissues. RESULTS: We found that SELENBP1 expression was lower in CRC compared to normal colorectal tissue and was associated with poor prognosis. The aggressiveness of CRC increased with decreased SELENBP1 expression. Enrichment analysis showed that the SELENBP1 gene was significantly enriched in several pathways, such as programmed death 1 (PD-1) signaling, signaling by interleukins, TCR signaling, collagen degradation, costimulation by the CD28 family. Decreased expression of SELENBP1 was associated with DNA methylation and mutation. Immune infiltration analysis identified that SELENBP1 expression was closely related to various immune cells and immune chemokines/receptors. With increasing SELENBP1 expression, immune and stromal components in the tumor microenvironment were significantly decreased. SELENBP1 expression in CRC patients affects patient prognosis by influencing tumor immune infiltration. Beside this, SELENBP1 expression is closely related to the sensitivity of chemotherapy and immunotherapy. CONCLUSIONS: Survival analysis as well as enrichment and immunoassay results suggest that SELENBP1 can be considered as a promising prognostic biomarker for CRC. SELENBP1 expression is closely associated with immune infiltration and immunotherapy. Collectively, our study provided useful information on the oncogenic role of SELENBP1, contributing to further exploring the underlying mechanisms.


Asunto(s)
Neoplasias Colorrectales , Selenio , Antígenos CD28 , Colágeno , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Humanos , Factores Inmunológicos , Inmunoterapia , Pronóstico , Receptor de Muerte Celular Programada 1 , Receptores de Antígenos de Linfocitos T , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , Microambiente Tumoral
6.
Nutrition ; 93: 111424, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34592570

RESUMEN

OBJECTIVES: The aim of this study was to assess the effect of the micronutrient selenium, as inorganic selenite, on adipocytes differentiation, and to identify underlying molecular mechanisms to advance the understanding of basic cellular mechanisms associated with adipogenesis. METHODS: The effect of sodium selenite (Na2SeO3) on cell viability (bromide 3-[4,5-dimethylthiazol-2-yl]-2,5-difeniltetrazol [MTT] assay) in preadipocytes, lipid accumulation (oil red O [ORO] assay) and intracellular reactive oxygen species (ROS, [NBT assay]) in mature adipocytes, as well as explore molecular mechanisms via gene expression analyses (real-time quantitative polymerase chain reaction), before and after differentiation, was investigated using 3T3-L1 murine preadipocytes. RESULTS: Selenite (100, 200, and 400 nM) significantly decreased lipid accumulation during differentiation compared with untreated adipocytes (P < 0.05, 0.001, and 0.01, respectively). Preadipocytes exposure (48 h) to selenite caused an increase in glutathione peroxidase 1 (Gpx1) gene expression in a dose-dependent manner. Adipogenesis significantly increased intracellular reactive oxygen species levels (P < 0.05) while decreasing gene expression of antioxidant enzymes (Gpx1: P < 0.05) and significantly increasing gene expression of regulators of lipid catabolism (type II iodothyronine deiodinase [Dio2], P < 0.01) and markers of differentiation (eg, selenium-binding protein 1 [Selenbp1], peroxisome proliferator activated receptor gamma [Pparg], CCAAT/enhancer binding protein alpha [Cebpa], and fatty acid binding protein 4 [Fab4]) compared with preadipocytes (P < 0.01, 0.01, 0.01, and 0.001, respectively). Selenite exposure (200 nM) caused a significant increase in Gpx1, selenoprotein W (Selenow) and selenoprotein P (Selenop) gene expression, in adipocytes compared with untreated ones (P < 0.01, 0.001, and 0.05, respectively) with a significant decrease in heme oxygenase 1 (Ho-1), cyclooxygenase 2 (Cox2), Dio2, and Fabp4 gene expression (P < 0.001, 0.05, 0.05, and 0.01, respectively). CONCLUSIONS: Selenium, as selenite, prevented adipogenesis through increasing antioxidant selenoprotein expression, leading to decreased inflammatory markers and, subsequently, to a decrease in differentiation and lipid deposition. These findings, if demonstrated in vivo, could provide valuable data for novel dietary approaches to prevent obesity.


Asunto(s)
Adipogénesis , Selenio , Células 3T3-L1 , Animales , Diferenciación Celular , Expresión Génica , Metabolismo de los Lípidos/genética , Ratones , Estrés Oxidativo , PPAR gamma/metabolismo , Ácido Selenioso , Selenio/farmacología , Proteínas de Unión al Selenio , Selenoproteínas/genética , Selenoproteínas/metabolismo
7.
J Nutr Biochem ; 98: 108831, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34339819

RESUMEN

There is a U-shaped dose-response between selenium (Se) status and health outcomes, but underlying metabolic processes are unclear. This study aims to identify candidate proteins in liver regulated by dietary Se, ranging from deficiency to toxic. Male rats (n=4) were fed graded Se concentrations as selenite for 28 days. Bulk Se analysis was performed by ICP-MS on both soluble and insoluble fractions. Soluble fraction samples were chromatographically separated for identification of selenocompounds by SEC-ICP-MS and protein quantification by LC-MS/MS. Bioinformatics analysis compared low-Se (0 and 0.08 µg Se g-1) and high-Se (0.8, 2 and 5 µg Se g-1) with adequate-Se (0.24 µg Se g-1) diets. Major breakpoints for Se were seen at 0.8 and 2 µg Se g-1 in the insoluble and soluble fractions, respectively. Glutathione peroxidase 1 protein abundance reached a plateau at ≥0.08 µg Se g-1diet; Se bound to selenium binding protein 2 was observed with 2 and 5 µg Se g-1 Se. The extreme diets presented the highest number of differentially expressed (P value <0.05, FC ≥1.2) proteins in comparison to the adequate-Se diet (0 µg Se g-1: 45 proteins; 5 µg Se g-1: 59 proteins); 13 proteins were commonly affected in 0 and 5 µg Se g-1 treatments. Network analysis revealed that the metabolism of glutathione, xenobiotics and amino acids were enriched in both 0 and 5 µg Se g-1 diets, indicating a U-shape effect of Se. This similarity is likely due to down-stream effects of lack of essential selenoproteins in Se deficiency and due to toxic effects of Se that exceeds the capacity to cope with excess Se.


Asunto(s)
Hígado/metabolismo , Selenio/farmacología , Selenoproteínas/metabolismo , Animales , Cromatografía Liquida/métodos , Biología Computacional/métodos , Dieta/métodos , Glutatión Peroxidasa/metabolismo , Masculino , Necesidades Nutricionales , Proteómica/métodos , Ratas , Selenio/deficiencia , Selenio/toxicidad , Proteínas de Unión al Selenio/metabolismo , Espectrometría de Masas en Tándem/métodos , Glutatión Peroxidasa GPX1
8.
Nutrients ; 12(4)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290296

RESUMEN

In this Special Issue of Nutrients, "The Role of Selenium in Health and Disease" covers diverse diseases in the 8 original research articles and 2 reviews, such as cardiovascular disorders (CVD), metabolic syndrome, obesity, cancer, and viral infection, and highlights novel potential biomarkers of disease risk and prognosis [...].


Asunto(s)
Enfermedades Cardiovasculares/etiología , Síndrome Metabólico/etiología , Neoplasias/etiología , Obesidad/etiología , Selenio/deficiencia , Selenio/fisiología , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/metabolismo , Humanos , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Fenómenos Fisiológicos de la Nutrición , Obesidad/diagnóstico , Obesidad/metabolismo , Selenio/metabolismo , Proteínas de Unión al Selenio/metabolismo , Selenoproteína P/metabolismo , Selenoproteínas/metabolismo
9.
Metallomics ; 11(12): 1974-1983, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31660552

RESUMEN

Selenium is an essential trace element in human health and therefore its concentration in biological samples (biofluids and tissues) is used as an indicator of health and nutritional status. In humans, selenium's biological activity occurs through the 25 identified selenoproteins. As total selenium concentration encompasses both functional selenoproteins, small selenocompounds and other selenium-binding proteins, selenium speciation, rather than total concentration, is critical in order to assess functional selenium. Previously, quantitative analysis of selenoproteins required laborious techniques that were often slow and costly. However, more recent advancements in tandem mass spectrometry have facilitated the qualitative and quantitative identification of these proteins. In light of the current alternatives for understanding selenium biochemistry, we aim to provide a review of the modern applications of electrospray ionisation mass spectrometry (ESI-MS) as an alternative to inductively coupled plasma mass spectrometry (ICP-MS) for qualitative and quantitative selenium speciation.


Asunto(s)
Proteínas de Unión al Selenio/análisis , Selenio/análisis , Selenoproteínas/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Oligoelementos/análisis , Cromatografía Líquida de Alta Presión/métodos , Humanos
10.
Ecotoxicol Environ Saf ; 169: 128-133, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30445243

RESUMEN

Selenite (Se4+) has been found to counteract the neurotoxicity of methylmercury (MeHg) in MeHg-poisoned rats. However, Se4+ has narrow range between its toxic and beneficial effects. Nanoelemental selenium (SeNPs) was found to be less toxic than other forms of Se such as Se4+. In this study, the effects of SeNPs on the load of mercury (Hg) in rats were investigated. Hyphenated technique based on size-exclusion chromatography coupled with UV and inductively coupled plasma mass spectrometry (SEC-ICP-MS) detection and synchrotron radiation X-ray fluorescence spectroscopy (SR-XRF) were used to analyze the Hg-Se-containing proteins in the serum from MeHg-poisoned rats. The Hg-Se-containing fractions monitored by UV and ICP-MS were further characterized by MALDI-TOF-MS. Elevated serum Hg and Se levels were found in MeHg-poisoned rats after SeNPs treatment. Three main Hg-containing bands with molecular weights (MWs) of 25, 62 and 140 kDa were detected in the control samples. Treatment with SeNPs increased the Hg content in proteins at 62 and 170 kDa and decreased the Hg content at 25 kDa. The fraction with 25 kDa was assigned to metallothioneins (MTs), and fractions with 40 and 75 kDa were assigned to albumin. This study showed that the low-toxicity SeNPs could reduce the Hg load in the tissues and promote the formation of high molecular weight Hg- and Se-containing proteins in MeHg-poisoned rats.


Asunto(s)
Intoxicación del Sistema Nervioso por Mercurio/prevención & control , Mercurio/sangre , Metaloproteínas/sangre , Compuestos de Metilmercurio/toxicidad , Nanopartículas , Proteínas de Unión al Selenio/sangre , Selenio/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Masculino , Espectrometría de Masas , Intoxicación del Sistema Nervioso por Mercurio/sangre , Unión Proteica , Ratas , Ratas Sprague-Dawley , Selenio/sangre , Espectrometría por Rayos X
11.
Int J Mol Sci ; 19(11)2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400135

RESUMEN

Selenium-binding protein 1 (SBP1) is a highly conserved protein that covalently binds selenium. SBP1 may play important roles in several fundamental physiological functions, including protein degradation, intra-Golgi transport, cell differentiation, cellular motility, redox modulation, and the metabolism of sulfur-containing molecules. SBP1 expression is often reduced in many cancer types compared to the corresponding normal tissues and low levels of SBP1 are frequently associated with poor clinical outcome. In this review, the transcriptional regulation of SBP1, the different physiological roles reported for SBP1, as well as the implications of SBP1 function in cancer and other diseases are presented.


Asunto(s)
Enfermedad , Salud , Proteínas de Unión al Selenio/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Humanos , Selenio/metabolismo , Proteínas de Unión al Selenio/genética , Proteínas Supresoras de Tumor/metabolismo
12.
Metallomics ; 10(4): 614-622, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29578234

RESUMEN

As an essential micronutrient, selenium deficiency is a leading cause of cardiovascular diseases. The heart is continuously beating to deliver blood to the entire body, and this requires a high amount of energy. An adult heart normally obtains 50-70% of its adenosine 5'-triphosphate from fatty acid ß-oxidation. An increase in fatty acid oxidation activity induces the generation of larger amounts of by-products (reactive oxygen species, ROS) from mitochondrial oxidative phosphorylation. Selenium-dependent glutathione peroxidases play a critical role in the removal of these ROS, especially organic hydroperoxides, from the heart. The definitive transport and/or detailed metabolic pathways from the selenium-source compounds to the selenoproteins in the heart still remain unclear. We explored the selenium-binding proteins in a rat cardiac cell lysate using its reactive metabolic intermediate, selenotrisulfide (STS), and MALDI TOF-mass spectrometry. Several proteins with a free cysteine (Cys) thiol were found to be reactive with STS through a thiol-exchange reaction. The most distinctive Cys-containing protein in the cardiac cell lysate was identified as myoglobin (Mb) from a rat protein database search and tryptic fragmentation experiments. When separately examined in selenium adequate rats, selenium-binding to the cardiac Mb was verified using selenium-specific fluorometry. Cardiac Mb is thought to participate in the selenium metabolic pathway in the heart.


Asunto(s)
Miocardio/metabolismo , Mioglobina/metabolismo , Proteínas de Unión al Selenio/metabolismo , Selenio/metabolismo , Secuencia de Aminoácidos , Animales , Masculino , Ratas , Ratas Wistar
13.
Arch Toxicol ; 91(4): 1635-1648, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27578022

RESUMEN

Identifying novel biomarkers to detect nephrotoxicity is clinically important. Here, we attempted to identify new biomarkers for mercury-induced nephrotoxicity and compared their sensitivity to that of traditional biomarkers in animal models. Comparative proteomics analysis was performed in kidney tissues of Sprague-Dawley rats after oral treatment with HgCl2 (0.1, 1, or 5 mg/kg/day) for 21 days. Kidney cortex tissues were analyzed by two-dimensional gel electrophoresis/matrix-assisted laser desorption/ionization, and differentially expressed proteins were identified. The corresponding spots were quantitated by RT-PCR. Selenium-binding protein 1 (SBP1) was found to be the most markedly upregulated protein in the kidney cortex of rats after HgCl2 administration. However, blood urea nitrogen, serum creatinine, and glucose levels increased significantly only in the 1 or 5 mg/kg HgCl2-treated groups. A number of urinary excretion proteins, including kidney injury molecule-1, clusterin, monocyte chemoattractant protein-1, and ß-microglobulin, increased dose-dependently. Histopathological examination revealed severe proximal tubular damage in high-dose (5 mg/kg) HgCl2-exposed groups. In addition, urinary excretion of SBP1 significantly increased in a dose-dependent manner. To confirm the critical role of SBP1 as a biomarker for nephrotoxicity, normal kidney proximal tubular cells were treated with HgCl2, CdCl2, or cisplatin for 24 h. SBP1 levels significantly increased in conditioned media exposed to nephrotoxicants, but decreased in cell lysates. Our investigations suggest that SBP1 may play a critical role in the pathological processes underlying chemical-induced nephrotoxicity. Thus, urinary excretion of SBP1 might be a sensitive and specific biomarker to detect early stages of kidney injury.


Asunto(s)
Cloruro de Cadmio/toxicidad , Enfermedades Renales/inducido químicamente , Cloruro de Mercurio/toxicidad , Proteínas de Unión al Selenio/metabolismo , Animales , Biomarcadores/metabolismo , Nitrógeno de la Urea Sanguínea , Cloruro de Cadmio/administración & dosificación , Cisplatino/administración & dosificación , Cisplatino/toxicidad , Creatinina/sangre , Relación Dosis-Respuesta a Droga , Electroforesis en Gel Bidimensional , Corteza Renal/efectos de los fármacos , Corteza Renal/patología , Enfermedades Renales/patología , Masculino , Cloruro de Mercurio/administración & dosificación , Metales Pesados/administración & dosificación , Metales Pesados/toxicidad , Proteínas/efectos de los fármacos , Proteínas/metabolismo , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
14.
PLoS One ; 11(7): e0158650, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27404728

RESUMEN

Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesize that SBP1 sequesters cellular selenium and sensitizes cancer cells to DNA-damaging agents. To test this hypothesis, we knocked down SBP1 expression in HeLa cervical cancer cells by employing a short hairpin RNA (shRNA) approach. Reduced sensitivity to hydrogen peroxide, paraquat and camptothecin, reactive oxygen species content, and intracellular retention of selenium after selenomethionine treatment were observed in SBP1 shRNA HeLa cells. Results from Western analyses showed that treatment of HeLa cells with selenomethionine resulted in increased SBP1 protein expression in a dose-dependent manner. Knockdown of SBP1 rendered HeLa cells increased expression of glutathione peroxidase-1 but not glutathione peroxidase-4 protein levels and accelerated migration from a wound. Altogether, SBP1 retains supplemental selenium and sensitizes HeLa cancer cells to clastogens, suggesting a new cancer treatment strategy by sequestering selenium through SBP1.


Asunto(s)
Técnicas de Silenciamiento del Gen , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Mutágenos/farmacología , Proteínas de Unión al Selenio/deficiencia , Proteínas de Unión al Selenio/genética , Selenio/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Daño del ADN , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Selenometionina/farmacología
15.
Prostate ; 76(7): 691-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26847995

RESUMEN

BACKGROUND: Genetic variations in some of the selenoprotein genes, alone or together with an individual's selenium status, may influence risk or progression of prostate cancer. We investigated the impact of genetic variants of selenoproteins on plasma selenium levels and cancer aggressiveness at diagnosis in men with localized prostate cancer (PCa). METHODS: The study cohort comprised 722 patients seen at Dana-Farber Cancer Institute who had localized/locally advanced PCa (i.e., stage T3 or less, N0, and M0) from 1994 to 2001. Fifty-five tagging single nucleotide polymorphisms (SNPs) from six selenoprotein genes (TXNRD1, TXNRD2, SEP15, GPX3, SELENBP1, and SEPP1) were analyzed. Logistic regression is used to examine associations of genotypes and plasma selenium levels with risk of aggressive disease, defined as D'Amico intermediate/high risk categories. Step down permutation was applied to adjust for multiple comparisons. RESULTS: Three hundred and forty-eight patients (48%) had aggressive disease at diagnosis. Two SNPs were associated with cancer aggressiveness at diagnosis (unadjusted P = 0.017 and 0.018, respectively). The odds ratio for aggressive disease in patients carrying TXNRD2 rs1005873-AG/GG genotypes or SELENBP1 rs10788804-AG/AA genotypes was 1.54 (95% CI = 1.08, 2.20) and 1.45 (95% CI = 1.07, 1.98), respectively, compared to TXNRD2 rs1005873-AA or SELENBP1 rs10788804-GG carriers. Four SNPs in TXNRD2 (rs1005873, rs13054371, rs3788310, and rs9606174) and the rs230820 in SEPP1 were associated with plasma selenium levels (unadjusted P < 0.05). Permutation adjusted P-values were not statistically significant for all these comparisons at the cut-off point of 0.05. CONCLUSION: We identified polymorphisms in selenoproteins that may influence the plasma selenium levels and may be associated with the risk of presenting with aggressive PCa in men with localized or locally advanced PCa. These results should be validated in other independent datasets.


Asunto(s)
Predisposición Genética a la Enfermedad , Invasividad Neoplásica/genética , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/genética , Selenio/sangre , Estudios de Casos y Controles , Estudios de Asociación Genética , Genotipo , Glutatión Peroxidasa/genética , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/patología , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología , Proteínas de Unión al Selenio/genética , Selenoproteínas/genética , Tiorredoxina Reductasa 1/genética , Tiorredoxina Reductasa 2/genética
16.
Chem Pharm Bull (Tokyo) ; 64(1): 52-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26726744

RESUMEN

The intracellular metabolism of selenium in the brain currently remains unknown, although the antioxidant activity of this element is widely acknowledged to be important in maintaining brain functions. In this study, a comprehensive method for identifying the selenium-binding proteins using PenSSeSPen as a model of the selenium metabolite, selenotrisulfide (RSSeSR, STS), was applied to a complex cell lysate generated from the rat brain. Most of the selenium from L-penicillamine selenotrisulfide (PenSSeSPen) was captured by the cytosolic protein thiols in the form of STS through the thiol-exchange reaction (R-SH+PenSSeSPen→R-SSeSPen+PenSH). The cytosolic protein species, which reacted with the PenSSeSPen mainly had a molecular mass of less than 20 kDa. A thiol-containing protein at m/z 15155 in the brain cell lysate was identified as the cystatin-12 precursor (CST12) from a rat protein database search and a tryptic fragmentation experiment. CST12 belongs to the cysteine proteinase inhibitors of the cystatin superfamily that are of interest in mechanisms regulating the protein turnover and polypeptide production in the central nervous system and other tissues. Consequently, CST12 is suggested to be one of the cytosolic proteins responsible for the selenium metabolism in the brain.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión al Selenio/análisis , Proteínas de Unión al Selenio/metabolismo , Selenio/metabolismo , Animales , Encéfalo/citología , Celulosa/química , Celulosa/metabolismo , Espectroscopía de Fotoelectrones , Ratas
17.
Int J Mol Sci ; 16(11): 27599-608, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26593911

RESUMEN

The concentration of selenium-binding protein1 (SBP1) is often lower in tumors than in the corresponding tissue and lower levels have been associated with poor clinical outcomes. SBP1 binds tightly selenium although what role selenium plays in its biological functions remains unknown. Previous studies indicated that cysteine 57 is the most likely candidate amino acid for selenium binding. In order to investigate the role of cysteine 57 in SBP1, this amino acid was altered to a glycine and the mutated protein was expressed in human cancer cells. The SBP1 half-life, as well as the cellular response to selenite cytotoxicity, was altered by this change. The ectopic expression of SBP1(GLY) also caused mitochondrial damage in HCT116 cells. Taken together, these results indicated that cysteine 57 is a critical determinant of SBP1 function and may play a significant role in mitochondrial function.


Asunto(s)
Codón , Cisteína/genética , Cisteína/metabolismo , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Cisteína/química , Expresión Génica , Glutatión Peroxidasa/metabolismo , Células HCT116 , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Unión Proteica , Proteolisis , Selenio/toxicidad , Proteínas de Unión al Selenio/química , Transducción de Señal/efectos de los fármacos
18.
Nutrients ; 7(5): 3938-48, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26007340

RESUMEN

Most human selenium containing proteins contain selenium in the form of the amino acid selenocysteine, which is encoded in the corresponding mRNA as a UGA codon. Only a few non-selenocysteine containing selenoproteins are present and the nature of the association with selenium is not well understood. This review focuses on two selenocysteine-containing proteins that are members of the glutathione peroxidase family, GPx-1 and GPx-4, and the selenium-associated protein referred to as Selenium Binding Protein 1. Each of these proteins have been described to reside in two or more cellular compartments, and in the case of GPx-1 and SBP1, interact with each other. The enzymatic activity of GPx-1 and GPx-4 have been well described, but it is less clear how their cellular location impacts the health related phenotypes associated with activities, while no catalytic function is assigned to SBP1. The distribution of these proteins is presented as is the possible consequences of that compartmentalization.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Proteínas de Unión al Selenio/metabolismo , Selenio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos
19.
J Toxicol Environ Health A ; 77(22-24): 1384-98, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25343288

RESUMEN

The aim of this study was to investigate urinary metabolomic profiles associated with cadmium (Cd)-induced nephrotoxicity and their potential mechanisms. Metabolomic profiles were measured by high-resolution (1)H-nuclear magnetic resonance (NMR) spectroscopy in the urine of rats after oral exposure to CdCl2 (1, 5, or 25 mg/kg) for 6 wk. The spectral data were further analyzed by a multivariate analysis to identify specific urinary metabolites. Urinary excretion levels of protein biomarkers were also measured and CdCl2 accumulated dose-dependently in the kidney. High-dose (25 mg/kg) CdCl2 exposure significantly increased serum blood urea nitrogen (BUN), but serum creatinine (sCr) levels were unchanged. High-dose CdCl2 (25 mg/kg) exposure also significantly elevated protein-based urinary biomarkers including osteopontin, monocyte chemoattractant protein-1 (MCP-1), kidney injury molecules-1 (Kim-1), and selenium-binding protein 1 (SBP1) in rat urine. Under these conditions, six urinary metabolites (citrate, serine, 3-hydroxyisovalerate, 4-hydroxyphenyllactate, dimethylamine, and betaine) were involved in mitochondrial energy metabolism. In addition, a few number of amino acids such as glycine, glutamate, tyrosine, proline, or phenylalanine and carbohydrate (glucose) were altered in urine after CdCl2 exposure. In particular, the metabolites involved in the glutathione biosynthesis pathway, including cysteine, serine, methionine, and glutamate, were markedly decreased compared to the control. Thus, these metabolites are potential biomarkers for detection of Cd-induced nephrotoxicity. Our results further indicate that redox metabolomics pathways may be associated with Cd-mediated chronic kidney injury. These findings provide a biochemical pathway for better understanding of cellular mechanism underlying Cd-induced renal injury in humans.


Asunto(s)
Biomarcadores/orina , Cadmio/toxicidad , Riñón/efectos de los fármacos , Metaboloma , Animales , Moléculas de Adhesión Celular/orina , Quimiocina CCL2/orina , Riñón/metabolismo , Enfermedades Renales/inducido químicamente , Espectroscopía de Resonancia Magnética , Masculino , Análisis Multivariante , Análisis de Componente Principal , Ratas , Ratas Sprague-Dawley , Proteínas de Unión al Selenio/orina
20.
J Biol Chem ; 289(46): 31765-31776, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25274629

RESUMEN

The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/efectos de los fármacos , Proteínas Portadoras/química , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al Selenio/química , Selenio/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cisteína/química , Humanos , Ligandos , Conformación Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA