Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Mol Neurodegener ; 19(1): 13, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38282024

RESUMEN

BACKGROUND: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.


Asunto(s)
Transporte Axonal , NAD , Nicotinamida-Nucleótido Adenililtransferasa , Animales , Ratones , Adenosina Trifosfato/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , Proteínas del Citoesqueleto/metabolismo , Glucólisis , Homeostasis , NAD/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo
2.
Zool Res ; 45(2): 233-241, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38287904

RESUMEN

Neural tube defects (NTDs) are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure. Although folate supplementation has been shown to mitigate the incidence of NTDs, some cases, often attributable to genetic factors, remain unpreventable. The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation; at present, however, the underlying mechanism remains unclear. Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate. To determine the role of SHROOM3 in early developmental morphogenesis, we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase. Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei. These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins, namely fibrous actin (F-actin), myosin II, and phospho-myosin light chain (PMLC), to the apical side of the neuroepithelial cells. Notably, these defects were not rescued by folate supplementation. RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis. In summary, we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation.


Asunto(s)
Proteínas del Citoesqueleto , Defectos del Tubo Neural , Animales , Proteínas del Citoesqueleto/metabolismo , Tubo Neural/metabolismo , Macaca fascicularis , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/veterinaria , Células Neuroepiteliales/metabolismo , Ácido Fólico/metabolismo , Organoides , Citoesqueleto
3.
J Biophotonics ; 17(3): e202300370, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185916

RESUMEN

Axonal degeneration is a key component of neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease, and amyotrophic lateral sclerosis. Nicotinamide, an NAD+ precursor, has long since been implicated in axonal protection and reduction of degeneration. However, studies on nicotinamide (NAm) supplementation in humans indicate that NAm has no protective effect. Sterile alpha and toll/interleukin receptor motif-containing protein 1 (SARM1) regulates several cell responses to axonal damage and has been implicated in promoting neuronal degeneration. SARM1 inhibition seems to result in protection from neuronal degeneration while hydrogen peroxide has been implicated in oxidative stress and axonal degeneration. The effects of laser-induced axonal damage in wild-type and HD dorsal root ganglion cells treated with NAm, hydrogen peroxide (H2O2), and SARM1 inhibitor DSRM-3716 were investigated and the cell body width, axon width, axonal strength, and axon shrinkage post laser-induced injury were measured.


Asunto(s)
Enfermedad de Huntington , Peróxido de Hidrógeno , Animales , Ratones , Humanos , Niacinamida , Ratones Noqueados , Neuronas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo
4.
J Postgrad Med ; 70(1): 56-59, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37706418

RESUMEN

We report a 2.2 year-old-boy, born of consanguineous marriage, referred for short stature, with history of neonatal death and skeletal deformities in his older sibling. Rhizo-mesomelic dwarfism was detected antenatally. Within 24 hours of birth, he developed multiple seizures. Examination revealed severe short stature, dolichocephaly, broad forehead, deep set eyes, low set ears, bulbous nose, small, irregular teeth, pointed chin, and triangular facies. He had rhizomelic shortening, stubby fingers, pes planus, and scanty hair. Neurological evaluation revealed ataxia, hypotonia, and global developmental delay. Skeletal survey radiograph revealed shallow acetabuli, short femurs and humerus, short, broad metacarpals and short cone-shaped phalanges with cupping of phalangeal bases. Clinical exome analysis revealed homozygous mutations involving the POC1A gene and the SLC13A5 gene responsible for SOFT syndrome and Kohlschutter-Tonz syndrome respectively, which were inherited from the parents. Both these syndromes are extremely rare, and their co-occurrence is being reported for the first time.


Asunto(s)
Anomalías Múltiples , Amelogénesis Imperfecta , Demencia , Enanismo , Epilepsia , Osteocondrodisplasias , Simportadores , Masculino , Recién Nacido , Humanos , Preescolar , Amelogénesis Imperfecta/genética , Anomalías Múltiples/genética , Osteocondrodisplasias/genética , Enanismo/genética , Enanismo/diagnóstico , Proteínas del Citoesqueleto , Proteínas de Ciclo Celular
5.
J Cereb Blood Flow Metab ; 44(2): 224-238, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37898107

RESUMEN

Ischemic stroke causes secondary neurodegeneration in the thalamus ipsilateral to the infarction site and impedes neurological recovery. Axonal degeneration of thalamocortical fibers and autophagy overactivation are involved in thalamic neurodegeneration after ischemic stroke. However, the molecular mechanisms underlying thalamic neurodegeneration remain unclear. Sterile /Armadillo/Toll-Interleukin receptor homology domain protein (SARM1) can induce Wallerian degeneration. Herein, we aimed to investigate the role of SARM1 in thalamic neurodegeneration and autophagy activation after photothrombotic infarction. Neurological deficits measured using modified neurological severity scores and adhesive-removal test were ameliorated in Sarm1-/- mice after photothrombotic infarction. Compared with wild-type mice, Sarm1-/- mice exhibited unaltered infarct volume; however, there were markedly reduced neuronal death and gliosis in the ipsilateral thalamus. In parallel, autophagy activation was attenuated in the thalamus of Sarm1-/- mice after cerebral infarction. Thalamic Sarm1 re-expression in Sarm1-/- mice increased thalamic neurodegeneration and promoted autophagy activation. Auotophagic inhibitor 3-methyladenine partially alleviated thalamic damage induced by SARM1. Moreover, autophagic initiation through rapamycin treatment aggravated post-stroke neuronal death and gliosis in Sarm1-/- mice. Taken together, SARM1 contributes to secondary thalamic neurodegeneration after cerebral infarction, at least partly through autophagy inhibition. SARM1 deficiency is a potential therapeutic strategy for secondary thalamic neurodegeneration and functional deficits after stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Gliosis , Infarto Cerebral/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Tálamo/metabolismo , Axones/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo
6.
Ecotoxicol Environ Saf ; 270: 115826, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38118330

RESUMEN

Aniline is a widely used chemical. Chronic or high-dose exposure to aniline can lead to hepatocellular damage. Although the hepatic pathogenicity of aniline has been established in previous studies, studies involving pathogenic genes during aniline-induced liver injury are limited. Our study first discovered and identified the role and mechanism underlying a new circRNA mmu_circ_26984 in aniline-induced chemical liver injury. Further, we discuss the protective effect of N-acetylcysteine (NAC) in this pathway. After constructing in vitro and in vivo models of aniline treatment, we screened the circRNA with significant differences in expression in AML12 cells from control and aniline-treated groups by circRNA microarray analysis. Next, using RNA pulldown, liquid chromatography-mass spectrometry (LC-MS), and RNA immunoprecipitation, we analyzed the relationship between mmu_circ_26984 and myosin heavy chain 9 (Myh9). Subsequently, we determined the specific mechanism of action of mmu_circ_26984 and Myh9 in aniline-induced liver injury and the protective effect of NAC against aniline-induced liver injury process using Cell Counting Kit-8, Western blot, RNA extraction, a reverse transcription quantitative polymerase chain reaction (RT-qPCR), fluorescence in situ hybridization, immunohistochemistry, and immunofluorescence. The expression of mmu_circ_26984 was significantly increased in liver tissues and AML12 cells of aniline-treated mice compared with the control group. This high expression of mmu_circ_26984 increased the expression of injury-related inflammatory factors, such as NLRP3, Caspase-1, IL-18, and IL-1ß in vivo and ex vivo, which exacerbated the level of liver injury. The interaction of mmu_circ_26984 with Myh9 also affected the course of liver injury. Mmu_circ_26984 overexpression and reduced treatment affected the levels of Myh9 expression in AML12 cells, as well as downstream inflammatory factors associated with injury, such as NLRP3. In addition, NAC reduced the process of liver injury mediated by the mmu_circ_26984/Myh9/NLRP3 axis. In conclusion, mmu_circ_26984 is a potential molecular marker and therapeutic target in the process of aniline-induced liver injury that can mediate aniline-exposure-induced liver injury via modulation of the mmu_circ_26984/Myh9/NLRP3 axis, and NAC can effectively attenuate the effect of this liver injury.


Asunto(s)
Acetilcisteína , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Animales , Ratones , Acetilcisteína/farmacología , Hibridación Fluorescente in Situ , Proteína con Dominio Pirina 3 de la Familia NLR/genética , ARN Circular , Compuestos de Anilina/toxicidad , Proteínas del Citoesqueleto , Cadenas Pesadas de Miosina
7.
EMBO J ; 42(18): e111807, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37606072

RESUMEN

Cilia are important cellular organelles for signaling and motility and are constructed via intraflagellar transport (IFT). RabL2 is a small GTPase that localizes to the basal body of cilia via an interaction with the centriolar protein CEP19 before downstream association with the IFT machinery, which is followed by initiation of IFT. We reconstituted and purified RabL2 with CEP19 or IFT proteins to show that a reconstituted pentameric IFT complex containing IFT81/74 enhances the GTP hydrolysis rate of RabL2. The binding site on IFT81/74 that promotes GTP hydrolysis in RabL2 was mapped to a 70-amino-acid-long coiled-coil region of IFT81/74. We present structural models for RabL2-containing IFT complexes that we validate in vitro and in cellulo and demonstrate that Chlamydomonas IFT81/74 enhances GTP hydrolysis of human RabL2, suggesting an ancient evolutionarily conserved activity. Our results provide an architectural understanding of how RabL2 is incorporated into the IFT complex and a molecular rationale for why RabL2 dissociates from anterograde IFT trains soon after departure from the ciliary base.


Asunto(s)
Proteínas Activadoras de GTPasa , Transducción de Señal , Humanos , Proteínas Activadoras de GTPasa/genética , Transporte Biológico , Aminoácidos , Guanosina Trifosfato , Proteínas Musculares , Proteínas del Citoesqueleto
8.
Phytomedicine ; 116: 154895, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37229890

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a major cause of cancer-associated mortality worldwide. Myosin-9's role in HCC and the anti-HCC effect of the drugs targeting Myosin-9 remain poorly understood so far. Candidate antitumor agents obtained from natural products have attracted worldwide attention. Usenamine A is a novel product, which was first extracted in our laboratory from the lichen Usnea longissima. According to published reports, usenamine A exhibits good antitumor activity, while the mechanisms underlying its antitumor effects remain to be elucidated. PURPOSE: The present study investigated the anti-hepatoma effect of usenamine A and the underlying molecular mechanisms, along with evaluating the therapeutic potential of targeting Myosin-9 in HCC. METHODS: The CCK-8, Hoechst staining, and FACS assays were conducted in the present study to investigate how usenamine A affected the growth and apoptosis of human hepatoma cells. Moreover, TEM, acridine orange staining, and immunofluorescence assay were performed to explore the induction of autophagy by usenamine A in human hepatoma cells. The usenamine A-mediated regulation of protein expression in human hepatoma cells was analyzed using immunoblotting. MS analysis, SPR assay, CETSA, and molecular modeling were performed to identify the direct target of usenamine A. Immunofluorescence assay and co-immunoprecipitation assay were conducted to determine whether usenamine A affected the interaction between Myosin-9 and the actin present in human hepatoma cells. In addition, the anti-hepatoma effect of usenamine A was investigated in vivo using a xenograft tumor model and the IHC analysis. RESULTS: The present study initially revealed that usenamine A could suppress the proliferation of HepG2 and SK-HEP-1 cells (hepatoma cell lines). Furthermore, usenamine A induced cell apoptosis via the activation of caspase-3. In addition, usenamine A enhanced autophagy. Moreover, usenamine A administration could dramatically suppress the carcinogenic ability of HepG2 cells, as evidenced by the nude mouse xenograft tumor model. Importantly, it was initially revealed that Myosin-9 was a direct target of usenamine A. Usenamine A could block cytoskeleton remodeling through the disruption of the interaction between Myosin-9 and actin. Myosin-9 participated in suppressing proliferation while inducing apoptosis and autophagy in response to treatment with usenamine A. In addition, Myosin-9 was revealed as a potential oncogene in HCC. CONCLUSIONS: Usenamine A was initially revealed to suppress human hepatoma cells growth by interfering with the Myosin-9/actin-dependent cytoskeleton remodeling through the direct targeting of Myosin-9. Myosin-9 is, therefore, a promising candidate target for HCC treatment, while usenamine A may be utilized as a possible anti-HCC therapeutic, particularly in the treatment of HCC with aberrant Myosin-9.


Asunto(s)
Muerte Celular Autofágica , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/patología , Actinas , Línea Celular Tumoral , Proliferación Celular , Neoplasias Hepáticas/patología , Apoptosis , Células Hep G2 , Proteínas del Citoesqueleto/farmacología , Proteínas del Citoesqueleto/uso terapéutico , Citoesqueleto/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982749

RESUMEN

Medicinal plants belonging to the genus Berberis may be considered an interesting source of drugs to counteract the problem of antimicrobial multiresistance. The important properties associated with this genus are mainly due to the presence of berberine, an alkaloid with a benzyltetrahydroisoquinoline structure. Berberine is active against both Gram-negative and Gram-positive bacteria, influencing DNA duplication, RNA transcription, protein synthesis, and the integrity of the cell surface structure. Countless studies have shown the enhancement of these beneficial effects following the synthesis of different berberine analogues. Recently, a possible interaction between berberine derivatives and the FtsZ protein was predicted through molecular docking simulations. FtsZ is a highly conserved protein essential for the first step of cell division in bacteria. The importance of FtsZ for the growth of numerous bacterial species and its high conservation make it a perfect candidate for the development of broad-spectrum inhibitors. In this work, we investigate the inhibition mechanisms of the recombinant FtsZ of Escherichia coli by different N-arylmethyl benzodioxolethylamines as berberine simplified analogues appropriately designed to evaluate the effect of structural changes on the interaction with the enzyme. All the compounds determine the inhibition of FtsZ GTPase activity by different mechanisms. The tertiary amine 1c proved to be the best competitive inhibitor, as it causes a remarkable increase in FtsZ Km (at 40 µM) and a drastic reduction in its assembly capabilities. Moreover, a fluorescence spectroscopic analysis carried out on 1c demonstrated its strong interaction with FtsZ (Kd = 26.6 nM). The in vitro results were in agreement with docking simulation studies.


Asunto(s)
Berberina , Proteínas del Citoesqueleto , Proteínas del Citoesqueleto/metabolismo , Simulación del Acoplamiento Molecular , Berberina/química , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Recombinantes/metabolismo , Antibacterianos/farmacología
10.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012700

RESUMEN

Obesity has achieved the appearance of a global epidemic and is a serious cause for concern. The hypothalamus, as the central regulator of energy homeostasis, plays a critical role in regulating food intake and energy expenditure. In this study, we show that TRIM67 in the hypothalamus was responsive to body-energy homeostasis whilst a deficiency of TRIM67 exacerbated metabolic disorders in high-fat-diet-induced obese mice. We found exacerbated neuroinflammation and apoptosis in the hypothalamus of obese TRIM67 KO mice. We also found reduced BDNF in the hypothalamus, which affected the fat sympathetic nervous system innervation and contributed to lipid accumulation in adipose tissue under high-fat-diet exposure. In this study, we reveal potential implications between TRIM67 and the hypothalamic function responding to energy overuptake as well as a consideration for the therapeutic diagnosis of obesity.


Asunto(s)
Hipotálamo , Obesidad , Proteínas de Motivos Tripartitos , Tejido Adiposo/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Hipotálamo/metabolismo , Hipotálamo/patología , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/metabolismo , Proteínas de Motivos Tripartitos/genética
11.
Neurobiol Dis ; 171: 105808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779777

RESUMEN

Wallerian degeneration (WD) is a conserved axonal self-destruction program implicated in several neurological diseases. WD is driven by the degradation of the NAD+ synthesizing enzyme NMNAT2, the buildup of its substrate NMN, and the activation of the NAD+ degrading SARM1, eventually leading to axonal fragmentation. The regulation and amenability of these events to therapeutic interventions remain unclear. Here we explored pharmacological strategies that modulate NMN and NAD+ metabolism, namely the inhibition of the NMN-synthesizing enzyme NAMPT, activation of the nicotinic acid riboside (NaR) salvage pathway and inhibition of the NMNAT2-degrading DLK MAPK pathway in an axotomy model in vitro. Results show that NAMPT and DLK inhibition cause a significant but time-dependent delay of WD. These time-dependent effects are related to NMNAT2 degradation and changes in NMN and NAD+ levels. Supplementation of NAMPT inhibition with NaR has an enhanced effect that does not depend on timing of intervention and leads to robust protection up to 4 days. Additional DLK inhibition extends this even further to 6 days. Metabolite analyses reveal complex effects indicating that NAMPT and MAPK inhibition act by reducing NMN levels, ameliorating NAD+ loss and suppressing SARM1 activity. Finally, the axonal NAD+/NMN ratio is highly predictive of cADPR levels, extending previous cell-free evidence on the allosteric regulation of SARM1. Our findings establish a window of axon protection extending several hours following injury. Moreover, we show prolonged protection by mixed treatments combining MAPK and NAMPT inhibition that proceed via complex effects on NAD+ metabolism and inhibition of SARM1.


Asunto(s)
Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida-Nucleótido Adenililtransferasa , Degeneración Walleriana , Animales , Proteínas del Dominio Armadillo/metabolismo , Axones/patología , Proteínas del Citoesqueleto/metabolismo , Humanos , Mamíferos/metabolismo , NAD/metabolismo , Degeneración Nerviosa/patología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Inhibidores de Proteínas Quinasas , Degeneración Walleriana/metabolismo
12.
Phytomedicine ; 104: 154320, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35830758

RESUMEN

BACKGROUND: After thrombosis, t-PA thrombolysis is the first choice, but the use of t-PA can easily lead to hemorrhagic injury and neurotoxicity. The combination of Danhong injection (DHI) and tissue plasminogen activator (t-PA) therapy may be a new strategy to find high-efficiency anti-thrombosis and low bleeding risk. However, nothing is about the effect of DHI plus t-PA on platelet activation. PURPOSE: The present research was to explore the optimal dose of DHI and t-PA in vivo and mechanisms involved with the treatment of combining DHI and t-PA for thrombotic disease and determined whether DHI plus t-PA affects thrombotic processes related to platelet activation. METHODS: Mice were induced by administering κ-carrageenan intraperitoneally, the ratio of different doses of DHI and t-PA in vivo, and the optimal dose effects on platelet aggregation, platelet adhesion, thrombosis formation, and platelet activation were determined. The effects of the αIIbß3 signaling pathway were analyzed in mice. RESULTS: In vitro, DHI (62% v/v), t-PA (1 mg/ml), and DHI + t-PA (62% v/v + 1 mg/ml) decreased rat platelet aggregation and adhesion, with a stronger effect from the combination as compared to t-PA monotherapy. In vivo, injections of κ-carrageenan were used to induce BALB/c mice. The optimal dose of DHI, t-PA, and DHI + t-PA is 12 ml/kg, 10 mg/kg, and 12 ml/kg + 7.5 mg/kg. The administration of DHI (12 ml/kg), t-PA (10 mg/kg), and DHI + t-PA (12 ml/kg + 7.5 mg/kg) decreased thrombi in mouse tissue vessels. Furthermore, the reduction of thrombosis formation by DHI, t-PA, and DHI + t-PA was related to lower collagen deposition, and lowered expressions of collagen I, matrix metalloproteinase 2 (MMP-2), and metalloproteinase 9 (MMP-9) in mouse tails, with increased efficacy in combination as compared to t-PA alone. The anti-thrombosis actions of DHI, t-PA, and their combination regulated the expression of CD41, purinergic receptor (P2Y12), guanine nucleotide-binding protein G (q) subunit alpha (GNAQ), phosphatidylinositol phospholipase c beta (PLCß), Ras-related protein 1 (Rap1), RIAM, talin1, fibrinogen alpha chain (FG), kindlin-3, and RAS guany1-releasing protein 1 (RasGRP1). CONCLUSIONS: Based on expression, the mechanism responsible for thrombosis may be attributed to platelet activation via the αIIbß3 signaling pathway. Combination therapy with DHI and t-PA exerted potent thrombolytic effects. Thus, our data can be used as a foundation for further clinical studies examining the efficacy of traditional Chinese medicines for the treatment of thrombosis.


Asunto(s)
Trombosis , Activador de Tejido Plasminógeno , Animales , Carragenina , Proteínas del Citoesqueleto/uso terapéutico , Medicamentos Herbarios Chinos , Factores de Intercambio de Guanina Nucleótido/uso terapéutico , Metaloproteinasa 2 de la Matriz , Ratones , Ratas , Cola (estructura animal)/metabolismo , Trombosis/tratamiento farmacológico , Activador de Tejido Plasminógeno/metabolismo , Activador de Tejido Plasminógeno/uso terapéutico
13.
Biochem J ; 479(14): 1543-1558, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35789252

RESUMEN

The respiratory pathogen, Streptococcus pneumoniae has acquired multiple-drug resistance over the years. An attractive strategy to combat pneumococcal infection is to target cell division to inhibit the proliferation of S. pneumoniae. This work presents Vitamin K3 as a potential anti-pneumococcal drug that targets FtsZ, the master coordinator of bacterial cell division. Vitamin K3 strongly inhibited S. pneumoniae proliferation with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 6 µg/ml. Vitamin K3 disrupted the Z-ring localization in both S. pneumoniae and Bacillus subtilis within 30 min of treatment, while the membrane integrity and nucleoid segregation remain unchanged. Several complementary experiments showed that Vitamin K3 inhibits the assembly of purified S. pneumoniae FtsZ (SpnFtsZ) and induces conformational changes in the protein. Interestingly, Vitamin K3 interfered with GTP binding onto FtsZ and increased the GTPase activity of FtsZ polymers. The intrinsic tryptophan fluorescence of SpnFtsZ revealed that Vitamin K3 delays the nucleation of FtsZ polymers and reduces the rate of polymerization. In the presence of a non-hydrolyzable analog of GTP, Vitamin K3 did not show inhibition of FtsZ polymerization. These results indicated that Vitamin K3 induces conformational changes in FtsZ that increase GTP hydrolysis and thereby, destabilize the FtsZ polymers. Together, our data provide evidence that Vitamin K3 derives its potent anti-pneumococcal activity by inhibiting FtsZ assembly.


Asunto(s)
Streptococcus pneumoniae , Vitamina K 3 , Bacillus subtilis , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Guanosina Trifosfato/metabolismo , Polímeros/metabolismo , Streptococcus pneumoniae/metabolismo , Vitamina K 3/metabolismo
14.
Phytomedicine ; 101: 154087, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35429924

RESUMEN

BACKGROUND: Although triple-negative breast cancer (TNBC) accounts for only 15% of breast cancer cases, it is associated with a high relapse rate and poor outcome after standard treatment. Currently, the effective drugs and treatment strategies for TNBC remain limited, and thus, developing effective treatments for TNBC is pressing. Several studies have demonstrated that both chalcone and syringaldehyde have anticancer effect, but their potential anti-TNBC bioactivity are still unknown. PURPOSE: The present study aimed to synthesize a chalcone-syringaldehyde hybrid (CSH1) and explore its potential anti-TNBC effects and the underlying molecular mechanism. METHODS: Cell cytotoxicity was determined by 3-(4,5-dimethythiazol)-2,5-diphenyltetrazolium bromide (MTT). The activity of cell proliferation was measured by colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) staining assay. Cell cycle distribution and cell apoptosis were determined by fluorescence-activated cell sorter (FACS). The situation of DNA damage was observed using fluorescence microscopy. The ability of cell-matrix adhesion, migration and invasion was detected using cell adhesion assay and transwell assay. Transcriptome sequencing was performed to find out the changed genes. Levels of various signaling proteins were assessed by western blotting. RESULTS: CSH1 treatment triggered DNA damage and inhibited DNA replication, cell cycle arrest, and cell apoptosis via suppressing signal transducer and activator of transcription 3 (STAT3) phosphorylation. Whole genome RNA-seq analysis suggested that 4% of changed genes were correlated to DNA damage and repair, and nearly 18% of changed genes were functionally related to cell adhesion and migration. Experimental evidence indicated that CSH1 treatment significantly affected the distribution of focal adhesion kinase (FAK) and its phosphorylation, resulting in cell-matrix-adhesion reduction and migration inhibition of TNBC cells. Further mechanistic studies indicated that CSH1 inhibited TNBC cell proliferation, adhesion, and migration by inhibiting cytoskeleton-associated protein 2 (CKAP2)-mediated FAK and STAT3 phosphorylation signaling. CONCLUSION: These results suggest that CKAP2-mediated FAK and STAT3 phosphorylation signaling is a valuable target for TNBC treatment, and these findings also reveal the potential of CSH1 as a prospective TNBC drug.


Asunto(s)
Chalcona , Chalconas , Neoplasias de la Mama Triple Negativas , Apoptosis , Benzaldehídos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Chalcona/farmacología , Chalcona/uso terapéutico , Chalconas/farmacología , Chalconas/uso terapéutico , Proteínas del Citoesqueleto , Citoesqueleto/metabolismo , Quinasa 1 de Adhesión Focal , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Recurrencia Local de Neoplasia/metabolismo , Fosforilación , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo
15.
ACS Appl Mater Interfaces ; 14(5): 6453-6464, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35094518

RESUMEN

The unrestrained use of antibiotics accelerates the development of drug-resistant bacteria and leads to an increasing threat to human health. Therefore, there is an urgent need to explore novel and effective strategies for the treatment of bacterial infections. Herein, zeolite imidazole framework-8 (ZIF-8) material was utilized to construct biomineralized nanomaterial (GOx&HRP@ZIF-8/ASO) by encapsulating biological cascade enzymes and combining with antisense oligonucleotides (ASOs), which achieved effective and synergistic antidrug-resistant bacteria therapy. Various in vitro assays confirmed that GOx&HRP@ZIF-8/ASO exhibited excellent antibacterial properties against Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA) during catalysis of glucose (Glu), especially the minimum inhibitory concentration (MIC) against MRSA was only 16 µg/mL. Compared with simple ZIF-8 (32.85%) and ftsZ ASO (58.65%), GOx&HRP@ZIF-8/ASO+Glu exhibited superb biofilm destruction ability, and the bacteria removal efficiency of the MRSA biofilm could be as high as 88.2%, indicating that the reactive oxygen species (ROS) produced by the cascade enzyme reaction imparted the main synergistic antibacterial capability, and simultaneously, ftsZ ASO significantly enhanced the antibacterial effect by inhibiting the expression of the ftsZ gene. In vivo anti-infection treatment experiments revealed that GOx&HRP@ZIF-8/ASO exhibited the best wound repairing performance and excellent biocompatibility in the presence of Glu. These findings suggested that GOx&HRP@ZIF-8/ASO has favorably realized high-efficiency treatment of MRSA infection and filled the gap in the antibacterial application of biological enzymes.


Asunto(s)
Glucosa Oxidasa/química , Peroxidasa de Rábano Silvestre/química , Imidazoles/química , Estructuras Metalorgánicas/química , Nanopartículas/química , Oligonucleótidos Antisentido/química , Animales , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/efectos de los fármacos , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Radical Hidroxilo/metabolismo , Imidazoles/farmacología , Estructuras Metalorgánicas/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Ratones , Pruebas de Sensibilidad Microbiana , Nanopartículas/uso terapéutico , Nanopartículas/toxicidad , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/patología , Enfermedades de la Piel/veterinaria , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/efectos de los fármacos
16.
Phytomedicine ; 93: 153486, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34649211

RESUMEN

BACKGROUND: Callicarpa nudiflora (C. nudiflora), which is a medical herb in genus of Callicarpa, widely grows in the southern part of China. Several investigations had shown that this herb exerts anti-tumor effects. Ezrin is an important membrane-cytoskeleton-binding protein. By organizing membrane proteins and orchestrating their signal transduction, Ezrin contributes to modulation of cytoskeleton rearrangement in cell motility. PURPOSE: To investigate the anti-motile properties of Rhoifolin (RFL), a flavonoid from C. nudiflora, and to determine whether its effects are related to the inhibition on Podocalyxin (PODXL)-Ezrin signal transduction. METHODS: To determine suitable concentration of RFL and exposure time on breast cancer cells, the effects of RFL on viability of breast cancer cells were evaluated by MTT assay. Then, the anti-migratory properties of RFL were determined by AP 48 chamber system and ORISTM cell migration assay. F-actin in MDA-MB-231 cells was visualized by Alexa Fluor™ 488 conjugated Phalloidin. Immunoprecipitation was involved to access the effects of RFL on the interaction between Ezrin and PODXL. In addition, several EMT markers, including E-cadherin, Vimentin, Snail and Slug, were measured by Western Blotting assay and cell immunofluorescent analysis. Finally, the effects of RFL on cell migration, expression of Ezrin and EMT markers were verified by small interfering RNA (siRNA) mediated gene silencing. RESULTS: We showed here that treatments with 10 and 40 µM of RFL induced significant inhibitions on cell migration and alterations on the location and organization of actin cytoskeleton in breast cancer cells. Next, it was found that RFL suppressed Ezrin phosphorylation and consequent interaction with PODXL, significantly. Also, this compound showed an obvious inhibitory effect on TGF-ß1-induced EMT in MDA-MB-231 cells. Furthermore, data from RNA interfering assay confirmed that the inhibitory effects of RFL on Ezrin was enhanced by the deletion of Ezrin. CONCLUSION: RFL shows anti-motile properties on breast cancer cells, which is due to its potential to downregulate Podocalyxin-Ezrin interaction during Epithelial Mesenchymal Transition.


Asunto(s)
Neoplasias de la Mama , Callicarpa , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular , Proteínas del Citoesqueleto , Disacáridos , Transición Epitelial-Mesenquimal , Femenino , Flavonoides/farmacología , Glicósidos , Humanos , Sialoglicoproteínas
17.
Cells ; 10(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34359837

RESUMEN

Induced pluripotent stem (iPS) cells constitute a perfect tool to study human embryo development processes such as myogenesis, thanks to their ability to differentiate into three germ layers. Currently, many protocols to obtain myogenic cells have been described in the literature. They differ in many aspects, such as media components, including signaling modulators, feeder layer constituents, and duration of culture. In our study, we compared three different myogenic differentiation protocols to verify, side by side, their efficiency. Protocol I was based on embryonic bodies differentiation induction, ITS addition, and selection with adhesion to collagen I type. Protocol II was based on strong myogenic induction at the embryonic bodies step with BIO, forskolin, and bFGF, whereas cells in Protocol III were cultured in monolayers in three special media, leading to WNT activation and TGF-ß and BMP signaling inhibition. Myogenic induction was confirmed by the hierarchical expression of myogenic regulatory factors MYF5, MYOD, MYF6 and MYOG, as well as the expression of myotubes markers MYH3 and MYH2, in each protocol. Our results revealed that Protocol III is the most efficient in obtaining myogenic cells. Furthermore, our results indicated that CD56 is not a specific marker for the evaluation of myogenic differentiation.


Asunto(s)
Técnicas de Cultivo de Célula , Medios de Cultivo/farmacología , Cuerpos Embrioides/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Colforsina/farmacología , Colágeno Tipo I/farmacología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Humanos , Indoles/farmacología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Insulina/farmacología , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Oximas/farmacología , Selenio/farmacología , Transferrina/farmacología
18.
Biomed Pharmacother ; 142: 111907, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34339916

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqi Guizhi Wuwu Decoction(HQGZWWD) is a Traditional Chinese Medicine formula from Synopsis of Golden Chamber used to treat blood arthralgia. According to the principle that the same treatment can be used for different diseases, HQGZWWD has proven effective for IgA nephropathy (IgAN) associated with spleen and kidney yang deficiency. AIM OF THE STUDY: In this study, we investigated the mechanism by which HQGZWWD alleviates proteinuria and protects renal function in rats with IgAN by regulating the AT1R/Nephrin/c-Abl pathway. METHODS: Rats were randomly divided into six groups: control, IgAN model, IgAN model treated with low-dose HQGZWWD, IgAN model treated with medium-dose HQGZWWD, IgAN model treated with high-dose HQGZWWD, and IgAN model treated with valsartan. IgAN was induced using bovine γ-globulin. We evaluated the mediating effects of HQGZWWD on podocyte cytoskeletal proteins, the AT1R/Nephrin/c-Abl pathway, upstream tumor necrosis factor-α (TNF-α), and TNF-α receptor-1 (TNFR1). RESULTS: The IgAN rats displayed proteinuria, IgA deposition in the mesangial region, and podocyte cytoskeletal protein damage. The expression of TNF-α, TNFR1, AT1R, and c-Abl was increased in the IgAN rat kidney, whereas the expression of nephrin, podocin, ACTN4, and phosphorylated nephrin (p-nephrin) was reduced. HQGZWWD treatment significantly alleviated podocyte cytoskeletal protein damage in the IgAN rats, upregulated the expression of nephrin, podocin, and ACTN4, and the colocalized expression of F-actin and nephrin. This study demonstrates that HQGZWWD attenuates podocyte cytoskeletal protein damage by regulating the AT1R-nephrin- c-Abl pathway, upregulating the expression of p-nephrin, and downregulating the expression of AT1R and c-Abl. CONCLUSIONS: These results indicate that HQGZWWD attenuates podocyte cytoskeletal protein damage in IgAN rats by regulating the AT1R/Nephrin/c-Abl pathway, providing a potential therapeutic approach for IgAN.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Medicamentos Herbarios Chinos/farmacología , Glomerulonefritis por IGA/tratamiento farmacológico , Proteínas de la Membrana/metabolismo , Sustancias Protectoras/farmacología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Glomerulonefritis por IGA/metabolismo , Glomerulonefritis por IGA/patología , Glomerulonefritis por IGA/fisiopatología , Inmunoglobulina A/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/genética , Podocitos/efectos de los fármacos , Sustancias Protectoras/química , Sustancias Protectoras/uso terapéutico , Proteinuria/metabolismo , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
19.
Front Endocrinol (Lausanne) ; 12: 673908, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381423

RESUMEN

Background: Primary pituitary lymphoma (PPL) is an extremely rare disease with poor prognosis. Although PPL has been shown to be different from classical primary central nervous system lymphoma because of the embryological origin of structures, individual and precise treatment of PPL remains unknown. Methods: A 61-year-old man and a 65-year-old woman both diagnosed with primary pituitary diffuse large B cell lymphoma underwent genetic analysis of cerebrospinal fluid and tumor tissue by next generation sequencing. Results: In the first case, partial remission was achieved following R²-MTX chemotherapy. In the other case with TP53 mutation and BCL6-LPP fusion, disease progressed although different chemotherapy regimens were given. Conclusion: The gene mutation of TP53 and BCL6 may be identified as a marker responsible for prognostic difference in patients with PPL. Genetic analysis may provide a novel approach for precise management and prognosis prediction.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas con Dominio LIM/genética , Linfoma de Células B Grandes Difuso/patología , Mutación , Neoplasias Hipofisarias/patología , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteína p53 Supresora de Tumor/genética , Anciano , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Linfoma de Células B Grandes Difuso/líquido cefalorraquídeo , Linfoma de Células B Grandes Difuso/genética , Masculino , Persona de Mediana Edad , Neoplasias Hipofisarias/líquido cefalorraquídeo , Neoplasias Hipofisarias/genética , Pronóstico
20.
Exp Eye Res ; 210: 108697, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34233175

RESUMEN

Hyperbaric oxygen (HBO) treatment of animals or ocular lenses in culture recapitulates many molecular changes observed in human age-related nuclear cataract. The guinea pig HBO model has been one of the best examples of such treatment leading to dose-dependent development of lens nuclear opacities. In this study, complimentary mass spectrometry methods were employed to examine protein truncation after HBO treatment of aged guinea pigs. Quantitative liquid chromatography-mass spectrometry (LC-MS) analysis of the membrane fraction of guinea pig lenses showed statistically significant increases in aquaporin-0 (AQP0) C-terminal truncation, consistent with previous reports of accelerated loss of membrane and cytoskeletal proteins. In addition, imaging mass spectrometry (IMS) analysis spatially mapped the acceleration of age-related αA-crystallin truncation in the lens nucleus. The truncation sites in αA-crystallin closely match those observed in human lenses with age. Taken together, our results suggest that HBO accelerates the normal lens aging process and leads to nuclear cataract.


Asunto(s)
Envejecimiento/fisiología , Catarata/etiología , Cristalinas/metabolismo , Oxigenoterapia Hiperbárica/efectos adversos , Núcleo del Cristalino/metabolismo , Proteolisis/efectos de los fármacos , Animales , Acuaporinas/metabolismo , Catarata/metabolismo , Catarata/patología , Cromatografía Liquida , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Cobayas , Núcleo del Cristalino/patología , Espectrometría de Masas en Tándem , Cadena A de alfa-Cristalina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA