Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.326
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Mol Autism ; 15(1): 14, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570876

RESUMEN

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Asunto(s)
Trastorno Autístico , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Hipotálamo/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo
2.
J Comp Neurol ; 532(2): e25588, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335050

RESUMEN

Melanin-concentrating hormone (MCH) cells in the hypothalamus regulate fundamental physiological functions like energy balance, sleep, and reproduction. This diversity may be ascribed to the neurochemical heterogeneity among MCH cells. One prominent subpopulation of MCH cells coexpresses cocaine- and amphetamine-regulated transcript (CART), and as MCH and CART can have opposing actions, MCH/CART+ and MCH/CART- cells may differentially modulate behavioral outcomes. However, it is not known if there are differences in the cellular properties underlying their functional differences; thus, we compared the neuroanatomical, electrophysiological, and morphological properties of MCH cells in male and female Mch-cre;L10-Egfp reporter mice. Half of MCH cells expressed CART and were most prominent in the medial hypothalamus. Whole-cell patch-clamp recordings revealed differences in their passive and active membrane properties in a sex-dependent manner. Female MCH/CART+ cells had lower input resistances, but male cells largely differed in their firing properties. All MCH cells increased firing when stimulated, but their firing frequency decreases with sustained stimulation. MCH/CART+ cells showed stronger spike rate adaptation than MCH/CART- cells. The kinetics of excitatory events at MCH cells also differed by cell type, as the rising rate of excitatory events was slower at MCH/CART+ cells. By reconstructing the dendritic arborization of our recorded cells, we found no sex differences, but male MCH/CART+ cells had less dendritic length and fewer branch points. Overall, distinctions in topographical division and cellular properties between MCH cells add to their heterogeneity and help elucidate their response to stimuli or effect on modulating their respective neural networks.


Asunto(s)
Cocaína , Hormonas Hipotalámicas , Animales , Femenino , Masculino , Ratones , Anfetaminas/metabolismo , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Hormonas Hipofisarias/metabolismo
3.
Sci Rep ; 14(1): 3357, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336906

RESUMEN

Mutations in the KCNT1 potassium channel cause severe forms of epilepsy which are poorly controlled with current treatments. In vitro studies have shown that KCNT1-epilepsy mutations are gain of function, significantly increasing K+ current amplitudes. To investigate if Drosophila can be used to model human KCNT1 epilepsy, we generated Drosophila melanogaster lines carrying human KCNT1 with the patient mutation G288S, R398Q or R928C. Expression of each mutant channel in GABAergic neurons gave a seizure phenotype which responded either positively or negatively to 5 frontline epilepsy drugs most commonly administered to patients with KCNT1-epilepsy, often with little or no improvement of seizures. Cannabidiol showed the greatest reduction of the seizure phenotype while some drugs increased the seizure phenotype. Our study shows that Drosophila has the potential to model human KCNT1- epilepsy and can be used as a tool to assess new treatments for KCNT1- epilepsy.


Asunto(s)
Drosophila , Epilepsia , Canales de potasio activados por Sodio , Animales , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Evaluación Preclínica de Medicamentos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Modelos Animales , Mutación , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Transgenes
4.
Peptides ; 173: 171138, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38147963

RESUMEN

The hypothalamic neuropeptides linked to appetite and satiety were investigated in obese mice treated with cotadutide (a dual receptor agonist of glucagon-like peptide 1 (GLP-1R)/Glucagon (GCGR)). Twelve-week-old male C57BL/6 mice were fed a control diet (C group, n = 20) or a high-fat diet (HF group, n = 20) for ten weeks. Each group was further divided, adding cotadutide treatment and forming groups C, CC, HF, and HFC for four additional weeks. The hypothalamic arcuate neurons were labeled by immunofluorescence, and protein expressions (Western blotting) for neuropeptide Y (NPY), proopiomelanocortin (POMC), agouti-related protein (AgRP), and cocaine- and amphetamine-regulated transcript (CART). Cotadutide enhanced POMC and CART neuropeptides and depressed NPY and AGRP neuropeptides. In addition, gene expressions (RT-qPCR) determined that Lepr (leptin receptor) and Calcr (calcitonin receptor) were diminished in HF compared to C but enhanced in CC compared to C and HFC compared to HF. Besides, Socs3 (suppressor of cytokine signaling 3) was decreased in HFC compared to HF, while Sst (somatostatin) was higher in HFC compared to HF; Tac1 (tachykinin 1) and Mc4r (melanocortin-4-receptor) were lower in HF compared to C but increased in HFC compared to HF. Also, Glp1r and Gcgr were higher in HFC compared to HF. In conclusion, the findings are compelling, demonstrating the effects of cotadutide on hypothalamic neuropeptides and hormone receptors of obese mice. Cotadutide modulates energy balance through the gut-brain axis and its associated signaling pathways. The study provides insights into the mechanisms underlying cotadutide's anti-obesity effects and its possible implications for obesity treatment.


Asunto(s)
Glucagón , Neuropéptidos , Péptidos , Ratones , Animales , Masculino , Proteína Relacionada con Agouti , Glucagón/metabolismo , Ratones Obesos , Proopiomelanocortina/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ratones Endogámicos C57BL , Neuropéptidos/genética , Hipotálamo/metabolismo , Neuropéptido Y/genética , Péptido 1 Similar al Glucagón/metabolismo
5.
Dev Comp Immunol ; 154: 105125, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38158145

RESUMEN

Hirudo nipponia, a blood-sucking leech native to East Asia, possesses a rich repertoire of active ingredients in its saliva, showcasing significant medical potential due to its anticoagulant, anti-inflammatory, and antibacterial effects against human diseases. Despite previous studies on the transcriptomic and proteomic characteristics of leech saliva, which have identified medicinal compounds, our knowledge of tissue-specific transcriptomes and their spatial expression patterns remains incomplete. In this study, we conducted an extensive transcriptomic profiling of the salivary gland tissue in H. nipponia based on de novo assemblies of tissue-specific transcriptomes from the salivary gland, teeth, and general head region. Through gene ontology (GO) analysis and hierarchical clustering, we discovered a novel set of anti-coagulant factors-i.e., Hni-Antistasin, Hni-Ghilanten, Hni-Bdellin, Hni-Hirudin-as well as a previously unrecognized immune-related gene, Hni-GLIPR1 and uncharacterized salivary gland specific transcripts. By employing in situ hybridization, we provided the first visualization of gene expression sites within the salivary gland of H. nipponia. Our findings expand on our understanding of transcripts specifically expressed in the salivary gland of blood-sucking leeches, offering valuable resources for the exploration of previously unidentified substances with medicinal applications.


Asunto(s)
Hirudo medicinalis , Sanguijuelas , Animales , Perfilación de la Expresión Génica , Hirudo medicinalis/genética , Hirudo medicinalis/metabolismo , Sanguijuelas/genética , Sanguijuelas/metabolismo , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Proteómica , Glándulas Salivales/metabolismo
6.
ACS Chem Neurosci ; 14(12): 2294-2301, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37289979

RESUMEN

Parkinson's disease (PD) is an incurable neurodegenerative disorder caused by the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Current therapies are only symptomatic and are not able to stop or delay its progression. In order to search for new and more effective therapies, our group carried out a high-throughput screening assay, identifying several candidate compounds that are able to improve locomotor ability in DJ-1ß mutant flies (a Drosophila model of familial PD) and reduce oxidative stress (OS)-induced lethality in DJ-1-deficient SH-SY5Y human cells. One of them was vincamine (VIN), a natural alkaloid obtained from the leaves of Vinca minor. Our results showed that VIN is able to suppress PD-related phenotypes in both Drosophila and human cell PD models. Specifically, VIN reduced OS levels in PD model flies. Besides, VIN diminished OS-induced lethality by decreasing apoptosis, increased mitochondrial viability, and reduced OS levels in DJ-1-deficient human cells. In addition, our results show that VIN might be exerting its beneficial role, at least partially, by the inhibition of voltage-gated sodium channels. Therefore, we propose that these channels might be a promising target in the search for new compounds to treat PD and that VIN represents a potential therapeutic treatment for the disease.


Asunto(s)
Proteínas de Drosophila , Neuroblastoma , Enfermedad de Parkinson , Vincamina , Animales , Humanos , Suplementos Dietéticos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas del Tejido Nervioso/genética , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/farmacología , Proteína Desglicasa DJ-1/uso terapéutico , Vincamina/farmacología , Vincamina/uso terapéutico
7.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835332

RESUMEN

Purposeful induction of fever for healing, including the treatment of epilepsy, was used over 2000 years ago by Hippocrates. More recently, fever has been demonstrated to rescue behavioral abnormalities in children with autism. However, the mechanism of fever benefit has remained elusive due in large part to the lack of appropriate human disease models recapitulating the fever effect. Pathological mutations in the IQSEC2 gene are frequently seen in children presenting with intellectual disability, autism and epilepsy. We recently described a murine A350V IQSEC2 disease model, which recapitulates important aspects of the human A350V IQSEC2 disease phenotype and the favorable response to a prolonged and sustained rise in body core temperature in a child with the mutation. Our goal has been to use this system to understand the mechanism of fever benefit and then develop drugs that can mimic this effect and reduce IQSEC2-associated morbidity. In this study, we first demonstrate a reduction in seizures in the mouse model following brief periods of heat therapy, similar to what was observed in a child with the mutation. We then show that brief heat therapy is associated with the correction of synaptic dysfunction in neuronal cultures of A350V mice, likely mediated by Arf6-GTP.


Asunto(s)
Epilepsia , Factores de Intercambio de Guanina Nucleótido , Hipertermia Inducida , Proteínas del Tejido Nervioso , Convulsiones , Animales , Niño , Humanos , Ratones , Epilepsia/terapia , Factores de Intercambio de Guanina Nucleótido/genética , Calor , Discapacidad Intelectual/genética , Mutación , Proteínas del Tejido Nervioso/genética , Receptores AMPA/genética , Convulsiones/terapia
8.
J Med Genet ; 60(8): 819-826, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36543534

RESUMEN

BACKGROUND: Osteogenesis imperfecta (OI) is a heterogeneous group of inherited disorders characterised by susceptibility to fractures, primarily due to defects in type 1 collagen. The aim of this study is to present a novel OI phenotype and its causative candidate gene. METHODS: Whole-exome sequencing and clinical evaluation were performed in five patients from two unrelated families. PHLDB1 mRNA expression in blood and fibroblasts was investigated by real-time PCR, and western blot analysis was further performed on skin fibroblasts. RESULTS: The common findings among the five affected children were recurrent fractures and/or osteopaenia, platyspondyly, short and bowed long bones, and widened metaphyses. Metaphyseal and vertebral changes regressed after early childhood, and no fractures occurred under bisphosphonate treatment. We identified biallelic NM_001144758.3:c.2392dup and NM_001144758.3:c.2690_2693del pathogenic variants in PHLDB1 in the affected patients, respectively, in the families; parents were heterozygous for these variants. PHLDB1 encodes pleckstrin homology-like domain family B member-1 (PHLDB1) protein, which has a role in insulin-dependent Akt phosphorylation. Compared with controls, a decrease in the expression levels of PHLDB1 in the blood and skin fibroblast samples was detected. Western blot analysis of cultured fibroblasts further confirmed the loss of PHLDB1. CONCLUSION: Two biallelic frameshift variants in the candidate gene PHLDB1 were identified in independent families with a novel, mild-type, autosomal recessive OI. The demonstration of decreased PHLDB1 mRNA expression levels in blood and fibroblast samples supports the hypothesis that PHLDB1 pathogenic variants are causative for the observed phenotype.


Asunto(s)
Fracturas Óseas , Osteogénesis Imperfecta , Humanos , Preescolar , Osteogénesis Imperfecta/genética , Heterocigoto , Fenotipo , Mutación del Sistema de Lectura/genética , Colágeno Tipo I/genética , Mutación , Proteínas del Tejido Nervioso/genética , Péptidos y Proteínas de Señalización Intracelular/genética
9.
J Comp Neurol ; 531(1): 89-115, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36217593

RESUMEN

The melanocortin system is a key regulator of appetite and food intake in vertebrates. This system includes the neuropeptides neuropeptide y (NPY), agouti-related peptide (AGRP), cocaine- and amphetamine-regulated transcript (CART), and pro-opiomelanocortin (POMC). An important center for appetite control in mammals is the hypothalamic arcuate nucleus, with neurons that coexpress either the orexigenic NPY/AGRP or the anorexigenic CART/POMC neuropeptides. In ray-finned fishes, such a center is less characterized. The Atlantic salmon (Salmo salar) has multiple genes of these neuropeptides due to whole-genome duplication events. To better understand the potential involvement of the melanocortin system in appetite and food intake control, we have mapped the mRNA expression of npy, agrp, cart, and pomc in the brain of Atlantic salmon parr using in situ hybridization. After identifying hypothalamic mRNA expression, we investigated the possible intracellular coexpression of npy/agrp and cart/pomc in the tuberal hypothalamus by fluorescent in situ hybridization. The results showed that the neuropeptides were widely distributed, especially in sensory and neuroendocrine brain regions. In the hypothalamic lateral tuberal nucleus, the putative homolog to the mammalian arcuate nucleus, npya, agrp1, cart2b, and pomca were predominantly localized in distinct neurons; however, some neurons coexpressed cart2b/pomca. This is the first demonstration of coexpression of cart2b/pomca in the tuberal hypothalamus of a teleost. Collectively, our data suggest that the lateral tuberal nucleus is the center for appetite control in salmon, similar to that of mammals. Extrahypothalamic brain regions might also be involved in regulating food intake, including the olfactory bulb, telencephalon, midbrain, and hindbrain.


Asunto(s)
Neuropéptidos , Salmo salar , Animales , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Proopiomelanocortina/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Melanocortinas/genética , Melanocortinas/metabolismo , Hibridación Fluorescente in Situ , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Hipotálamo/metabolismo , Encéfalo/metabolismo , ARN Mensajero/metabolismo , Mamíferos
10.
Brain ; 146(6): 2612-2626, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36385662

RESUMEN

Autism spectrum disorders caused by both genetic and environmental factors are strongly male-biased neuropsychiatric conditions. However, the mechanism underlying the sex bias of autism spectrum disorders remains elusive. Here, we use a mouse model in which the autism-linked gene Cttnbp2 is mutated to explore the potential mechanism underlying the autism sex bias. Autism-like features of Cttnbp2 mutant mice were assessed via behavioural assays. C-FOS staining identified sex-biased brain regions critical to social interaction, with their roles and connectivity then validated by chemogenetic manipulation. Proteomic and bioinformatic analyses established sex-biased molecular deficits at synapses, prompting our hypothesis that male-biased nutrient demand magnifies Cttnbp2 deficiency. Accordingly, intakes of branched-chain amino acids (BCAA) and zinc were experimentally altered to assess their effect on autism-like behaviours. Both deletion and autism-linked mutation of Cttnbp2 result in male-biased social deficits. Seven brain regions, including the infralimbic area of the medial prefrontal cortex (ILA), exhibit reduced neural activity in male mutant mice but not in females upon social stimulation. ILA activation by chemogenetic manipulation is sufficient to activate four of those brain regions susceptible to Cttnbp2 deficiency and consequently to ameliorate social deficits in male mice, implying an ILA-regulated neural circuit is critical to male-biased social deficits. Proteomics analysis reveals male-specific downregulated proteins (including SHANK2 and PSD-95, two synaptic zinc-binding proteins) and female-specific upregulated proteins (including RRAGC) linked to neuropsychiatric disorders, which are likely relevant to male-biased deficits and a female protective effect observed in Cttnbp2 mutant mice. Notably, RRAGC is an upstream regulator of mTOR that senses BCAA, suggesting that mTOR exerts a beneficial effect on females. Indeed, increased BCAA intake activates the mTOR pathway and rescues neuronal responses and social behaviours of male Cttnbp2 mutant mice. Moreover, mutant males exhibit greatly increased zinc demand to display normal social behaviours. Mice carrying an autism-linked Cttnbp2 mutation exhibit male-biased social deficits linked to specific brain regions, differential synaptic proteomes and higher demand for BCAA and zinc. We postulate that lower demand for zinc and BCAA are relevant to the female protective effect. Our study reveals a mechanism underlying sex-biased social defects and also suggests a potential therapeutic approach for autism spectrum disorders.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Masculino , Femenino , Animales , Trastorno Autístico/genética , Proteómica , Sexismo , Trastorno del Espectro Autista/genética , Serina-Treonina Quinasas TOR , Nutrientes , Zinc , Modelos Animales de Enfermedad , Proteínas del Tejido Nervioso/genética , Proteínas de Microfilamentos
11.
Chinese Medical Journal ; (24): 1448-1458, 2023.
Artículo en Inglés | WPRIM | ID: wpr-980920

RESUMEN

BACKGROUND@#Exploring the underlying mechanism of rituximab resistance is critical to improve the outcomes of patients with diffuse large B-cell lymphoma (DLBCL). Here, we tried to identify the effects of the axon guidance factor semaphorin-3F (SEMA3F) on rituximab resistance as well as its therapeutic value in DLBCL.@*METHODS@#The effects of SEMA3F on the treatment response to rituximab were investigated by gain- or loss-of-function experiments. The role of the Hippo pathway in SEMA3F-mediated activity was explored. A xenograft mouse model generated by SEMA3F knockdown in cells was used to evaluate rituximab sensitivity and combined therapeutic effects. The prognostic value of SEMA3F and TAZ (WW domain-containing transcription regulator protein 1) was examined in the Gene Expression Omnibus (GEO) database and human DLBCL specimens.@*RESULTS@#We found that loss of SEMA3F was related to a poor prognosis in patients who received rituximab-based immunochemotherapy instead of chemotherapy regimen. Knockdown of SEMA3F significantly repressed the expression of CD20 and reduced the proapoptotic activity and complement-dependent cytotoxicity (CDC) activity induced by rituximab. We further demonstrated that the Hippo pathway was involved in the SEMA3F-mediated regulation of CD20. Knockdown of SEMA3F expression induced the nuclear accumulation of TAZ and inhibited CD20 transcriptional levels via direct binding of the transcription factor TEAD2 and the CD20 promoter. Moreover, in patients with DLBCL, SEMA3F expression was negatively correlated with TAZ, and patients with SEMA3F low TAZ high had a limited benefit from a rituximab-based strategy. Specifically, treatment of DLBCL cells with rituximab and a YAP/TAZ inhibitor showed promising therapeutic effects in vitro and in vivo .@*CONCLUSION@#Our study thus defined a previously unknown mechanism of SEMA3F-mediated rituximab resistance through TAZ activation in DLBCL and identified potential therapeutic targets in patients.


Asunto(s)
Humanos , Animales , Ratones , Rituximab/uso terapéutico , Vía de Señalización Hippo , Linfoma de Células B Grandes Difuso/patología , Pronóstico , Semaforinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
12.
Mol Med Rep ; 26(5)2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36177918

RESUMEN

Increasing evidence suggests that core circadian genes have major roles in the carcinogenic mechanisms of multiple human malignancies. Among these genes, the role of reticulon 2 (RTN2) in ovarian cancer (OV) has so far remained elusive. In the present study, circadian clock gene (CCG) aberrations were systematically assessed across malignancies by using Gene Expression Omnibus and The Cancer Genome Atlas data. The results indicated that various core clock genes (ULK1, ATF3, CRY2, CSF3R, DAAM2, GAS7, NPTXR, PPPIR15A and RTN2) had elevated levels in tumors in comparison with normal tissues and their low expression levels were associated with a better prognosis in OV, indicating that they may be potential candidates for novel investigational approaches. The mRNA and protein expression levels of RTN2 in OV were then further analyzed by reverse transcription­quantitative PCR and immunohistochemistry, respectively. The results indicated that RTN2 mRNA and protein levels were increased in OV specimens in comparison with control samples. Differentially expressed CCGs, such as RTN2, were suggested as indicators of asynchronous circadian rhythms in cancer, which may provide a theoretical basis for chrono­therapy.


Asunto(s)
Relojes Circadianos , Proteínas de la Membrana , Proteínas Musculares , Proteínas del Tejido Nervioso , Neoplasias Ováricas , Carcinoma Epitelial de Ovario , Relojes Circadianos/genética , Biología Computacional , Femenino , Humanos , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Proteínas del Tejido Nervioso/genética , Neoplasias Ováricas/genética , ARN Mensajero/genética
13.
J Exp Clin Cancer Res ; 41(1): 250, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35974388

RESUMEN

BACKGROUND: Tyrosine kinase inhibitors (TKIs) such as sunitinib are multitarget antiangiogenic agents in clear cell renal cell carcinoma (ccRCC). They are widely used in the treatment of advanced/metastatic renal cancer. However, resistance to TKIs is common in the clinic, particularly after long-term treatment. YTHDC1 is the main nuclear reader protein that binds with m6A to regulate the splicing, export and stability of mRNA. However, the specific role and corresponding mechanism of YTHDC1 in renal cancer cells are still unclear. METHODS: The Cancer Genome Atlas (TCGA) dataset was used to study the expression of YTHDC1 in ccRCC. Cell counting kit-8 (CCK-8), wound healing, Transwell and xenograft assays were applied to explore the biological function of YTHDC1 in ccRCC. Western blot, quantitative real time PCR (RT‒qPCR), RNA immunoprecipitation PCR (RIP-qPCR), methylated RIP-qPCR (MeRIP-qPCR) and RNA sequencing (RNA-seq) analyses were applied to study the YY1/HDAC2/YTHDC1/ANXA1 axis in renal cancer cells. The CCK-8 assay and xenograft assay were used to study the role of YTHDC1 in determining the sensitivity of ccRCC to sunitinib. RESULTS: Our results demonstrated that YTHDC1 is downregulated in ccRCC tissues compared with normal tissues. Low expression of YTHDC1 is associated with a poor prognosis in patients with ccRCC. Subsequently, we showed that YTHDC1 inhibits the progression of renal cancer cells via downregulation of the ANXA1/MAPK pathways. Moreover, we also showed that the YTHDC1/ANXA1 axis modulates the sensitivity of tyrosine kinase inhibitors. We then revealed that HDAC2 inhibitors resensitize ccRCC to tyrosine kinase inhibitors through the YY1/HDAC2 complex. We have identified a novel YY1/HDAC2/YTHDC1/ANXA1 axis modulating the progression and chemosensitivity of ccRCC. CONCLUSION: We identified a novel YY1/HDAC2/YTHDC1/ANXA1 axis modulating the progression and chemosensitivity of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Proteínas del Tejido Nervioso , Factores de Empalme de ARN , Anexina A1/genética , Anexina A1/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Inhibidores de Proteínas Quinasas , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Sunitinib/farmacología , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
14.
J Physiol Biochem ; 78(3): 603-617, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35678998

RESUMEN

Nucleobindin2 (NUCB2) is a member of nucleobindin family which was first found in the nucleus of the hypothalamus, and had a relationship in diet and energy homeostasis. Its location in normal tissues such as stomach and islet further confirms that it plays a vital role in the regulation of physiological functions of the body. Besides, NUCB2 participates in tumorigenesis through activating various signal-pathways, more and more studies indicate that NUCB2 might impact tumor progression by promoting or inhibiting proliferation, apoptosis, autophagy, metastasis, and invasion of tumor cells. In this review, we comprehensively stated NUCB2's expression and functions, and introduced the role of NUCB2 in physiology and pathology and its mechanism. What is more, pointed out the potential direction of future research.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas del Tejido Nervioso , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN/metabolismo , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nucleobindinas
15.
Nat Commun ; 13(1): 2664, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562389

RESUMEN

Many synaptic proteins form biological condensates via liquid-liquid phase separation (LLPS). Synaptopathy, a key feature of autism spectrum disorders (ASD), is likely relevant to the impaired phase separation and/or transition of ASD-linked synaptic proteins. Here, we report that LLPS and zinc-induced liquid-to-gel phase transition regulate the synaptic distribution and protein-protein interaction of cortactin-binding protein 2 (CTTNBP2), an ASD-linked protein. CTTNBP2 forms self-assembled condensates through its C-terminal intrinsically disordered region and facilitates SHANK3 co-condensation at dendritic spines. Zinc binds the N-terminal coiled-coil region of CTTNBP2, promoting higher-order assemblies. Consequently, it leads to reduce CTTNBP2 mobility and enhance the stability and synaptic retention of CTTNBP2 condensates. Moreover, ASD-linked mutations alter condensate formation and synaptic retention of CTTNBP2 and impair mouse social behaviors, which are all ameliorated by zinc supplementation. Our study suggests the relevance of condensate formation and zinc-induced phase transition to the synaptic distribution and function of ASD-linked proteins.


Asunto(s)
Trastorno Autístico , Animales , Trastorno Autístico/genética , Ratones , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Conducta Social , Zinc/metabolismo
16.
Ophthalmic Genet ; 43(5): 661-670, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538629

RESUMEN

BACKGROUND: Inherited retinal degeneration (IRD) associated with mutations in the Crumbs homolog 1 (CRB1) gene is associated with a severe, early-onset retinal degeneration for which no therapy currently exists. Base editing, with its capability to precisely catalyse permanent nucleobase conversion in a programmable manner, represents a novel therapeutic approach to targeting this autosomal recessive IRD, for which a gene supplementation is challenging due to the need to target three different retinal CRB1 isoforms. PURPOSE: To report and classify a novel CRB1 variant and envision a possible therapeutic approach in form of base editing. METHODS: Case report. RESULTS: A 16-year-old male patient with a clinical diagnosis of early-onset retinitis pigmentosa (RP) and characteristic clinical findings of retinal thickening and coarse lamination was seen at the Oxford Eye Hospital. He was found to be compound heterozygous for two CRB1 variants: a novel pathogenic nonsense variant in exon 9, c.2885T>A (p.Leu962Ter), and a likely pathogenic missense change in exon 6, c.2056C>T (p.Arg686Cys). While a base editing strategy for c.2885T>A would encompass a CRISPR-pass mediated "read-through" of the premature stop codon, the resulting missense changes were predicted to be "possibly damaging" in in-silico analysis. On the other hand, the transversion missense change, c.2056C>T, is amenable to transition editing with an adenine base editor (ABE) fused to a SaCas9-KKH with a negligible chance of bystander edits due to an absence of additional Adenines (As) in the editing window. CONCLUSIONS: This case report records a novel pathogenic nonsense variant in CRB1 and gives an example of thinking about a base editing strategy for a patient compound heterozygous for CRB1 variants.


Asunto(s)
Proteínas del Ojo , Degeneración Retiniana , Adenina , Adolescente , Secuencia de Aminoácidos , Sistemas CRISPR-Cas , Codón sin Sentido , Proteínas del Ojo/genética , Humanos , Masculino , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Nucleótidos , Degeneración Retiniana/genética
17.
Asian Pac J Cancer Prev ; 23(5): 1577-1586, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35633541

RESUMEN

OBJECTIVE: Cancer is a huge problem of disease globally. Today, the percentage of people die from cancer is more than a combination of various diseases. In females, most common types of malignancies that occur are breast and cervical. The present focus has been shifted on medicinal plants as a form of therapy and there is a constant need to identify new therapeutic agents. Choerospondias axillaris (C. axillaris), an underutilized fruit, has been used in the remedy of various diseases. In the present communication, we evaluated the molecular mechanism of C. axillaris methanol extract in regulating cell death in human breast cancer cells (MDA-MB-231). METHODS: Methanol extract of C. axillaris was prepared and compounds were screened by Gas chromatography-mass spectrometry. The effect of fruit extract was determined on MDA-MB-231 cells by MTT ((3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and to analyse the molecular mechanism of human breast cancer cells after treating with fruit extract, protein profiling study was performed by two-dimensional gel electrophoresis. RESULTS: A total 9 differentially expressed proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS/MS) analysis. Among 9 identified proteins, synphilin-1 protein was found to be significantly downregulated, validated by western blot and RT-qPCR analysis. Possible interacting partners of synphilin-1 (SNCAIP) were analyzed for their possible role in cancer by the in-silico method. CONCLUSION: Our data implicate that the presence of bioactive compound(s) in C. axillaris fruits might play an important role in inhibiting the proliferation of breast carcinoma cells and Synphilin-1 protein may play a role of apoptotic function.


Asunto(s)
Anacardiaceae , Neoplasias de la Mama , Proteínas Portadoras , Proteínas del Tejido Nervioso , Extractos Vegetales , alfa-Sinucleína , Anacardiaceae/química , Neoplasias de la Mama/tratamiento farmacológico , Proteínas Portadoras/genética , Línea Celular Tumoral , Femenino , Frutas/química , Humanos , Metanol , Proteínas del Tejido Nervioso/genética , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem , alfa-Sinucleína/genética
18.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35437265

RESUMEN

Hypothalamic melanin-concentrating hormone (MCH) neurons are important regulators of multiple physiological processes, such as sleep, feeding, and memory. Despite the increasing interest in their neuronal functions, the molecular mechanism underlying MCH neuron development remains poorly understood. We report that a three-dimensional culture of mouse embryonic stem cells (mESCs) can generate hypothalamic-like tissues containing MCH-positive neurons, which reproduce morphologic maturation, neuronal connectivity, and neuropeptide/neurotransmitter phenotype of native MCH neurons. Using this in vitro system, we demonstrate that Hedgehog (Hh) signaling serves to produce major neurochemical subtypes of MCH neurons characterized by the presence or absence of cocaine- and amphetamine-regulated transcript (CART). Without exogenous Hh signals, mESCs initially differentiated into dorsal hypothalamic/prethalamic progenitors and finally into MCH+CART+ neurons through a specific intermediate progenitor state. Conversely, activation of the Hh pathway specified ventral hypothalamic progenitors that generate both MCH+CART- and MCH+CART+ neurons. These results suggest that in vivo MCH neurons may originate from multiple cell lineages that arise through early dorsoventral patterning of the hypothalamus. Additionally, we found that Hh signaling supports the differentiation of mESCs into orexin/hypocretin neurons, a well-defined cell group intermingled with MCH neurons in the lateral hypothalamic area (LHA). The present study highlights and improves the utility of mESC culture in the analysis of the developmental programs of specific hypothalamic cell types.


Asunto(s)
Hormonas Hipotalámicas , Células Madre Embrionarias de Ratones , Animales , Proteínas Hedgehog/metabolismo , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Orexinas/metabolismo , Hormonas Hipofisarias/metabolismo
19.
Mol Autism ; 13(1): 13, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303947

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a dyad of behavioural symptoms-social and communication deficits and repetitive behaviours. Multiple aetiological genetic and environmental factors have been identified as causing or increasing the likelihood of ASD, including serum zinc deficiency. Our previous studies revealed that dietary zinc supplementation can normalise impaired social behaviours, excessive grooming, and heightened anxiety in a Shank3 mouse model of ASD, as well as the amelioration of synapse dysfunction. Here, we have examined the efficacy and breadth of dietary zinc supplementation as an effective therapeutic strategy utilising a non-Shank-related mouse model of ASD-mice with Tbr1 haploinsufficiency. METHODS: We performed behavioural assays, amygdalar slice whole-cell patch-clamp electrophysiology, and immunohistochemistry to characterise the synaptic mechanisms underlying the ASD-associated behavioural deficits observed in Tbr1+/- mice and the therapeutic potential of dietary zinc supplementation. Two-way analysis of variance (ANOVA) with Sídák's post hoc test and one-way ANOVA with Tukey's post hoc multiple comparisons were performed for statistical analysis. RESULTS: Our data show that dietary zinc supplementation prevents impairments in auditory fear memory and social interaction, but not social novelty, in the Tbr1+/- mice. Tbr1 haploinsufficiency did not induce excessive grooming nor elevate anxiety in mice. At the synaptic level, dietary zinc supplementation reversed α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) hypofunction and normalised presynaptic function at thalamic-lateral amygdala (LA) synapses that are crucial for auditory fear memory. In addition, the zinc supplemented diet significantly restored the synaptic puncta density of the GluN1 subunit essential for functional NMDARs as well as SHANK3 expression in both the basal and lateral amygdala (BLA) of Tbr1+/- mice. LIMITATIONS: The therapeutic effect of dietary zinc supplementation observed in rodent models may not reproduce the same effects in human patients. The effect of dietary zinc supplementation on synaptic function in other brain structures affected by Tbr1 haploinsufficiency including olfactory bulb and anterior commissure will also need to be examined. CONCLUSIONS: Our data further the understanding of the molecular mechanisms underlying the effect of dietary zinc supplementation and verify the efficacy and breadth of its application as a potential treatment strategy for ASD.


Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/genética , Suplementos Dietéticos , Modelos Animales de Enfermedad , Miedo/fisiología , Humanos , Ratones , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato , Sinapsis/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/farmacología , Zinc/metabolismo , Zinc/farmacología
20.
PLoS One ; 17(2): e0263632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35192674

RESUMEN

Adults of many species will care for young offspring that are not their own, a phenomenon called alloparenting. However, in many cases, nonparental adults must be sensitized by repeated or extended exposures to newborns before they will robustly display parental-like behaviors. To capture neurogenomic events underlying the transition to active parental caring behaviors, we analyzed brain gene expression and chromatin profiles of virgin female mice co-housed with pregnant dams during pregnancy and after birth. After an initial display of antagonistic behaviors and a surge of defense-related gene expression, we observed a dramatic shift in the chromatin landscape specifically in amygdala of the pup-exposed virgin females compared to females co-housed with mother before birth, accompanied by a dampening of anxiety-related gene expression. This epigenetic shift coincided with hypothalamic expression of the oxytocin gene and the emergence of behaviors and gene expression patterns classically associated with maternal care. The results outline a neurogenomic program associated with dramatic behavioral changes and suggest molecular networks relevant to human postpartum mental health.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Conducta Animal/fisiología , Epigénesis Genética , Conducta Materna/fisiología , Proteínas del Tejido Nervioso/genética , Oxitocina/genética , Animales , Animales Recién Nacidos , Ansiedad/psicología , Cromatina/química , Cromatina/metabolismo , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Conducta Materna/psicología , Ratones , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/metabolismo , Oxitocina/metabolismo , Embarazo , Abstinencia Sexual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA