RESUMEN
Models of basal ganglia (BG) function predict that tonic inhibitory output to motor thalamus (MT) suppresses unwanted movements, and that a decrease in such activity leads to action selection. Further, for unilateral activity changes in the BG, a lateralized effect on contralateral movements can be expected due to ipsilateral thalamocortical connectivity. However, a direct test of these outcomes of thalamic inhibition has not been performed. To conduct such a direct test, we utilized rapid optogenetic activation and inactivation of the GABAergic output of the substantia nigra pars reticulata (SNr) to MT in male and female mice that were trained in a sensory cued left/right licking task. Directional licking tasks have previously been shown to depend on a thalamocortical feedback loop between ventromedial MT and antero-lateral premotor cortex. In confirmation of model predictions, we found that unilateral optogenetic inhibition of GABAergic output from the SNr, during ipsilaterally cued trials, biased decision making towards a contralateral lick without affecting motor performance. In contrast, optogenetic excitation of SNr terminals in MT resulted in an opposite bias towards the ipsilateral direction confirming a bidirectional effect of tonic nigral output on directional decision making. However, direct optogenetic excitation of neurons in the SNr resulted in bilateral movement suppression, which is in agreement with previous results that show such suppression for nigral terminals in the superior colliculus (SC), which receives a bilateral projection from SNr.
Asunto(s)
Ganglios Basales/fisiología , Toma de Decisiones/fisiología , Movimiento/fisiología , Inhibición Neural/fisiología , Sustancia Negra/fisiología , Animales , Anticipación Psicológica/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Dependovirus/genética , Femenino , Lateralidad Funcional/fisiología , Masculino , Ratones , Corteza Motora/fisiología , Vías Nerviosas/fisiología , Optogenética , Sustancia Negra/efectos de los fármacos , Tálamo/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genéticaRESUMEN
Purkinje cells receive synaptic input from several classes of interneurons. Here, we address the roles of inhibitory molecular layer interneurons in establishing Purkinje cell function in vivo. Using conditional genetics approaches in mice, we compare how the lack of stellate cell versus basket cell GABAergic neurotransmission sculpts the firing properties of Purkinje cells. We take advantage of an inducible Ascl1CreER allele to spatially and temporally target the deletion of the vesicular GABA transporter, Vgat, in developing neurons. Selective depletion of basket cell GABAergic neurotransmission increases the frequency of Purkinje cell simple spike firing and decreases the frequency of complex spike firing in adult behaving mice. In contrast, lack of stellate cell communication increases the regularity of Purkinje cell simple spike firing while increasing the frequency of complex spike firing. Our data uncover complementary roles for molecular layer interneurons in shaping the rate and pattern of Purkinje cell activity in vivo.
Asunto(s)
Potenciales de Acción , Interneuronas/fisiología , Células de Purkinje/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores , Inmunohistoquímica , Interneuronas/citología , Ratones , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Células de Purkinje/citología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Appropriate synapse formation during development is necessary for normal brain function, and synapse impairment is often associated with brain dysfunction. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are key factors in regulating synaptic development. We previously reported that BDNF/NT-3 secretion was enhanced by calcium-dependent activator protein for secretion 2 (CADPS2). Although BDNF/NT-3 and CADPS2 are co-expressed in various brain regions, the effect of Cadps2-deficiency on brain region-specific BDNF/NT-3 levels and synaptic development remains elusive. Here, we show developmental changes of BDNF/NT-3 levels and we assess disruption of excitatory/inhibitory synapses in multiple brain regions (cerebellum, hypothalamus, striatum, hippocampus, parietal cortex and prefrontal cortex) of Cadps2 knockout (KO) mice compared with wild-type (WT) mice. Compared with WT, BDNF levels in KO mice were reduced in young/adult hippocampus, but increased in young hypothalamus, while NT-3 levels were reduced in adult cerebellum and young hippocampus, but increased in adult parietal cortex. Immunofluorescence of vGluT1, an excitatory synapse marker, and vGAT, an inhibitory synapse marker, in adult KO showed that vGluT1 was higher in the cerebellum and parietal cortex but lower in the hippocampus, whereas vGAT was lower in the hippocampus and parietal cortex compared with WT. Immunolabeling for both vGluT1 and vGAT was increased in the parietal cortex but vGAT was decreased in the cerebellum in adult KO compared with WT. These data suggest that CADPS2-mediated secretion of BDNF/NT-3 may be involved in development and maturation of synapses and in the balance between inhibitory and excitatory synapses.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Proteínas de Unión al Calcio/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neurotrofina 3/genética , Sinapsis/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/crecimiento & desarrollo , Cuerpo Estriado/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Hipotálamo/citología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Neuronas/citología , Neurotrofina 3/metabolismo , Especificidad de Órganos , Lóbulo Parietal/citología , Lóbulo Parietal/crecimiento & desarrollo , Lóbulo Parietal/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Sinapsis/clasificación , Sinapsis/metabolismo , Transmisión Sináptica/genética , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismoRESUMEN
Glucagon-like peptide 1 receptor (GLP-1R) agonists are U.S. Food and Drug Administration-approved weight loss drugs. Despite their widespread use, the sites of action through which GLP-1R agonists (GLP1RAs) affect appetite and body weight are still not fully understood. We determined whether GLP-1Rs in either GABAergic or glutamatergic neurons are necessary for the short- and long-term effects of the GLP1RA liraglutide on food intake, visceral illness, body weight, and neural network activation. We found that mice lacking GLP-1Rs in vGAT-expressing GABAergic neurons responded identically to controls in all parameters measured, whereas deletion of GLP-1Rs in vGlut2-expressing glutamatergic neurons eliminated liraglutide-induced weight loss and visceral illness and severely attenuated its effects on feeding. Concomitantly, deletion of GLP-1Rs from glutamatergic neurons completely abolished the neural network activation observed after liraglutide administration. We conclude that liraglutide activates a dispersed but discrete neural network to mediate its physiological effects and that these effects require GLP-1R expression on glutamatergic but not GABAergic neurons.
Asunto(s)
Depresores del Apetito/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/uso terapéutico , Hipotálamo/efectos de los fármacos , Liraglutida/uso terapéutico , Neuronas/efectos de los fármacos , Obesidad/tratamiento farmacológico , Animales , Dieta Alta en Grasa/efectos adversos , Ingestión de Energía/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Genes Reporteros/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/química , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patología , Masculino , Ratones Noqueados , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Distribución Aleatoria , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/química , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/química , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Pérdida de Peso/efectos de los fármacosRESUMEN
Despite decades of research, there is a persistent debate regarding the localization of GABA/glycine neurons responsible for hyperpolarizing somatic motoneurons during paradoxical (or REM) sleep (PS), resulting in the loss of muscle tone during this sleep state. Combining complementary neuroanatomical approaches in rats, we first show that these inhibitory neurons are localized within the ventromedial medulla (vmM) rather than within the spinal cord. We then demonstrate their functional role in PS expression through local injections of adeno-associated virus carrying specific short-hairpin RNA in order to chronically impair inhibitory neurotransmission from vmM. After such selective genetic inactivation, rats display PS without atonia associated with abnormal and violent motor activity, concomitant with a small reduction of daily PS quantity. These symptoms closely mimic human REM sleep behavior disorder (RBD), a prodromal parasomnia of synucleinopathies. Our findings demonstrate the crucial role of GABA/glycine inhibitory vmM neurons in muscle atonia during PS and highlight a candidate brain region that can be susceptible to α-synuclein-dependent degeneration in RBD patients.
Asunto(s)
Bulbo Raquídeo/fisiología , Neuronas/fisiología , Sueño REM/fisiología , Animales , Técnicas de Silenciamiento del Gen , Glicina/metabolismo , Masculino , Bulbo Raquídeo/citología , Hipotonía Muscular/fisiopatología , Polisomnografía , Proteínas Proto-Oncogénicas c-fos/metabolismo , Trastorno de la Conducta del Sueño REM/fisiopatología , Ratas Sprague-Dawley , Transmisión Sináptica/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFPVglut2 , EYFPVgat , and GFPGad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes.
Asunto(s)
Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Neuronas/citología , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Hipotálamo/citología , Inmunohistoquímica , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismoRESUMEN
The cortex connects to the thalamus via extensive corticothalamic (CT) pathways, but their function in vivo is not well understood. We investigated "top-down" signaling from cortex to thalamus via the cortical layer 5B (L5B) to posterior medial nucleus (POm) pathway in the whisker system of the anesthetized mouse. While L5B CT inputs to POm are extremely strong in vitro, ongoing activity of L5 neurons in vivo might tonically depress these inputs and thereby block CT spike transfer. We find robust transfer of spikes from the cortex to the thalamus, mediated by few L5B-POm synapses. However, the gain of this pathway is not constant but instead is controlled by global cortical Up and Down states. We characterized in vivo CT spike transfer by analyzing unitary PSPs and found that a minority of PSPs drove POm spikes when CT gain peaked at the beginning of Up states. CT gain declined sharply during Up states due to frequency-dependent adaptation, resulting in periodic high gain-low gain oscillations. We estimate that POm neurons receive few (2-3) active L5B inputs. Thus, the L5B-POm pathway strongly amplifies the output of a few L5B neurons and locks thalamic POm sub-and suprathreshold activity to cortical L5B spiking.
Asunto(s)
Neuronas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Potenciales de Acción , Anestesia , Animales , Simulación por Computador , Potenciales Postsinápticos Excitadores , Agonistas de Receptores de GABA-A/farmacología , Ratones Transgénicos , Microelectrodos , Modelos Neurológicos , Muscimol/farmacología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/citología , Optogenética , Corteza Somatosensorial/citología , Corteza Somatosensorial/efectos de los fármacos , Tálamo/citología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Vibrisas/inervación , Vibrisas/fisiologíaRESUMEN
During non-rapid eye movement (NREM) sleep, synchronous synaptic activity in the thalamocortical network generates predominantly low-frequency oscillations (<4 Hz) that are modulated by inhibitory inputs from the thalamic reticular nucleus (TRN). Whether TRN cells integrate sleep-wake signals from subcortical circuits remains unclear. We found that GABA neurons from the lateral hypothalamus (LHGABA) exert a strong inhibitory control over TRN GABA neurons (TRNGABA). We found that optogenetic activation of this circuit recapitulated state-dependent changes of TRN neuron activity in behaving mice and induced rapid arousal during NREM, but not REM, sleep. During deep anesthesia, activation of this circuit induced sustained cortical arousal. In contrast, optogenetic silencing of LHGABA-TRNGABA transmission increased the duration of NREM sleep and amplitude of delta (1-4 Hz) oscillations. Collectively, these results demonstrate that TRN cells integrate subcortical arousal inputs selectively during NREM sleep and may participate in sleep intensity.
Asunto(s)
Nivel de Alerta/fisiología , Corteza Cerebral/fisiología , Estado de Conciencia/fisiología , Hipotálamo/fisiología , Tálamo/fisiología , Anestesia , Animales , Conducta Animal/fisiología , Ritmo Delta , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Optogenética , Sueño/fisiología , Sueño REM/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Ácido gamma-Aminobutírico/fisiologíaRESUMEN
Sensorimotor processing relies on hierarchical neuronal circuits to mediate sensory-driven behaviors. In the mouse vibrissa system, trigeminal brainstem circuits are thought to mediate the first stage of vibrissa scanning control via sensory feedback that provides reflexive protraction in response to stimulation. However, these circuits are not well defined. Here we describe a complete disynaptic sensory receptor-to-muscle circuit for positive feedback in vibrissa movement. We identified a novel region of trigeminal brainstem, spinal trigeminal nucleus pars muralis, which contains a class of vGluT2+ excitatory projection neurons involved in vibrissa motor control. Complementary single- and dual-labeling with traditional and virus tracers demonstrate that these neurons both receive primary inputs from vibrissa sensory afferent fibers and send monosynaptic connections to facial nucleus motoneurons that directly innervate vibrissa musculature. These anatomical results suggest a general role of disynaptic architecture in fast positive feedback for motor output that drives active sensation.
Asunto(s)
Vías Aferentes/fisiología , Tronco Encefálico/citología , Retroalimentación Sensorial/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Vibrisas/inervación , Animales , Tronco Encefálico/fisiología , Toxina del Cólera/metabolismo , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reflejo/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Nervio Vago/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Vibrisas/metabolismoRESUMEN
The tectal longitudinal column (TLC) is a longitudinally oriented, long and narrow nucleus that spans the paramedian region of the midbrain tectum of a large variety of mammals (Saldaña et al. in J Neurosci 27:13108-13116, 2007). Recent analysis of the organization of this region revealed another novel nucleus located immediately dorsal, and parallel, to the TLC. Because the name "tectal longitudinal column" also seems appropriate for this novel nucleus, we suggest the TLC described in 2007 be renamed the "ventral tectal longitudinal column (TLCv)", and the newly discovered nucleus termed the "dorsal tectal longitudinal column (TLCd)". This work represents the first characterization of the rat TLCd. A constellation of anatomical techniques was used to demonstrate that the TLCd differs from its surrounding structures (TLCv and superior colliculus) cytoarchitecturally, myeloarchitecturally, neurochemically and hodologically. The distinct expression of vesicular amino acid transporters suggests that TLCd neurons are GABAergic. The TLCd receives major projections from various areas of the cerebral cortex (secondary visual mediomedial area, and granular and dysgranular retrosplenial cortices) and from the medial pretectal nucleus. It densely innervates the ipsilateral lateral posterior and laterodorsal nuclei of the thalamus. Thus, the TLCd is connected with vision-related neural centers. The TLCd may be unique as it constitutes the only known nucleus made of GABAergic neurons dedicated to providing massive inhibition to higher order thalamic nuclei of a specific sensory modality.
Asunto(s)
Vías Nerviosas/fisiología , Neuronas , Techo del Mesencéfalo/anatomía & histología , Tálamo/anatomía & histología , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/metabolismo , Femenino , Procesamiento de Imagen Asistido por Computador , Masculino , Neuronas/metabolismo , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Técnicas Estereotáxicas , Estilbamidinas/metabolismo , Tálamo/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismoRESUMEN
Stressful experience initiates a neuroendocrine response culminating in the release of glucocorticoid hormones into the blood. Glucocorticoids feed back to the brain, causing adaptations that prevent excessive hormone responses to subsequent challenges. How these changes occur remains unknown. We found that glucocorticoid receptor activation in rodent hypothalamic neuroendocrine neurons following in vivo stress is a metaplastic signal that allows GABA synapses to undergo activity-dependent long-term depression (LTDGABA). LTDGABA was unmasked through glucocorticoid receptor-dependent inhibition of Regulator of G protein Signaling 4 (RGS4), which amplified signaling through postsynaptic metabotropic glutamate receptors. This drove somatodendritic opioid release, resulting in a persistent retrograde suppression of synaptic transmission through presynaptic µ receptors. Together, our data provide new evidence for retrograde opioid signaling at synapses in neuroendocrine circuits and represent a potential mechanism underlying glucocorticoid contributions to stress adaptation.
Asunto(s)
Analgésicos Opioides/metabolismo , Retroalimentación Fisiológica/fisiología , Glucocorticoides/metabolismo , Hipotálamo/citología , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Proteínas Bacterianas/genética , Channelrhodopsins , Inhibidores Enzimáticos/farmacología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurotransmisores/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/deficiencia , Receptores de Glucocorticoides/metabolismo , Receptores Opioides mu/genética , Estrés Psicológico/sangre , Estrés Psicológico/patología , Sinapsis/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genéticaRESUMEN
Neural activity during development critically shapes postnatal wiring of the mammalian brain. This is best illustrated by the sensory systems, in which the patterned feed-forward excitation provided by sensory organs and experience drives the formation of mature topographic circuits capable of extracting specific features of sensory stimuli. In contrast, little is known about the role of early activity in the development of the basal ganglia, a phylogenetically ancient group of nuclei fundamentally important for complex motor action and reward-based learning. These nuclei lack direct sensory input and are only loosely topographically organized, forming interlocking feed-forward and feed-back inhibitory circuits without laminar structure. Here we use transgenic mice and viral gene transfer methods to modulate neurotransmitter release and neuronal activity in vivo in the developing striatum. We find that the balance of activity between the two inhibitory and antagonist pathways in the striatum regulates excitatory innervation of the basal ganglia during development. These effects indicate that the propagation of activity through a multi-stage network regulates the wiring of the basal ganglia, revealing an important role of positive feedback in driving network maturation.