Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(3)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35164341

RESUMEN

Terminalia chebula Retz. forms a key component of traditional folk medicine and is also reported to possess antihepatitis C virus (HCV) and immunomodulatory activities. However, information on the intermolecular interactions of phytochemicals from this plant with HCV and human proteins are yet to be established. Thus, by this current study, we investigated the HCV NS3/4A inhibitory and host immune-modulatory activity of phytocompounds from T. chebula through in silico strategies involving network pharmacology and structural bioinformatics techniques. To start with, the phytochemical dataset of T. chebula was curated from biological databases and the published literature. Further, the target ability of the phytocompounds was predicted using BindingDB for both HCV NS3/4A and other probable host targets involved in the immune system. Further, the identified targets were docked to the phytochemical dataset using AutoDock Vina executed through the POAP pipeline. The resultant docked complexes with significant binding energy were subjected to 50 ns molecular dynamics (MD) simulation in order to infer the stability of complex formation. During network pharmacology analysis, the gene set pathway enrichment of host targets was performed using the STRING and Reactome pathway databases. Further, the biological network among compounds, proteins, and pathways was constructed using Cytoscape 3.6.1. Furthermore, the druglikeness, side effects, and toxicity of the phytocompounds were also predicted using the MolSoft, ADVERpred, and PreADMET methods, respectively. Out of 41 selected compounds, 10 were predicted to target HCV NS3/4A and also to possess druglike and nontoxic properties. Among these 10 molecules, Chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose exhibited potent HCV NS3/4A inhibitory activity, as these scored a lowest binding energy (BE) of -8.6 kcal/mol and -7.7 kcal/mol with 11 and 20 intermolecular interactions with active site residues, respectively. These findings are highly comparable with Asunaprevir (known inhibitor of HCV NS3/4A), which scored a BE of -7.4 kcal/mol with 20 key intermolecular interactions. MD studies also strongly suggest that chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose as promising leads, as these molecules showed stable binding during 50 ns of production run. Further, the gene set enrichment and network analysis of 18 protein targets prioritized 10 compounds and were predicted to potentially modulate the host immune system, hemostasis, cytokine levels, interleukins signaling pathways, and platelet aggregation. On overall analysis, this present study predicts that tannins from T. chebula have a potential HCV NS3/4A inhibitory and host immune-modulatory activity. However, further experimental studies are required to confirm the efficacies.


Asunto(s)
Antivirales/farmacología , Hepacivirus/enzimología , Serina Proteasas/química , Serina Proteasas/metabolismo , Taninos/farmacología , Terminalia/química , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Antivirales/efectos adversos , Antivirales/química , Benzopiranos/farmacología , Dominio Catalítico , Simulación por Computador , Glucósidos/farmacología , Hepacivirus/efectos de los fármacos , Taninos Hidrolizables/farmacología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Farmacología en Red , Extractos Vegetales/farmacología , Unión Proteica , Conformación Proteica , Taninos/efectos adversos , Taninos/química , Proteínas no Estructurales Virales/antagonistas & inhibidores
2.
Nucleic Acids Res ; 50(3): 1484-1500, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35037045

RESUMEN

The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14-nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14-nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14-nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3'-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14-nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12-nsp7-nsp8 (nsp12-7-8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14-nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14-nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Exorribonucleasas/metabolismo , Genoma Viral/genética , Inestabilidad Genómica , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Exorribonucleasas/antagonistas & inhibidores , Genoma Viral/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/genética , Inhibidores de Integrasa VIH/farmacología , Isoindoles/farmacología , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Compuestos de Organoselenio/farmacología , ARN Viral/biosíntesis , ARN Viral/genética , Raltegravir Potásico/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
3.
Eur J Med Chem ; 228: 114030, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34883292

RESUMEN

The epidemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread worldwide and efficacious therapeutics are urgently needed. 3-Chymotrypsin-like cysteine protease (3CLpro) is an indispensable protein in viral replication and represents an attractive drug target for fighting COVID-19. Herein, we report the discovery of 9,10-dihydrophenanthrene derivatives as non-peptidomimetic and non-covalent inhibitors of the SARS-CoV-2 3CLpro. The structure-activity relationships of 9,10-dihydrophenanthrenes as SARS-CoV-2 3CLpro inhibitors have carefully been investigated and discussed in this study. Among all tested 9,10-dihydrophenanthrene derivatives, C1 and C2 display the most potent SARS-CoV-2 3CLpro inhibition activity, with IC50 values of 1.55 ± 0.21 µM and 1.81 ± 0.17 µM, respectively. Further enzyme kinetics assays show that these two compounds dose-dependently inhibit SARS-CoV-2 3CLprovia a mixed-inhibition manner. Molecular docking simulations reveal the binding modes of C1 in the dimer interface and substrate-binding pocket of the target. In addition, C1 shows outstanding metabolic stability in the gastrointestinal tract, human plasma, and human liver microsome, suggesting that this agent has the potential to be developed as an orally administrated SARS-CoV-2 3CLpro inhibitor.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Antivirales/química , Antivirales/uso terapéutico , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Tracto Gastrointestinal/metabolismo , Humanos , Cinética , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Relación Estructura-Actividad , Proteínas no Estructurales Virales/antagonistas & inhibidores
4.
Molecules ; 26(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206406

RESUMEN

Spanish flu, polio epidemics, and the ongoing COVID-19 pandemic are the most profound examples of severe widespread diseases caused by RNA viruses. The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands affordable and reliable assays for testing antivirals. To test inhibitors of viral proteases, we have developed an inexpensive high-throughput assay based on fluorescent energy transfer (FRET). We assayed an array of inhibitors for papain-like protease from SARS-CoV-2 and validated it on protease from the tick-borne encephalitis virus to emphasize its versatility. The reaction progress is monitored as loss of FRET signal of the substrate. This robust and reproducible assay can be used for testing the inhibitors in 96- or 384-well plates.


Asunto(s)
Antivirales/farmacología , Transferencia Resonante de Energía de Fluorescencia/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Proteasas/farmacología , Virus ARN/enzimología , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Evaluación Preclínica de Medicamentos , Virus de la Encefalitis Transmitidos por Garrapatas/enzimología , Colorantes Fluorescentes/química , Humanos , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , SARS-CoV-2/enzimología , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Tratamiento Farmacológico de COVID-19
5.
Biochem J ; 478(13): 2533-2535, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198320

RESUMEN

In response to the COVID-19 pandemic, we began a project in March 2020 to identify small molecule inhibitors of SARS-CoV-2 enzymes from a library of chemical compounds containing many established pharmaceuticals. Our hope was that inhibitors we found might slow the replication of the SARS-CoV-2 virus in cells and ultimately be useful in the treatment of COVID-19. The seven accompanying manuscripts describe the results of these chemical screens. This overview summarises the main highlights from these screens and discusses the implications of our results and how our results might be exploited in future.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Pruebas de Enzimas , Humanos , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Proteínas no Estructurales Virales/metabolismo
6.
Biochem J ; 478(13): 2399-2403, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198321

RESUMEN

The coronavirus pandemic has had a huge impact on public health with over 165 million people infected, 3.4 million deaths and a hugely deleterious effect on most economies. While vaccination effectively protects against the disease it is likely that viruses will evolve that can replicate in hosts immunised with the present vaccines. Thus, there is a great unmet need for effective antivirals that can block the development of serious disease in infected patients. The seven papers published in this issue of the Biochemical Journal address this need by expressing and purifying components required for viral replication, developing biochemical assays for these components and using the assays to screen a library of pre-existing pharmaceuticals for drugs that inhibited the target in vitro and inhibited viral replication in cell culture. The candidate drugs obtained are potential antivirals that may protect against SARS-CoV-2 infection. While not all the antiviral candidates will make it through to the clinic, they will be useful tool compounds and can act as the starting point for further drug discovery programmes.


Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Evaluación Preclínica de Medicamentos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , Replicación Viral/efectos de los fármacos , Humanos , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo
7.
Biochem J ; 478(13): 2405-2423, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198322

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here, we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterized pharmaceuticals for nsp13 inhibitors using a fluorescence resonance energy transfer-based high-throughput screening approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , ARN Helicasas/antagonistas & inhibidores , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Chlorocebus aethiops , Pruebas de Enzimas , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , ARN Helicasas/metabolismo , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Suramina/farmacología , Células Vero , Proteínas no Estructurales Virales/metabolismo
8.
Biochem J ; 478(13): 2425-2443, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198323

RESUMEN

The coronavirus disease 2019 (COVID-19) global pandemic has turned into the largest public health and economic crisis in recent history impacting virtually all sectors of society. There is a need for effective therapeutics to battle the ongoing pandemic. Repurposing existing drugs with known pharmacological safety profiles is a fast and cost-effective approach to identify novel treatments. The COVID-19 etiologic agent is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded positive-sense RNA virus. Coronaviruses rely on the enzymatic activity of the replication-transcription complex (RTC) to multiply inside host cells. The RTC core catalytic component is the RNA-dependent RNA polymerase (RdRp) holoenzyme. The RdRp is one of the key druggable targets for CoVs due to its essential role in viral replication, high degree of sequence and structural conservation and the lack of homologues in human cells. Here, we have expressed, purified and biochemically characterised active SARS-CoV-2 RdRp complexes. We developed a novel fluorescence resonance energy transfer-based strand displacement assay for monitoring SARS-CoV-2 RdRp activity suitable for a high-throughput format. As part of a larger research project to identify inhibitors for all the enzymatic activities encoded by SARS-CoV-2, we used this assay to screen a custom chemical library of over 5000 approved and investigational compounds for novel SARS-CoV-2 RdRp inhibitors. We identified three novel compounds (GSK-650394, C646 and BH3I-1) and confirmed suramin and suramin-like compounds as in vitro SARS-CoV-2 RdRp activity inhibitors. We also characterised the antiviral efficacy of these drugs in cell-based assays that we developed to monitor SARS-CoV-2 growth.


Asunto(s)
Antivirales/química , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Benzoatos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Chlorocebus aethiops , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Pruebas de Enzimas , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Holoenzimas/metabolismo , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Suramina/farmacología , Células Vero , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo
9.
Biochem J ; 478(13): 2465-2479, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198324

RESUMEN

SARS-CoV-2 is responsible for COVID-19, a human disease that has caused over 2 million deaths, stretched health systems to near-breaking point and endangered economies of countries and families around the world. Antiviral treatments to combat COVID-19 are currently lacking. Remdesivir, the only antiviral drug approved for the treatment of COVID-19, can affect disease severity, but better treatments are needed. SARS-CoV-2 encodes 16 non-structural proteins (nsp) that possess different enzymatic activities with important roles in viral genome replication, transcription and host immune evasion. One key aspect of host immune evasion is performed by the uridine-directed endoribonuclease activity of nsp15. Here we describe the expression and purification of nsp15 recombinant protein. We have developed biochemical assays to follow its activity, and we have found evidence for allosteric behaviour. We screened a custom chemical library of over 5000 compounds to identify nsp15 endoribonuclease inhibitors, and we identified and validated NSC95397 as an inhibitor of nsp15 endoribonuclease in vitro. Although NSC95397 did not inhibit SARS-CoV-2 growth in VERO E6 cells, further studies will be required to determine the effect of nsp15 inhibition on host immune evasion.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Endorribonucleasas/antagonistas & inhibidores , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Regulación Alostérica , Animales , Chlorocebus aethiops , Endorribonucleasas/aislamiento & purificación , Endorribonucleasas/metabolismo , Pruebas de Enzimas , Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Técnicas In Vitro , Cinética , Naftoquinonas/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/química , Soluciones , Células Vero , Proteínas no Estructurales Virales/aislamiento & purificación , Proteínas no Estructurales Virales/metabolismo
10.
Biochem J ; 478(13): 2445-2464, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198326

RESUMEN

SARS-CoV-2 is a coronavirus that emerged in 2019 and rapidly spread across the world causing a deadly pandemic with tremendous social and economic costs. Healthcare systems worldwide are under great pressure, and there is an urgent need for effective antiviral treatments. The only currently approved antiviral treatment for COVID-19 is remdesivir, an inhibitor of viral genome replication. SARS-CoV-2 proliferation relies on the enzymatic activities of the non-structural proteins (nsp), which makes them interesting targets for the development of new antiviral treatments. With the aim to identify novel SARS-CoV-2 antivirals, we have purified the exoribonuclease/methyltransferase (nsp14) and its cofactor (nsp10) and developed biochemical assays compatible with high-throughput approaches to screen for exoribonuclease inhibitors. We have screened a library of over 5000 commercial compounds and identified patulin and aurintricarboxylic acid (ATA) as inhibitors of nsp14 exoribonuclease in vitro. We found that patulin and ATA inhibit replication of SARS-CoV-2 in a VERO E6 cell-culture model. These two new antiviral compounds will be valuable tools for further coronavirus research as well as potentially contributing to new therapeutic opportunities for COVID-19.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Exorribonucleasas/antagonistas & inhibidores , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Animales , Ácido Aurintricarboxílico/farmacología , Chlorocebus aethiops , Pruebas de Enzimas , Exorribonucleasas/metabolismo , Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Patulina/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Células Vero , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo
11.
Biochem J ; 478(13): 2481-2497, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198328

RESUMEN

The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Exorribonucleasas/antagonistas & inhibidores , Metiltransferasas/antagonistas & inhibidores , Caperuzas de ARN/metabolismo , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/química , Clorobencenos/farmacología , Chlorocebus aethiops , Pruebas de Enzimas , Exorribonucleasas/genética , Exorribonucleasas/aislamiento & purificación , Exorribonucleasas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Indazoles/farmacología , Indenos/farmacología , Indoles/farmacología , Metiltransferasas/genética , Metiltransferasas/aislamiento & purificación , Metiltransferasas/metabolismo , Nitrilos/farmacología , Fenotiazinas/farmacología , Purinas/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Especificidad por Sustrato , Trifluperidol/farmacología , Células Vero , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/aislamiento & purificación , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/aislamiento & purificación , Proteínas Reguladoras y Accesorias Virales/metabolismo
12.
Molecules ; 26(5)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33800013

RESUMEN

With the emergence and global spread of the COVID-19 pandemic, the scientific community worldwide has focused on search for new therapeutic strategies against this disease. One such critical approach is targeting proteins such as helicases that regulate most of the SARS-CoV-2 RNA metabolism. The purpose of the current study was to predict a library of phytochemicals derived from diverse plant families with high binding affinity to SARS-CoV-2 helicase (Nsp13) enzyme. High throughput virtual screening of the Medicinal Plant Database for Drug Design (MPD3) database was performed on SARS-CoV-2 helicase using AutoDock Vina. Nilotinib, with a docking value of -9.6 kcal/mol, was chosen as a reference molecule. A compound (PubChem CID: 110143421, ZINC database ID: ZINC257223845, eMolecules: 43290531) was screened as the best binder (binding energy of -10.2 kcal/mol on average) to the enzyme by using repeated docking runs in the screening process. On inspection, the compound was disclosed to show different binding sites of the triangular pockets collectively formed by Rec1A, Rec2A, and 1B domains and a stalk domain at the base. The molecule is often bound to the ATP binding site (referred to as binding site 2) of the helicase enzyme. The compound was further discovered to fulfill drug-likeness and lead-likeness criteria, have good physicochemical and pharmacokinetics properties, and to be non-toxic. Molecular dynamic simulation analysis of the control/lead compound complexes demonstrated the formation of stable complexes with good intermolecular binding affinity. Lastly, affirmation of the docking simulation studies was accomplished by estimating the binding free energy by MMPB/GBSA technique. Taken together, these findings present further in silco investigation of plant-derived lead compounds to effectively address COVID-19.


Asunto(s)
Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacocinética , Antivirales/toxicidad , Sitios de Unión , Disponibilidad Biológica , Biología Computacional/métodos , Bases de Datos de Compuestos Químicos , Diseño de Fármacos , Humanos , Enlace de Hidrógeno , Metiltransferasas/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fitoquímicos/química , Fitoquímicos/metabolismo , Plantas Medicinales/química , Unión Proteica , Dominios Proteicos/efectos de los fármacos , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Pirimidinas/toxicidad , ARN Helicasas/química , Relación Estructura-Actividad , Termodinámica , Proteínas no Estructurales Virales/química , Tratamiento Farmacológico de COVID-19
13.
Arch Biochem Biophys ; 700: 108771, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33485847

RESUMEN

In the current study, a structure-based virtual screening paradigm was used to screen a small molecular database against the Non-structural protein 15 (Nsp15) endoribonuclease of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 is the causative agent of the recent outbreak of coronavirus disease 2019 (COVID-19) which left the entire world locked down inside the home. A multi-step molecular docking study was performed against antiviral specific compounds (~8722) collected from the Asinex antiviral database. The less or non-interacting molecules were wiped out sequentially in the molecular docking. Further, MM-GBSA based binding free energy was estimated for 26 compounds which shows a high affinity towards the Nsp15. The drug-likeness and pharmacokinetic parameters of all 26 compounds were explored, and five molecules were found to have an acceptable pharmacokinetic profile. Overall, the Glide-XP docking score and Prime-MM-GBSA binding free energy of the selected molecules were explained strong interaction potentiality towards the Nsp15 endoribonuclease. The dynamic behavior of each molecule with Nsp15 was assessed using conventional molecular dynamics (MD) simulation. The MD simulation information was strongly favors the Nsp15 and each identified ligand stability in dynamic condition. Finally, from the MD simulation trajectories, the binding free energy was estimated using the MM-PBSA method. Hence, the proposed final five molecules might be considered as potential Nsp15 modulators for SARS-CoV-2 inhibition.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Endorribonucleasas/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/química , Antivirales/farmacocinética , COVID-19/metabolismo , Bases de Datos de Compuestos Químicos , Evaluación Preclínica de Medicamentos , Endorribonucleasas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Humanos , Técnicas In Vitro , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Interfaz Usuario-Computador , Proteínas no Estructurales Virales/química
14.
Food Chem ; 346: 128933, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33418408

RESUMEN

Immensely aggravated situation of COVID-19 has pushed the scientific community towards developing novel therapeutics to fight the pandemic. Small molecules can possibly prevent the spreading infection by targeting specific vital components of the viral genome. Non-structural protein 15 (Nsp15) has emerged as a promising target for such inhibitor molecules. In this investigation, we docked bioactive molecules of tea onto the active site of Nsp15. Based on their docking scores, top three molecules (Barrigenol, Kaempferol, and Myricetin) were selected and their conformational behavior was analyzed via molecular dynamics simulations and MMPBSA calculations. The results indicated that the protein had well adapted the ligands in the binding pocket thereby forming stable complexes. These molecules displayed low binding energy during MMPBSA calculations, substantiating their strong association with Nsp15. The inhibitory potential of these molecules could further be examined by in-vivo and in-vitro investigations to validate their use as inhibitors against Nsp15 of SARS-CoV2.


Asunto(s)
Antivirales/farmacología , Simulación por Computador , Endorribonucleasas/antagonistas & inhibidores , Extractos Vegetales/farmacología , Té/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Dominio Catalítico , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Humanos , Ligandos , Simulación de Dinámica Molecular , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
15.
Phytomedicine ; 85: 153317, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32943302

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) playing havoc across the globe caused 585,727 deaths and 13,616,593 confirmed cases so far as per World Health Organization data released till 17th July 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 2) is responsible for causing this pandemic across different continents. It is not only impacting the world economy but also quarantined millions of people in their homes or hospitals. PURPOSE: At present, there is no Food and Drug Administration-approved drug or vaccine available to treat this disease. Still, people are trying various pre-existing medicines that are known to have anti-viral or anti-parasitic effects. In view of this, the present study aimed to study the binding potential of various phytochemicals present in multiple natural plant extract as a secondary metabolite to non-structural protein 15 (Nsp15) protein, a drug target known to play a crucial role in virulence of coronavirus. METHOD: Nsp15 protein was selected because it shows 89% similarity to the other SARS-CoV, which caused the earlier outbreak. The assumption is that inhibition of Nsp15 slowdowns the viral replication. Phytochemicals are selected as these are present in various plant parts (seed, flower, roots, etc.), which are used in different food cuisines in different geographical regions across the globe. The molecular docking approach was performed using two different software, i.e., Autodock, and Swissdock, to study the interaction of various phytochemicals with Nsp15 protein. Hydroxychloroquine is used as a positive control as it is used by medical professionals showing some positive effects in dealing with coronavirus. RESULTS: The present study demonstrated the binding potential of approximately 50 phytochemicals with Nsp15 and capable of inhibiting the viral replication, although in vitro and in vivo tests are required to confirm these findings. CONCLUSIONS: In conclusion, the present study successfully demonstrated the binding of phytochemicals such as sarsasapogenin, ursonic acid, curcumin, ajmalicine, novobiocin, silymarin and aranotin, piperine, gingerol, rosmarinic acid, and alpha terpinyl acetate to Nsp15 viral protein and they might play a key role in inhibiting SARS-CoV-2 replication.


Asunto(s)
Antivirales/farmacología , Endorribonucleasas/antagonistas & inhibidores , Fitoquímicos/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/fisiología , Programas Informáticos
16.
J Ethnopharmacol ; 267: 113541, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152438

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: About 2.5 billion peoples are at risk of dengue virus and the majority of people, use traditional plant-based medicines to combat dengue. The whole plant of Andrographis paniculata used traditionally over past decades for health promotion. Andrographolide isolated from Andrographis paniculata is used as natural remedy for the treatment of various diseases in different parts of the world. Andrographolide has been reported to have antiviral activity against hepatitis B virus, hepatitis C virus, herpes simplex virus, influenza virus, chikungunya virus, dengue virus 2 and 4. AIM OF THE STUDY: The aim of the present study to isolate the andrographolide from the A. paniculata by supercritical fluid extraction technique and to characterize the isolated compound along with it anti-dengue activity against DENV-2 in vitro and in silico methods. MATERIALS AND METHODS: Supercritical extraction condition for A. paniculata was standardised to isolate andrographolide compound at definite temperature and pressure on the basis of previous study. The andrographolide was identified by using Ultraviolet-Visible Spectroscopy (UV-VIS), Fourier-Transform Infrared Spectroscopy (FT-IR) and High Performance Thin Layer Chromatography (HPTLC) and Proton Nuclear Magnetic Resonance (1HNMR). The maximum non-toxic dose of isolated andrographolide was detected by MTT assay using a micro plate reader at 595 nm. One hundred (100) copies/ml of the DENV-2 virus was used for antiviral assay in C6/36 cells lines and inhibition of virus due to andrographolide was determined by real-time PCR assay. The purity of isolated andrographolide was determined by Differential Scanning Calorimetry (DSC). The dengue NS5 receptor protein was docked with andrographolide and evaluated on the basis of the total energy and binding affinity score by Auto Dock (V4.2.6) software. RESULTS: Andrographolide, a diterpene lactone was isolated from the A. paniculata supercritical extract at 40 °C temperature and 15 Mpa pressure. UV spectrophotometer analysis revealed that the curve of andrographolide plant extract was overlapped with reference compound at 228 nm and the similar bands were detected from FT-IR spectroscopy analysis at 3315, 2917, 2849, 1673, 1462 and 1454 cm-1 in isolated and standard andrographolide. HPTLC analysis shows the retention factor (Rf) of A. paniculata extract at 0.74 ± 0.06 as similar to standard andrographolide Rf values. The purity of isolated andrographolide was 99.76%. The maximum non-toxic dose of isolated andrographolide was found as 15.62 µg/ml on the C6/36 cell line calculated by using MTT assay. The andrographolide showed the 97.23% anti-dengue activity against the dengue-2 virus in C6/36 cell lines. Results of molecular docking showed that the interaction between andrographolide and NS5 of dengue protein with the maximum binding energy as -7.35 kcal/mol. CONCLUSIONS: It is concluded that isolated andrographolide from the A. paniculata possess anti-dengue activity against dengue-2 virus as revealed from in vitro and in silico method. Due to lack of the vaccine and anti-viral agents, andrographolide extracted from A. paniculata play a major role to inhibit the dengue replication. Hence, it could be a source for drug design and help to reduce the dengue infection.


Asunto(s)
Andrographis , Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Dengue/prevención & control , Diterpenos/farmacología , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Aedes , Andrographis/química , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Línea Celular , Dengue/virología , Virus del Dengue/enzimología , Virus del Dengue/crecimiento & desarrollo , Diterpenos/química , Diterpenos/aislamiento & purificación , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
17.
Mol Divers ; 25(1): 383-401, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32737681

RESUMEN

The Corona virus Disease (COVID-19) is caused because of novel coronavirus (SARS-CoV-2) pathogen detected in China for the first time, and from there it spread across the globe creating a worldwide pandemic of severe respiratory complications. The virus requires structural and non-structural proteins for its multiplication that are produced from polyproteins obtained by translation of its genomic RNA. These polyproteins are converted into structural and non-structural proteins mainly by the main protease (Mpro). A systematic screening of a drug library (having drugs and diagnostic agents which are approved by FDA or other world authorities) and the Asinex BioDesign library was carried out using pharmacophore and sequential conformational precision level filters using the Schrodinger Suite. From the screening of approved drug library, three antiviral agents ritonavir, nelfinavir and saquinavir were predicted to be the most potent Mpro inhibitors. Apart from these pralmorelin, iodixanol and iotrolan were also identified from the systematic screening. As iodixanol and iotrolan carry some limitations, structural modifications in them could lead to stable and safer antiviral agents. Screenings of Asinex BioDesign library resulted in 20 molecules exhibiting promising interactions with the target protein Mpro. They can broadly be categorized into four classes based on the nature of the scaffold, viz. disubstituted pyrazoles, cyclic amides, pyrrolidine-based compounds and miscellaneous derivatives. These could be used as potential molecules or hits for further drug development to obtain clinically useful therapeutic agents for the treatment of COVID-19.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , COVID-19/virología , Evaluación Preclínica de Medicamentos/métodos , Humanos , Tamizaje Masivo/métodos , Simulación del Acoplamiento Molecular , Pandemias/prevención & control , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores
18.
Mini Rev Med Chem ; 21(2): 150-170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32727325

RESUMEN

In recent decades, much attention has been given to cyclopropyl scaffolds, which commonly exist in natural products and synthetic organic molecules. Clinical drug molecules with cyclopropyl rings are an area of focus in therapeutic research due to their interesting chemical properties and unique pharmacology activity. These molecular drugs against different targets are applicable in some therapeutic treatment fields including cancer, infection, respiratory disorder, cardiovascular and cerebrovascular diseases, dysphrenia, nervous system disorders, endocrine and metabolic disorders, skin disease, digestive disorders, urogenital diseases, otolaryngological and dental diseases, and eye diseases. This review is a guide for pharmacologists who are in search of valid preclinical/clinical drug compounds where the progress, from 1961 to the present day, of approved marketed drugs containing cyclopropyl scaffold is examined.


Asunto(s)
Ciclopropanos/química , Antibacterianos/química , Antibacterianos/farmacología , Ciprofloxacina/química , Ciprofloxacina/farmacología , Ciclopropanos/metabolismo , Evaluación Preclínica de Medicamentos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Hepacivirus/efectos de los fármacos , Humanos , Oligopéptidos/química , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo
19.
Chem Biol Drug Des ; 97(1): 28-40, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32657543

RESUMEN

Structure-based virtual screening (SBVS) has served as a popular strategy for rational drug discovery. In this study, we aimed to discover novel benzopyran-based inhibitors that targeted the NS3 enzymes (NS3/4A protease and NS3 helicase) of HCV G3 using a combination of in silico and in vitro approaches. With the aid of SBVS, six novel compounds were discovered to inhibit HCV G3 NS3/4A protease and two phytochemicals (ellagic acid and myricetin) were identified as dual-target inhibitors that inhibited both NS3/4A protease and NS3 helicase in vitro (IC50  = 40.37 ± 5.47 nm and 6.58 ± 0.99 µm, respectively). Inhibitory activities against the replication of HCV G3 replicons were further assessed in a cell-based system with four compounds showed dose-dependent inhibition. Compound P8 was determined to be the most potent compound from the cell-based assay with an EC50 of 19.05 µm. The dual-target inhibitor, ellagic acid, was determined as the second most potent (EC50  = 32.37 µm) and the most selective in its inhibitory activity against the replication of HCV replicons, without severely affecting the viability of the host cells (selectivity index > 6.18).


Asunto(s)
Ácido Elágico/química , Hepacivirus/enzimología , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Benzopiranos/química , Benzopiranos/metabolismo , Benzopiranos/farmacología , Sitios de Unión , Evaluación Preclínica de Medicamentos , Ácido Elágico/metabolismo , Ácido Elágico/farmacología , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/farmacología , Genotipo , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Humanos , Cinética , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
20.
Int J Biol Macromol ; 168: 272-278, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33309661

RESUMEN

SARS-CoV-2is the causative agent for the ongoing COVID19 pandemic, and this virus belongs to the Coronaviridae family. The nsp14 protein of SARS-CoV-2 houses a 3' to 5' exoribonuclease activity responsible for removing mismatches that arise during genome duplication. A homology model of nsp10-nsp14 complex was used to carry out in silico screening to identify molecules among natural products, or FDA approved drugs that can potentially inhibit the activity of nsp14. This exercise showed that ritonavir might bind to the exoribonuclease active site of the nsp14 protein. A model of the SARS-CoV-2-nsp10-nsp14 complex bound to substrate RNA showed that the ritonavir binding site overlaps with that of the 3' nucleotide of substrate RNA. A comparison of the calculated energies of binding for RNA and ritonavir suggested that the drug may bind to the active site of nsp14 with significant affinity. It is, therefore, possible that ritonavir may prevent association with substrate RNA and thus inhibit the exoribonuclease activity of nsp14. Overall, our computational studies suggest that ritonavir may serve as an effective inhibitor of the nsp14 protein. nsp14 is known to attenuate the inhibitory effect of drugs that function through premature termination of viral genome replication. Hence, ritonavir may potentiate the therapeutic properties of drugs such as remdesivir, favipiravir and ribavirin.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Exorribonucleasas/antagonistas & inhibidores , Ritonavir/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Antivirales/administración & dosificación , Antivirales/química , COVID-19/virología , Dominio Catalítico , Simulación por Computador , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Exorribonucleasas/química , Exorribonucleasas/genética , Genoma Viral/efectos de los fármacos , Humanos , Simulación de Dinámica Molecular , Pandemias , Ritonavir/administración & dosificación , Ritonavir/química , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA