Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Agric Food Chem ; 68(45): 12595-12605, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-32936621

RESUMEN

The postharvesting disorder leaf blackening is the main cause of product rejection in Protea during export. In this study, we report an investigation into metabolites associated with leaf blackening in Protea species. Methanol extracts of leaf and involucral bract tissue were analyzed by liquid chromatography hyphenated to photodiode array and high-resolution mass spectrometry (LC-PDA-HRMS), where 116 features were annotated. Analytical data obtained from 37 Protea species, selections, and hybrids were investigated using metabolomics tools, which showed that stems susceptible to leaf blackening cluster together and contained features identified as benzenetriol- and/or hydroquinone-derived metabolites. On the other hand, species, selections, and cultivars not prone to blackening were linked to metabolites with known protective properties against biotic and abiotic stressors. During the browning process, susceptible cultivars also produce these protective metabolites, yet at innately low levels, which may render these species and cultivars more vulnerable to blackening. Metabolites that were found to be correlated to the instigation of the browning process, all comprising benzenetriol- and hydroquinone-glycoside derivatives, are highlighted to provide preliminary insights to guide the development of new Protea cultivars not susceptible to leaf blackening.


Asunto(s)
Biomarcadores/química , Hojas de la Planta/química , Proteaceae/metabolismo , Color , Metabolómica , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Hojas de la Planta/metabolismo , Proteaceae/química , Proteaceae/crecimiento & desarrollo
2.
J Exp Bot ; 70(15): 3995-4009, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31049573

RESUMEN

Over 650 Proteaceae occur in south-western Australia, contributing to the region's exceptionally high biodiversity. Most Proteaceae occur exclusively on severely nutrient-impoverished, acidic soils (calcifuge), whilst only few also occur on young, calcareous soils (soil-indifferent), higher in calcium (Ca) and phosphorus (P). The calcifuge habit of Proteaceae is explained by Ca-enhanced P toxicity, putatively linked to the leaf cell-specific allocation of Ca and P. Separation of these elements is essential to avoid the deleterious precipitation of Ca-phosphate. We used quantitative X-ray microanalysis to determine leaf cell-specific nutrient concentrations of two calcifuge and two soil-indifferent Proteaceae grown in hydroponics at a range of Ca and P concentrations. Calcium enhanced the preferential allocation of P to palisade mesophyll (PM) cells under high P conditions, without a significant change in whole leaf [P]. Calcifuges showed a greater PM [P] compared with soil-indifferent species, corresponding to their greater sensitivity. This study advances our mechanistic understanding of Ca-enhanced P toxicity, supporting the proposed model, and demonstrating its role in the calcifuge distribution of Proteaceae. This furthers our understanding of nutrient interactions at the cellular level and highlights its importance to plant functioning.


Asunto(s)
Calcio/metabolismo , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Proteaceae/metabolismo , Microanálisis por Sonda Electrónica , Microscopía Electrónica de Rastreo , Proteaceae/ultraestructura , Australia Occidental
3.
Trends Plant Sci ; 24(1): 69-82, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30522809

RESUMEN

Phosphorus (P) fertilisers, made from rock phosphate, are used to attain high crop yields. However, rock phosphate is a finite resource and excessive P fertilisers pollute our environment, stressing the need for more P-efficient crops. Some Proteaceae have evolved in extremely P-impoverished environments. One of their adaptations is to curtail the abundance of ribosomal RNA, and thus protein, and tightly control the acquisition and assimilation of nitrogen (N) and sulfur. This differs fundamentally from plants that evolved in environments where N limits plant productivity, but is likely common in many species that evolved in P-impoverished landscapes. Here, we scrutinise the relevance of these responses towards developing P-efficient crops, focusing on plant species where 'P is in the driver's seat'.


Asunto(s)
Evolución Biológica , Nitrógeno/metabolismo , Fósforo/deficiencia , Proteaceae/metabolismo , Azufre/metabolismo , Ambiente , Proteaceae/genética , Australia Occidental
4.
New Phytol ; 215(3): 1068-1079, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28656667

RESUMEN

Hakea prostrata (Proteaceae) has evolved in extremely phosphorus (P)-impoverished habitats. Unlike species that evolved in P-richer environments, it tightly controls its nitrogen (N) acquisition, matching its low protein concentration, and thus limiting its P requirement for ribosomal RNA (rRNA). Protein is a major sink for sulfur (S), but the link between low protein concentrations and S metabolism in H. prostrata is unknown, although this is pivotal for understanding this species' supreme adaptation to P-impoverished soils. Plants were grown at different sulfate supplies for 5 wk and used for nutrient and metabolite analyses. Total S content in H. prostrata was unchanged with increasing S supply, in sharp contrast with species that typically evolved in environments where P is not a major limiting nutrient. Unlike H. prostrata, other plants typically store excess available sulfate in vacuoles. Like other species, S-starved H. prostrata accumulated arginine, lysine and O-acetylserine, indicating S deficiency. Hakea prostrata tightly controls its S acquisition to match its low protein concentration and low demand for rRNA, and thus P, the largest organic P pool in leaves. We conclude that the tight control of S acquisition, like that of N, helps H. prostrata to survive in P-impoverished environments.


Asunto(s)
Ecosistema , Fósforo/deficiencia , Proteaceae/metabolismo , Azufre/metabolismo , Biomasa , Metaboloma/efectos de los fármacos , Molibdeno/metabolismo , Fosfatos/farmacología , Pigmentos Biológicos/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/metabolismo , Sulfatos/farmacología
5.
Plant Cell Environ ; 39(12): 2754-2761, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27766648

RESUMEN

Hakea prostrata (Proteaceae) has evolved in an extremely phosphorus (P)-limited environment. This species exhibits an exceptionally low ribosomal RNA (rRNA) and low protein and nitrogen (N) concentration in its leaves. Little is known about the N requirement of this species and its link to P metabolism, despite this being the key to understanding how it functions with a minimal P budget. H. prostrata plants were grown with various N supplies. Metabolite and elemental analyses were performed to determine its N requirement. H. prostrata maintained its organ N content and concentration at a set point, independent of a 25-fold difference nitrate supplies. This is in sharp contrast to plants that are typically studied, which take up and store excess nitrate. Plants grown without nitrate had lower leaf chlorophyll and carotenoid concentrations, indicating N deficiency. However, H. prostrata plants at low or high nitrate availability had the same photosynthetic pigment levels and hence were not physiologically compromised by the treatments. The tight control of nitrate acquisition in H. prostrata retains protein at a very low level, which results in a low demand for rRNA and P. We surmise that the constrained nitrate acquisition is an adaptation to severely P-impoverished soils.


Asunto(s)
Nitratos/metabolismo , Fósforo/deficiencia , Proteaceae/metabolismo , Aminoácidos/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo
6.
Sci Rep ; 5: 17132, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26607493

RESUMEN

Several hypotheses have been proposed to explain the rich floristic diversity in regions characterised by nutrient-impoverished soils; however, none of these hypotheses have been able to explain the rapid diversification over a relatively short evolutionary time period of Grevillea, an Australian plant genus with 452 recognised species/subspecies and only 11 million years of evolutionary history. Here, we hypothesise that the apparent evolutionary success of Grevillea might have been triggered by the highly efficient use of key nutrients. The nutrient content in the seeds and nutrient-use efficiency during early seedling growth of 12 species of Grevillea were compared with those of 24 species of Hakea, a closely related genus. Compared with Hakea, the Grevillea species achieved similar growth rates (root and shoot length) during the early stages of seedling growth but contained only approximately half of the seed nutrient content. We conclude that the high nutrient-use efficiency observed in Grevillea might have provided a selective advantage in nutrient-poor ecosystems during evolution and that this property likely contributed to the evolutionary success in Grevillea.


Asunto(s)
Nitrógeno/metabolismo , Fósforo/metabolismo , Proteaceae/crecimiento & desarrollo , Proteaceae/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/metabolismo , Especificidad de la Especie
7.
Am J Bot ; 102(2): 208-16, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25667073

RESUMEN

PREMISE OF THE STUDY: Southern South American (SA) Proteaceae species growing in volcanic soils have been proposed as potential ecosystem engineers by tapping phosphorus (P) from soil through their cluster roots and shedding nutrient-rich litter to the soil, making it available for other species. We tested whether Embothrium coccineum (Proteaceae) has effectively lower P nutrient resorption efficiency and higher litter P concentrations than co-occurring, non-Proteaceae species. METHODS: In southern Chile, we assessed the P and nitrogen (N) resorption efficiency of senescent leaves and fresh litter of E. coccineum and co-occurring tree species in a soil fertility and moisture gradient (600-3000 mm of annual precipitation) in Patagonia, Chile. We determined P and N concentrations, leaf mass per area (LMA), and ratios of N/P and C/N in mature and senescent leaf cohorts and fresh litter. KEY RESULTS: Embothrium coccineum showed significantly higher P and N resorption efficiency than co-occurring species; in fact, E. coccineum fresh litter had the lowest P-content. While E. coccineum showed significantly lower fresh litter P concentrations than the rest of the species, it showed significantly higher N concentrations. Embothrium coccineum also had lower LMA and similar N/P and C/N ratios when compared with co-occurring tree species. CONCLUSIONS: We found that E. coccineum efficiently mobilized P and, to a lesser extent, N before leaf shedding. We did not find support for the ecosystem engineering hypothesis via shedding P-rich litter. We suggest that southern South American Proteaceae may be taking up other nutrients besides P, probably N, from the young, volcanic soils of this region.


Asunto(s)
Ecosistema , Nitrógeno/metabolismo , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Proteaceae/metabolismo , Suelo , Chile , Árboles/metabolismo
8.
Plant Physiol ; 166(4): 1891-911, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25315604

RESUMEN

Hakea prostrata (Proteaceae) is adapted to severely phosphorus-impoverished soils and extensively replaces phospholipids during leaf development. We investigated how polar lipid profiles change during leaf development and in response to external phosphate supply. Leaf size was unaffected by a moderate increase in phosphate supply. However, leaf protein concentration increased by more than 2-fold in young and mature leaves, indicating that phosphate stimulates protein synthesis. Orthologs of known lipid-remodeling genes in Arabidopsis (Arabidopsis thaliana) were identified in the H. prostrata transcriptome. Their transcript profiles in young and mature leaves were analyzed in response to phosphate supply alongside changes in polar lipid fractions. In young leaves of phosphate-limited plants, phosphatidylcholine/phosphatidylethanolamine and associated transcript levels were higher, while phosphatidylglycerol and sulfolipid levels were lower than in mature leaves, consistent with low photosynthetic rates and delayed chloroplast development. Phosphate reduced galactolipid and increased phospholipid concentrations in mature leaves, with concomitant changes in the expression of only four H. prostrata genes, GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE1, N-METHYLTRANSFERASE2, NONSPECIFIC PHOSPHOLIPASE C4, and MONOGALACTOSYLDIACYLGLYCEROL3. Remarkably, phosphatidylglycerol levels decreased with increasing phosphate supply and were associated with lower photosynthetic rates. Levels of polar lipids with highly unsaturated 32:x (x = number of double bonds in hydrocarbon chain) and 34:x acyl chains increased. We conclude that a regulatory network with a small number of central hubs underpins extensive phospholipid replacement during leaf development in H. prostrata. This hard-wired regulatory framework allows increased photosynthetic phosphorus use efficiency and growth in a low-phosphate environment. This may have rendered H. prostrata lipid metabolism unable to adjust to higher internal phosphate concentrations.


Asunto(s)
Metabolismo de los Lípidos , Fosfatos/metabolismo , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Proteaceae/metabolismo , Cloroplastos/metabolismo , Lípidos , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceroles/metabolismo , Fosfolípidos/metabolismo , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteaceae/genética , Proteaceae/crecimiento & desarrollo , Biosíntesis de Proteínas
9.
Plant Cell Environ ; 37(6): 1276-98, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24895754

RESUMEN

Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The results were compared with those for Arabidopsis thaliana. Compared with A. thaliana, immature leaves of Proteaceae species contained very low levels of rRNA, especially plastidic rRNA. Proteaceae species showed slow development of the photosynthetic apparatus ('delayed greening'), with young leaves having very low levels of chlorophyll and Calvin-Benson cycle enzymes. In mature leaves, soluble protein and Calvin-Benson cycle enzyme activities were low, but Glc6P levels were similar to those in A. thaliana. We propose that low ribosome abundance contributes to the high P efficiency of these Proteaceae species in three ways: (1) less P is invested in ribosomes; (2) the rate of growth and, hence, demand for P is low; and (3) the especially low plastidic ribosome abundance in young leaves delays formation of the photosynthetic machinery, spreading investment of P in rRNA. Although Calvin-Benson cycle enzyme activities are low, Glc6P levels are maintained, allowing their effective use.


Asunto(s)
Fósforo/metabolismo , Proteaceae/fisiología , ARN de Planta/metabolismo , ARN Ribosómico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Clorofila/metabolismo , Glucosa-6-Fosfato/metabolismo , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Proteaceae/genética , Proteaceae/metabolismo , Proteínas Ribosómicas/metabolismo , Almidón/metabolismo
10.
Am J Bot ; 100(12): 2328-38, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24249789

RESUMEN

PREMISE OF THE STUDY: Cluster roots are a characteristic root adaptation of Proteaceae species. In South African and Australian species, cluster roots promote phosphorus (P) acquisition from poor soils. In a South American Proteaceae species, where cluster roots have been scarcely studied and their function is unknown, we tested whether cluster-root formation is stimulated by low soil nutrition, in particular low P-availability. METHODS: Small and large seedlings (< 6- and > 6-months old, respectively) of Embothrium coccineum and soil were collected across four different sites in Patagonia (Chile). We determined cluster-root number and relative mass, and leaf Pi concentration per mass (Pimass) and per area (Piarea) for each seedling, and tested relationships with Olsen-P (OP), sorbed-P (sP) and total nitrogen (N) using generalized linear mixed-effects models and model selection to assess the relative strength of soil and plant drivers. KEY RESULTS: Best-fit models showed a negative logarithmic relationship between cluster-root number and soil nitrogen (N), and between cluster-root relative mass and both leaf Piarea and soil N, and a positive logarithmic relationship between cluster-root number and leaf Piarea. Cluster-root relative mass was higher in small than in large seedlings. CONCLUSIONS: Contrary to that found in South African and Australian Proteaceae, cluster roots of E. coccineum do not appear to be driven by soil P, but rather by soil N and leaf Piarea. We suggest that cluster roots are a constitutive and functional trait that allows plants to prevail in poor N soils.


Asunto(s)
Adaptación Fisiológica , Nitrógeno/metabolismo , Fósforo/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Proteaceae/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Suelo/química , Chile , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Proteaceae/metabolismo , Plantones/metabolismo
11.
Ann Bot ; 111(3): 445-54, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23293017

RESUMEN

BACKGROUND AND AIMS: Previous research has suggested a trade-off between the capacity of plants to downregulate their phosphorus (P) uptake capacity and their efficiency of P resorption from senescent leaves in species from P-impoverished environments. METHODS: To investigate this further, four Australian native species (Banksia attenuata, B. menziesii, Acacia truncata and A. xanthina) were grown in a greenhouse in nutrient solutions at a range of P concentrations [P]. Acacia plants received between 0 and 500 µm P; Banksia plants received between 0 and 10 µm P, to avoid major P-toxicity symptoms in these highly P-sensitive species. KEY RESULTS: For both Acacia species, the net P-uptake rates measured at 10 µm P decreased steadily with increasing P supply during growth. In contrast, in B. attenuata, the net rate of P uptake from a solution with 10 µm P increased linearly with increasing P supply during growth. The P-uptake rate of B. menziesii showed no significant response to P supply in the growing medium. Leaf [P] of the four species supported this finding, with A. truncata and A. xanthina showing an increase up to a saturation value of 19 and 21 mg P g(-1) leaf dry mass, respectively (at 500 µm P), whereas B. attenuata and B. menziesii both exhibited a linear increase in leaf [P], reaching 10 and 13 mg P g(-1) leaf dry mass, respectively, without approaching a saturation point. The Banksia plants grown at 10 µm P showed mild symptoms of P toxicity, i.e. yellow spots on some leaves and drying and curling of the tips of the leaves. Leaf P-resorption efficiency was 69 % (B. attenuata), 73 % (B. menziesii), 34 % (A. truncata) and 36 % (A. xanthina). The P-resorption proficiency values were 0·08 mg P g(-1) leaf dry mass (B. attenuata and B. menziesii), 0·32 mg P g(-1) leaf dry mass (A. truncata) and 0·36 mg P g(-1) leaf dry mass (A. xanthina). Combining the present results with additional information on P-remobilization efficiency and the capacity to downregulate P-uptake capacity for two other Australian woody species, we found a strong negative correlation between these traits. CONCLUSIONS: It is concluded that species that are adapted to extremely P-impoverished soils, such as many south-western Australian Proteaceae species, have developed extremely high P-resorption efficiencies, but lost their capacity to downregulate their P-uptake mechanisms. The results support the hypothesis that the ability to resorb P from senescing leaves is inversely related to the capacity to downregulate net P uptake, possibly because constitutive synthesis of P transporters is a prerequisite for proficient P remobilization from senescing tissues.


Asunto(s)
Acacia/metabolismo , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Acacia/crecimiento & desarrollo , Adaptación Fisiológica , Australia , Muerte Celular , Medios de Cultivo/metabolismo , Regulación hacia Abajo , Enfermedades de las Plantas , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Proteaceae/crecimiento & desarrollo , Proteaceae/metabolismo , Suelo/química
12.
New Phytol ; 196(4): 1098-1108, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22937909

RESUMEN

Proteaceae species in south-western Australia occur on severely phosphorus (P)-impoverished soils. They have very low leaf P concentrations, but relatively fast rates of photosynthesis, thus exhibiting extremely high photosynthetic phosphorus-use-efficiency (PPUE). Although the mechanisms underpinning their high PPUE remain unknown, one possibility is that these species may be able to replace phospholipids with nonphospholipids during leaf development, without compromising photosynthesis. For six Proteaceae species, we measured soil and leaf P concentrations and rates of photosynthesis of both young expanding and mature leaves. We also assessed the investment in galactolipids, sulfolipids and phospholipids in young and mature leaves, and compared these results with those on Arabidopsis thaliana, grown under both P-sufficient and P-deficient conditions. In all Proteaceae species, phospholipid levels strongly decreased during leaf development, whereas those of galactolipids and sulfolipids strongly increased. Photosynthetic rates increased from young to mature leaves. This shows that these species extensively replace phospholipids with nonphospholipids during leaf development, without compromising photosynthesis. A considerably less pronounced shift was observed in A. thaliana. Our results clearly show that a low investment in phospholipids, relative to nonphospholipids, offers a partial explanation for a high photosynthetic rate per unit leaf P in Proteaceae adapted to P-impoverished soils.


Asunto(s)
Galactolípidos/metabolismo , Lípidos , Fósforo/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteaceae/metabolismo , Suelo , Arabidopsis/crecimiento & desarrollo , Lípidos/análisis , Lípidos/química , Fósforo/análisis , Fósforo/deficiencia , Fotosíntesis , Hojas de la Planta/metabolismo , Suelo/análisis , Australia del Sur , Australia Occidental
13.
Ann Bot ; 110(2): 329-48, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22700940

RESUMEN

BACKGROUND: Carboxylate-releasing cluster roots of Proteaceae play a key role in acquiring phosphorus (P) from ancient nutrient-impoverished soils in Australia. However, cluster roots are also found in Proteaceae on young, P-rich soils in Chile where they allow P acquisition from soils that strongly sorb P. SCOPE: Unlike Proteaceae in Australia that tend to proficiently remobilize P from senescent leaves, Chilean Proteaceae produce leaf litter rich in P. Consequently, they may act as ecosystem engineers, providing P for plants without specialized roots to access sorbed P. We propose a similar ecosystem-engineering role for species that release large amounts of carboxylates in other relatively young, strongly P-sorbing substrates, e.g. young acidic volcanic deposits and calcareous dunes. Many of these species also fix atmospheric nitrogen and release nutrient-rich litter, but their role as ecosystem engineers is commonly ascribed only to their diazotrophic nature. CONCLUSIONS: We propose that the P-mobilizing capacity of Proteaceae on young soils, which contain an abundance of P, but where P is poorly available, in combination with inefficient nutrient remobilization from senescing leaves allows these species to function as ecosystem engineers. We suggest that diazotrophic species that colonize young soils with strong P-sorption potential should be considered for their positive effect on P availability, as well as their widely accepted role in nitrogen fixation. Their P-mobilizing activity possibly also enhances their nitrogen-fixing capacity. These diazotrophic species may therefore facilitate the establishment and growth of species with less-efficient P-uptake strategies on more-developed soils with low P availability through similar mechanisms. We argue that the significance of cluster roots and high carboxylate exudation in the development of young ecosystems is probably far more important than has been envisaged thus far.


Asunto(s)
Ácidos Carboxílicos/metabolismo , Fósforo/deficiencia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteaceae/crecimiento & desarrollo , Proteaceae/metabolismo , Suelo/química , Adaptación Fisiológica , Australia , Transporte Biológico , Ecosistema , Fósforo/metabolismo , Exudados de Plantas/metabolismo , Hojas de la Planta/metabolismo
15.
Plant Cell Environ ; 31(12): 1825-33, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18811734

RESUMEN

The influence of phosphorus (P) availability on growth and P uptake was investigated in South African Proteaceae: (1) Protea compacta R.Br., endemic on severely nutrient-impoverished colluvial sands; (2) Protea obtusifolia Bueck ex Meissner; and (3) Leucadendron meridianum I. J. Williams, the latter both endemic on comparatively fertile limestone-derived soils. Plants were grown hydroponically in 1000 L tanks at 0.01, 0.1 or 1.0 microm P for 14 weeks. Biomass accumulation was influenced by P availability, doubling as [P] increased from 0.1 to 1.0 microm. Total biomass was greatest for P. compacta, but L. meridianum and P. obtusifolia had two to four times greater relative biomass accumulation at 0.1 and 1.0 microm [P]. Proteoid root clusters developed at both 0.01 and 0.1 microm[P], but were suppressed at 1.0 microm [P]; this was a 10-fold lower [P] than previously reported to inhibit cluster root formation. Rates of net P uptake at 5 microm P decreased in response to increased P availability from 0.01 to 1.0 microm P. Significant between-species differences in rates of P uptake and capacity to down-regulate P uptake were observed: P. compacta < P. obtusifolia < L. meridianum. The species responses are discussed in terms of adaptation to mosaics in soil P availability and the high beta diversity in the natural habitat.


Asunto(s)
Fósforo/metabolismo , Raíces de Plantas/metabolismo , Proteaceae/metabolismo , Biomasa , Fotosíntesis , Raíces de Plantas/crecimiento & desarrollo , Proteaceae/crecimiento & desarrollo , Suelo , Sudáfrica , Especificidad de la Especie
16.
Plant Cell Environ ; 30(12): 1557-65, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17944818

RESUMEN

Banksia species (Proteaceae) occur on some of the most phosphorus (P)-impoverished soils in the world. We hypothesized that Banksia spp. maximize P-use efficiency through high photosynthetic P-use efficiency, long leaf lifespan (P residence time), effective P re-mobilization from senescing leaves, and maximizing seed P concentration. Field and glasshouse experiments were conducted to quantify P-use efficiency in nine Banksia species. Leaf P concentrations for all species were extremely low (0.14-0.32 mg P g(-1) DM) compared with leaf P in other species reported and low relative to other plant nutrients in Banksia spp.; however, moderately high rates of photosynthesis (13.8-21.7 micromol CO2 m(-2) s(-1)), were measured. Some of the Banksia spp. had greater P proficiency (i.e. final P concentration in senesced leaves after re-mobilization; range: 27-196 microg P g(-1) DM) than values reported for any other species in the literature. Seeds exhibited significantly higher P concentrations (6.6-12.2 mg P g(-1 )DM) than leaves, and species that sprout after fire ('re-sprouters') had significantly greater seed mass and P content than species that are killed by fire and regenerate from seed ('seeders'). Seeds contained only small amounts of polyphosphate (between 1.3 and 6 microg g(-1) DM), and this was not correlated with P concentration or fire response. Based on the evidence in the present study, we conclude that Banksia species are highly efficient in their use of P, explaining, in part, their success on P-impoverished soils, with little variation between species.


Asunto(s)
Adaptación Fisiológica , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Proteaceae/metabolismo , Semillas/metabolismo , Ecosistema , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Proteaceae/crecimiento & desarrollo , Suelo/análisis , Australia Occidental
17.
New Phytol ; 173(3): 592-599, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17244054

RESUMEN

Banksia species (Proteaceae) occur on some of the most phosphorus (P)-impoverished soils in the world. We hypothesized that plasticity in the exudation of P-mobilizing carboxylates would be greater in widespread than in rare Banksia species. Glasshouse experiments were conducted to identify and quantify carboxylate exudation in three widespread and six narrowly distributed Banksia species. High concentrations of carboxylates (predominantly malate, citrate, aconitate, oxalate) were measured in the rhizosphere of all nine species of Banksia on six different soils, but widespread species did not have greater plasticity in the composition of exuded carboxylates. Based on the evidence in the present study, rarity in Banksia cannot be explained by limited phenotypic adjustment of carboxylate exudation.


Asunto(s)
Ácidos Carboxílicos/metabolismo , Fenotipo , Proteaceae/metabolismo , Tamaño de los Órganos , Fósforo/metabolismo , Hojas de la Planta/anatomía & histología , Raíces de Plantas/anatomía & histología , Tallos de la Planta/anatomía & histología , Plantones/metabolismo , Semillas/metabolismo , Suelo
18.
J Evol Biol ; 19(4): 1327-38, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16780533

RESUMEN

To assess whether wide outcrossing (over 30 km) in the naturally fragmented Banksia ilicifolia R.Br. increases the ecological amplitude of offspring, we performed a comparative greenhouse growth study involving seedlings of three hand-pollinated progeny classes (self, local outcross, wide outcross) and a range of substrates and stress conditions. Outcrossed seedlings outperformed selfed seedlings, with the magnitude of inbreeding depression as high as 62% for seed germination and 37% for leaf area. Wide outcrossed seedlings outperformed local outcrossed seedlings, especially in non-native soils, facilitated in part by an improved capacity to overcome soil constraints through greater root carboxylate exudation. Soil type significantly affected seedling growth, and waterlogging and water deficit decreased growth, production of cluster roots, root exudation and total plant P uptake. Our results suggest that the interaction of narrow ecological amplitude and the genetic consequences of small fragmented populations may in part explain the narrow range of local endemics, but that wide outcrossing may provide opportunities for increased genetic variation, increased ecological amplitude and range expansion.


Asunto(s)
Ecología , Hibridación Genética , Proteaceae/fisiología , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Proteaceae/crecimiento & desarrollo , Proteaceae/metabolismo
19.
J Exp Bot ; 57(2): 413-23, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16356944

RESUMEN

Grevillea crithmifolia R. Br. is a species of Proteaceae that is resistant to developing P-toxicity symptoms at phosphorus supplies in the root environment that induce P-toxicity symptoms in the closely related Hakea prostrata (Proteaceae). It was discovered previously that development of P-toxicity symptoms in H. prostrata is related to its low capacity to down-regulate net P-uptake rates (i.e. its low plasticity). The plasticity of net P-uptake rates and whole-plant growth responses in G. crithmifolia has now been assessed in two separate experiments: (i) a range of P, from 0 to 200 micromol P d-1, was supplied to whole root systems; (ii) using a split-root design, one root half was supplied with 0, 3, 75, or 225 micromol P d-1, while the other root half invariably received 3 micromol P d-1. Fresh mass was significantly greater in G. crithmifolia plants that had received a greater daily P supply during the pretreatments, but symptoms of P toxicity were never observed. Cluster-root growth decreased from about half the total root fresh mass when the leaf [P] was lowest (c. 0.1 mg P g-1 DM) to complete suppression of cluster-root growth when leaf [P] was 1-2 mg P g-1 DM. Split-root studies revealed that cluster-root initiation and growth, and net P-uptake rates by roots were regulated systemically, possibly by shoot P concentration. It is concluded that, in response to higher P supply, G. crithmifolia does not develop symptoms of P toxicity because of (i) greater plasticity of its net P-uptake capacity, and (ii) its greater plasticity for allocating P to growth and P storage in roots. This ecologically important difference in plasticity is most probably related to a slightly higher nutrient availability in the natural habitat of G. crithmifolia when compared with that of H. prostrata.


Asunto(s)
Fósforo/toxicidad , Proteaceae/crecimiento & desarrollo , Aclimatación , Variación Genética , Cinética , Fósforo/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteaceae/anatomía & histología , Proteaceae/metabolismo , Especificidad de la Especie , Australia Occidental
20.
Plant Physiol ; 135(1): 549-60, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15122030

RESUMEN

Harsh hakea (Hakea prostrata R.Br.) is a member of the Proteaceae family, which is highly represented on the extremely nutrient-impoverished soils in southwest Australia. When phosphorus is limiting, harsh hakea develops proteoid or cluster roots that release carboxylates that mobilize sparingly soluble phosphate in the rhizosphere. To investigate the physiology underlying the synthesis and exudation of carboxylates from cluster roots in Proteaceae, we measured O2 consumption, CO2 release, internal carboxylate concentrations and carboxylate exudation, and the abundance of the enzymes phosphoenolpyruvate carboxylase and alternative oxidase (AOX) over a 3-week time course of cluster-root development. Peak rates of citrate and malate exudation were observed from 12- to 13-d-old cluster roots, preceded by a reduction in cluster-root total protein levels and a reduced rate of O2 consumption. In harsh hakea, phosphoenolpyruvate carboxylase expression was relatively constant in cluster roots, regardless of developmental stage. During cluster-root maturation, however, the expression of AOX protein increased prior to the time when citrate and malate exudation peaked. This increase in AOX protein levels is presumably needed to allow a greater flow of electrons through the mitochondrial electron transport chain in the absence of rapid ATP turnover. Citrate and isocitrate synthesis and accumulation contributed in a major way to the subsequent burst of citrate and malate exudation. Phosphorus accumulated by harsh hakea cluster roots was remobilized during senescence as part of their efficient P cycling strategy for growth on nutrient impoverished soils.


Asunto(s)
Ácidos Carboxílicos/metabolismo , Oxidorreductasas/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Raíces de Plantas/enzimología , Proteaceae/enzimología , Dióxido de Carbono/metabolismo , Respiración de la Célula/fisiología , Proteínas Mitocondriales , Oxígeno/metabolismo , Consumo de Oxígeno/fisiología , Fósforo/metabolismo , Proteínas de Plantas , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteaceae/crecimiento & desarrollo , Proteaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA