Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Complement Ther Med ; 68: 102842, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35653966

RESUMEN

BACKGROUND: Chronic inflammation has been classified as one of the most important threats to health. Scientists suggested that tart cherry (TC) can reduce plasma levels of inflammatory mediators. Therefore, the aim of this study was to summarize the effect of TC on circulating C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) among adult participants in non-exercise randomized clinical trials (RCTs). METHODS AND MATERIALS: The eligible English-language RCTs were found by searching databases including PubMed, Web of Science, Cochrane Library, Scopus, and clinical Trials.gov up to May 2022, with no time limit. We used the mean change from baseline and its standard deviation for both intervention and comparison groups to calculate the effect size. The random-effects model proposed by DerSimonian and Laird was used to estimate the overall summary effect and the heterogeneity. We used PRISMA 2020 guidelines to report this study. RESULTS: Ten RCTs were included in this study. The results demonstrated that TC had a significant decreasing effect on plasma CRP level compared with the comparison group (weighted mean differences (WMD) = -0.55 mg/L; 95% confidence interval (CI): - 1.03, - 0.06; p = 0.029), but had no significant effect on plasma IL-6 compared with comparison group (WMD = 0.08 pg/mL; 95% CI: -0.02, 0.17; p = 0.10). The effect of TC consumption on plasma TNF-α level was evaluated in only three studies that showed no significant effects (p>0.05). CONCLUSION: Our results confirmed a significant decreasing effect of TC on CRP. Regarding IL-6 and TNF-α, our study did not present any significant effect of TC.


Asunto(s)
Mediadores de Inflamación , Prunus avium , Adulto , Biomarcadores , Proteína C-Reactiva/análisis , Suplementos Dietéticos , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Prunus avium/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto , Factor de Necrosis Tumoral alfa
2.
Nutr Res ; 99: 66-77, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101747

RESUMEN

The gut microbiota plays an important role in the pathophysiology of obesity and type 2 diabetes. Emerging evidence suggests that anthocyanin-rich foods such as US Montmorency tart cherry (TC) can promote health by influencing the gut microbiota and maintaining gut integrity. This study investigated the effects of TC supplementation on the gut microbiota, markers of gut health, and metabolic parameters in mice fed a western diet (WD). Seventy-two C57BL/6 male mice were assigned to dietary treatments in a 2 × 3 factorial design with diet (control, WD) and TC (0, 5, 10% wt/wt) as factors. After 12 weeks of dietary treatment, tissues were collected to evaluate metabolic parameters and markers of gut health including cecal content microbiota and fecal short chain fatty acids (SCFAs). TC supplementation significantly increased the bacterial phylum, Actinobacteria, cecal weight, and fecal SCFAs and reduced the Proteobacteria and Deferribacteres phyla. However, gut histological parameters and expression of genes related to gut integrity were unaffected by TC. Body weight, serum cholesterol, triglyceride, leptin, plasminogen activator inhibitor-1 and resistin were increased with WD and TC had no effect on these parameters. Fasting blood glucose and the surrogate marker of insulin resistance, homeostatic model assessment of insulin resistance (HOMA-IR), was significantly increased by WD which was improved by TC particularly the 5% dose. In conclusion, TC supplementation, particularly the 5% dose, improved markers of glucose homeostasis but has modest effects on gut microbial population and SCFAs production. The mechanism by which TC improved markers of glucose homeostasis needs to be further investigated.


Asunto(s)
Diabetes Mellitus Tipo 2 , Prunus avium , Animales , Biomarcadores , Dieta Alta en Grasa , Dieta Occidental , Suplementos Dietéticos , Glucosa/metabolismo , Promoción de la Salud , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Prunus avium/metabolismo
3.
Molecules ; 27(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163961

RESUMEN

New plant oils as a potential natural source of nutraceutical compounds are still being sought. The main components of eight cultivars ('Koral', 'Lucyna', 'Montmorency', 'Naumburger', 'Wanda', 'Wigor', 'Wolynska', and 'Wróble') of sour cherry (Prunus cerasus L.) grown in Poland, including crude fat, protein, and oil content, were evaluated. The extracted oils were analysed for chemical and biological activity. The oils had an average peroxide value of 1.49 mEq O2/kg, acid value of 1.20 mg KOH/g, a saponification value of 184 mg of KOH/g, and iodine value of 120 g I2/100 g of oil. The sour cherry oil contained linoleic (39.1-46.2%) and oleic (25.4-41.0%) acids as the major components with smaller concentrations of α-eleostearic acid (8.00-15.62%), palmitic acid (5.45-7.41%), and stearic acid (2.49-3.17%). The content of sterols and squalene varied significantly in all the studied cultivars and ranged between 336-973 mg/100 g and 66-102 mg/100 g of oil. The contents of total tocochromanols, polyphenols, and carotenoids were 119-164, 19.6-29.5, and 0.56-1.61 mg/100 g oil, respectively. The cultivar providing the highest amounts of oil and characterised by the highest content of PUFA (including linoleic acid), plant sterols, α-and ß-tocopherol, as well as the highest total polyphenol and total carotenoids content was been found to be 'Naumburger'. The antioxidant capacity of sour cherry kernel oils, measured using the DPPH• and ABTS•+ methods, ranged from 57.7 to 63.5 and from 38.2 to 43.2 mg trolox/100 g oil, respectively. The results of the present study provide important information about potential possibilities of application of Prunus cerasus kernel oils in cosmetic products and pharmaceuticals offering health benefits.


Asunto(s)
Fitoquímicos/química , Prunus avium/química , Prunus avium/metabolismo , Antioxidantes/química , Carotenoides/análisis , Frutas/química , Ácido Linoleico/análisis , Fitoquímicos/análisis , Fitosteroles/análisis , Extractos Vegetales/química , Aceites de Plantas/química , Polonia , Polifenoles/química
4.
Mol Biol Rep ; 49(4): 2687-2693, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35034286

RESUMEN

BACKGROUND: Natural products are not only positioned in the heart of traditional medicine but also in modern medicine as many current drugs are coming from natural sources. Apart from the field of medicine and therapeutics, natural products are broadly used in other industrial fields such as nutrition, skincare products and nanotechnology. METHODS AND RESULTS: The aim of this study was to assess the effects of sweet cherry (Prunus avium L.) fruit extract from the Greek native cultivar 'Vasiliadi', on the human 2D and 3D in vitro models in order to investigate its potential impact on skin. We focused on 2D culture of primary normal human epidermal keratinocytes (NHEK) that were treated with sweet cherry fruit extract. In the first place, we targeted fruit extract potential cytotoxicity by determining ATP intracellular levels. Furthermore, we assessed its potential skin irritability by using 3D skin model. To better understand the bioactivity of sweet cherry fruit. extract, we used qPCR to study the expression of various genes that are implicated in the skin functions. Our experiments showed that sweet cherry fruit extract is non-toxic in 2D keratinocytes culture as well as non-irritant in 3D skin model. Our results revealed that the extract mediated important pathways for the optimum epidermis function such as cell proliferation, immune and inflammatory response. CONCLUSION: The sweet cherry fruit extracts possesses significant activity in epidermis function without any potential of cytotoxicity or skin irritability, which makes it a rather promising active agent for skincare.


Asunto(s)
Prunus avium , Frutas/genética , Humanos , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Prunus avium/metabolismo , Piel
5.
Med Sci Sports Exerc ; 54(4): 609-621, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34772901

RESUMEN

INTRODUCTION: Montmorency cherry concentrate (MCC) supplementation enhances functional recovery from exercise, potentially due to antioxidant and anti-inflammatory effects. However, to date, supporting empirical evidence for these mechanistic hypotheses is reliant on indirect blood biomarkers. This study is the first to investigate functional recovery from exercise alongside molecular changes within the exercised muscle after MCC supplementation. METHODS: Ten participants completed two maximal unilateral eccentric knee extension trials after MCC or placebo (PLA) supplementation for 7 d before and 48 h after exercise. Knee extension maximum voluntary contractions, maximal isokinetic contractions, single leg jumps, and soreness measures were assessed before, immediately, 24 h, and 48 h after exercise. Venous blood and vastus lateralis muscle samples were collected at each time point. Plasma concentrations of interleukin-6, tumor necrosis factor alpha, C-reactive protein, creatine kinase, and phenolic acids were quantified. Intramuscular mRNA expressions of superoxide dismutase 1 (SOD1), SOD3, glutathione peroxidase 1 (GPX1), GPX3, GPX4, GPX7, catalase, and nuclear factor erythroid 2-related factor 2 and relative intramuscular protein expressions of SOD1, catalase, and GPX3 were quantified. RESULTS: MCC supplementation enhanced the recovery of normalized maximum voluntary contraction 1-s average compared with PLA (postexercise PLA, 59.5% ± 18.0%, vs MCC, 76.5% ± 13.9%; 24 h PLA, 69.8% ± 15.9%, vs MCC, 80.5% ± 15.3%; supplementation effect P = 0.024). MCC supplementation increased plasma hydroxybenzoic, hippuric, and vanillic acid concentrations (supplementation effect P = 0.028, P = 0.002, P = 0.003); SOD3, GPX3, GPX4, GPX7 (supplement effect P < 0.05), and GPX1 (interaction effect P = 0.017) gene expression; and GPX3 protein expression (supplementation effect P = 0.004) versus PLA. There were no significant differences between conditions for other outcome measures. CONCLUSIONS: MCC supplementation conserved isometric muscle strength and upregulated antioxidant gene and protein expression in parallel with increased phenolic acid concentrations.


Asunto(s)
Prunus avium , Antioxidantes/metabolismo , Catalasa , Suplementos Dietéticos , Método Doble Ciego , Glutatión Peroxidasa/farmacología , Humanos , Músculo Esquelético/fisiología , Mialgia , Poliésteres/farmacología , Prunus avium/metabolismo , Superóxido Dismutasa-1/farmacología
6.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34639100

RESUMEN

Abscisic acid (ABA) is a key signaling molecule promoting ripening of non-climacteric fruits such as sweet cherry (Prunus avium L.). To shed light on the role of other hormones on fruit development, ripening and anthocyanin production, the synthetic auxin 1-naphthaleneacetic acid (NAA) was applied to sweet cherry trees during the straw-color stage of fruit development. NAA-treated fruits exhibited higher concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and ABA-glucose ester (ABA-GE), which are a precursor of ethylene and a primary storage form of ABA, respectively. Consistent with these observations, transcript levels of genes encoding ACC synthase and ACC oxidase, both involved in ethylene biosynthesis, were increased after 6 days of NAA treatment, and both ABA concentration and expression of the regulator gene of ABA biosynthesis (NCED1 encoding 9-cis-epoxycarotenoid dioxygenase) were highest during early fruit ripening. In addition, transcript levels of key anthocyanin regulatory, biosynthetic and transport genes were significantly upregulated upon fruit exposure to NAA. This was accompanied by an increased anthocyanin concentration and fruit weight whilst fruit firmness and cracking index decreased. Altogether our data suggest that NAA treatment alters ethylene production, which in turn induces ripening in sweet cherry and enhanced anthocyanin production, possibly through ABA metabolism. The results from our study highlight the potential to use a single NAA treatment for manipulation of cherry ripening.


Asunto(s)
Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Prunus avium/metabolismo , Proteínas de Plantas/genética , Prunus avium/efectos de los fármacos , Prunus avium/crecimiento & desarrollo
7.
Food Chem ; 360: 129999, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33989880

RESUMEN

In this study, cherry fruits and petioles from six ancient Italian Prunus avium L. varieties (Ferrovia, Capellina, Morellina, Ciambellana, Napoletana, and Bianca), were compared by chemical and bioinformatic analyses and evaluated for their antiangiogenic activity. The highest levels of total phenols and flavonoids were found in Napoletana petioles, and Morellina and Capellina fruits. HPLC-PDA-MS analyses showed similar phenolic profiles for all fruit extracts, with cyanidin-3-O-rutinoside, flavonols glycosides, and quinic acid derivatives as major components. Flavonoid glycosides were found in all petiole extracts, while proanthocyanidins B type were predominant in Capellina, Napoletana and Bianca. Accordingly to their higher polyphenolic content, petiole extracts exhibited stronger radical scavenging activity compared to the fruits. The best antiangiogenic response was exhibited by Morellina, Ferrovia, and Ciambellana petiole extracts, and by Ferrovia, Morellina, and Capellina fruit extracts; by bioinformatic studies rutin and cyanidin 3-O-rutinoside were recognised as the best candidate bioactive compounds. In conclusion, sweet cherry varietes were confirmed as valuable sources of phenols, showing also potential angiomodulator properties.


Asunto(s)
Inhibidores de la Angiogénesis/análisis , Extractos Vegetales/química , Prunus avium/química , Fosfatasa Alcalina/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Antocianinas/análisis , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Embrión no Mamífero/diagnóstico por imagen , Embrión no Mamífero/metabolismo , Flavonoides/análisis , Frutas/química , Frutas/metabolismo , Italia , Fenoles/análisis , Extractos Vegetales/farmacología , Prunus avium/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
8.
Food Chem ; 333: 127515, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32683260

RESUMEN

The nutritional and commercial value of the sweet cherry provides it a great economic importance in Italy. The aim of this study was to characterize 35 sweet cherry cultivars and one of sour cherry, by analyzing values of different pomological and nutraceutical traits, identifying cultivars with antioxidant activity and total anthocyanins content closest to those present in literature for Ferrovia (largely diffused in Italy). To this goal, a multivariate metric index through the Soft Independent Modeling of Class Analogy analyzing an artificial dataset and testing a real one, two hierarchical clustering and a principal component analysis, were performed. The multivariate analyses result simultaneously investigated all the variables highlighting cvs. Sylvia, Graffione nero Col di Mosso, Ferrovia, Mora della Punta, Bianchetta Nuchis and Sandra to be more similar to literature data of Ferrovia. This matrix index was a useful tool, to select the most commercial promising varieties.


Asunto(s)
Algoritmos , Prunus avium/clasificación , Antocianinas/análisis , Antioxidantes/química , Análisis por Conglomerados , Frutas/química , Frutas/metabolismo , Concentración de Iones de Hidrógeno , Italia , Molibdeno/química , Fenoles/análisis , Extractos Vegetales/química , Análisis de Componente Principal , Prunus avium/química , Prunus avium/metabolismo , Compuestos de Tungsteno/química
9.
Plant Physiol Biochem ; 144: 49-57, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31557639

RESUMEN

The impact of ultraviolet-C (UV-C) irradiation on sweet cherry fruit was studied. Following harvest, fruits (cv. Sweetheart) were exposed to different doses of UV-C (0, 1.2, 3.0 or 6.0 kJ m-2) and then cold stored (0 °C) for 10 days. Treatments with UV-C delayed most ripening features and reduced pitting symptoms, particularly following prolonged UV-C application. Also, application of the highest UV-C dose inhibited pectin degradation and delayed skin resistance to penetration. An activation of antioxidants capacity and bioactive compounds, such as flavonoids and phenolics was observed. Illumination with UV-C diminished respiration and altered metabolite profile in whole fruit and skin samples. Several amino acids (eg., threonine and aspartate), sugars, (eg., glucose and fructose) and alcohols (e.g., inositol and mannitol) were modulated by long-term UV-C treatment in whole cherry fruit. Various metabolites, including malate, galacturonate, oxoproline and glutamine were also modulated by UV-C skin tissue. These data enhance our understanding of UV-C function in fruit biology.


Asunto(s)
Frutas/metabolismo , Frutas/efectos de la radiación , Prunus avium/metabolismo , Prunus avium/efectos de la radiación , Rayos Ultravioleta , Metabolómica/métodos , Pectinas/metabolismo
10.
Food Chem ; 265: 260-273, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29884382

RESUMEN

Sour cherry (Prunus cerasus L.) is rich in polyphenols which are known to be protective agents against several diseases. Polyphenols are highly sensitive against temperature, pH, oxygen, and light conditions, leading to low bioaccessibility. In this study, polyphenols of sour cherry concentrate (SCC) were encapsulated by uniaxial or coaxial electrospinning with gelatin or gelatin-lactalbumin. Results showed that phenolic acids had higher encapsulation efficiencies than anthocyanins. Encapsulation efficiencies were found as 89.7 and 91.3% in terms of phenolic acids and 70.3 and 77.8% in terms of flavonoids for the uniaxially electrospun samples with gelatin and gelatin-lactalbumin, respectively. The content of polyphenols in SCC decreased after intestinal tract whereas all electrospun samples showed improved bioaccessibility. According to in vitro digestion results, electrospinning encapsulation provided 8 times better protection of cyanidin-3-glucoside compared to the non-encapsulated SCC. Results showed that especially coaxial electrospinning encapsulation is an effective method for sour cherry polyphenols.


Asunto(s)
Extractos Vegetales/química , Prunus avium/química , Cromatografía Líquida de Alta Presión , Composición de Medicamentos , Flavonoides/análisis , Gelatina/química , Lactalbúmina/química , Polifenoles/química , Prunus avium/metabolismo , Espectrofotometría , Viscosidad
11.
Food Chem ; 227: 404-412, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28274450

RESUMEN

The present work investigated the bioprotective capacities of red-fleshed sweet cherry cultivars (Prunus avium; Lapins, Stella, Sweetheart and Staccato), with distinct differences in anthocyanins and vitamin C contents, on human intestinal Caco-2 cells exposed to hydrogen peroxide (H2O2)-induced oxidative stress. Three assays of cell health, the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl-tetrazolium-bromide cell viability assay, the lactate dehydrogenase membrane leakage assay and nitric oxide production, were used to determine if these cherry digests differed in their ability to protect Caco-2 cells from H2O2. Cells treated with digests from cherries identified as containing high anthocyanins provided the greatest protection against H2O2. A strong linear correlation (-0.82

Asunto(s)
Antocianinas/análisis , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Prunus avium/química , Antocianinas/metabolismo , Ácido Ascórbico/análisis , Ácido Ascórbico/metabolismo , Células CACO-2 , Frutas/química , Frutas/metabolismo , Humanos , Extractos Vegetales/análisis , Prunus avium/metabolismo
12.
PLoS One ; 12(2): e0172818, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28245268

RESUMEN

To elucidate metabolism of ascorbic acid (AsA) in sweet cherry fruit (Prunus avium 'Hongdeng'), we quantified AsA concentration, cloned sequences involved in AsA metabolism and investigated their mRNA expression levels, and determined the activity levels of selected enzymes during fruit development and maturation. We found that AsA concentration was highest at the petal-fall period (0 days after anthesis) and decreased progressively during ripening, but with a slight increase at maturity. AsA did nevertheless continue to accumulate over time because of the increase in fruit fresh weight. Full-length cDNAs of 10 genes involved in the L-galactose pathway of AsA biosynthesis and 10 involved in recycling were obtained. Gene expression patterns of GDP-L-galactose phosphorylase (GGP2), L-galactono-1, 4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX3), ascorbate oxidase (AO2), glutathione reductase (GR1), and dehydroascorbate reductase (DHAR1) were in accordance with the AsA concentration pattern during fruit development, indicating that genes involved in ascorbic acid biosynthesis, degradation, and recycling worked in concert to regulate ascorbic acid accumulation in sweet cherry fruit.


Asunto(s)
Ácido Ascórbico/metabolismo , Frutas/metabolismo , Prunus avium/metabolismo , Ascorbato Oxidasa/genética , Ascorbato Oxidasa/metabolismo , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Hidratos de Carbono/fisiología , ADN Complementario/genética , Frutas/enzimología , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus avium/enzimología , Prunus avium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA