Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4698, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409467

RESUMEN

Erigeron annuus (EA), traditionally used to treat disorders such as diabetes and enteritis, contains a variety of chemicals, including caffeic acid, flavonoids, and coumarins, providing antifungal and antioxidative benefits. However, the ingredients of each part of the EA vary widely, and there are few reports on the functionality of water extracts in skin inflammation and barrier protection. We assessed the therapeutic properties of the extract of EA without roots (EEA) and its primary ingredient, pyromeconic acid (PA), focusing on their antihistamine, anti-inflammatory, and antioxidative capabilities using HMC-1(human mast cells) and human keratinocytes (HaCaT cells). Our findings revealed that histamine secretion, which is closely related to itching, was notably reduced in HMC-1 cells following pretreatment with EEA (0.1% and 0.2%) and PA (corresponding concentration, 4.7 of 9.4 µg/mL). Similarly, they led to a marked decrease in the levels of pro-inflammatory cytokines, including IL-1ß, IL-8, IL-6, and IFN-γ. Furthermore, EA and PA enhanced antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), reduced malondialdehyde (MDA) production, and showed reactive oxygen species (ROS) scavenging activity in HaCaT cells. Moreover, at the molecular level, elevated levels of the pro-inflammatory cytokines IL-1ß, IL-6, TARC, and MDC induced by TNF-α/IFN-γ in HaCaT cells were mitigated by treatment with EEA and PA. We also revealed the protective effects of EEA and PA against SDS-induced skin barrier dysfunction in HaCaT cells by enhancing the expression of barrier-related proteins. Using NanoString technology, a comprehensive analysis of gene expression changes indicated significant modulation of autoimmune and inflammatory genes by EEA and PA. In summary, this study suggests that EEA and the corresponding concentration of PA as an active ingredient have functional cosmetic applications to alleviate itching and improve skin health.


Asunto(s)
Cromonas , Erigeron , Humanos , Interleucina-6/metabolismo , Línea Celular , Antiinflamatorios/química , Citocinas/metabolismo , Queratinocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Extractos Vegetales/química , Prurito/metabolismo
2.
Biochem Biophys Res Commun ; 659: 72-79, 2023 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-37054505

RESUMEN

Itch and pain are two closely related sensations that receiving similar encodings at multiple levels. Accumulated evidences suggest that activation of the ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL)-to-lateral and ventrolateral periaqueductal gray (l/vlPAG) projections mediates the antinociceptive effects of bright light therapy. Clinical study showed that bright light therapy may ameliorate cholestasis-induced pruritus. However, the underlying mechanism and whether this circuit participates in itch modulation remains unclear. In this study, chloroquine and histamine were utilized to induce acute itch models in mice. Neuronal activities in vLGN/IGL nucleus were evaluated with c-fos immunostaining as well as fiber photometry. Optogenetic manipulations were performed to activate or inhibit GABAergic neurons in the vLGN/IGL nucleus. Our results showed that the expressions of c-fos in vLGN/IGL were significantly increased upon both chloroquine- and histamine-induced acute itch stimuli. GABAergic neurons in vLGN/IGL were activated during histamine and chloroquine-induced scratching. Optogenetic activation of the vLGN/IGL GABAergic neurons exerts antipruritic effect, while inhibiting these neurons exerts pruritic effect. Our results provide evidence that GABAergic neurons in vLGN/IGL nucleus might play a crucial role in modulating itch, which may provide clue for application of bright light as an antipruritic treatment in clinic.


Asunto(s)
Cuerpos Geniculados , Histamina , Ratones , Animales , Cuerpos Geniculados/metabolismo , Histamina/metabolismo , Antipruriginosos/metabolismo , Neuronas GABAérgicas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Prurito/terapia , Prurito/metabolismo
3.
J Invest Dermatol ; 143(1): 142-153.e10, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36049541

RESUMEN

Growing evidence indicates that transient receptor potential (TRP) channels contribute to different forms of pruritus. However, the endogenous mediators that cause itch through transient receptor potential channels signaling are poorly understood. In this study, we show that genetic deletion or pharmacological antagonism of TRPV4 attenuated itch in a mouse model of psoriasis induced by topical application of imiquimod. Human psoriatic lesions showed increased expression of several microRNAs, including the miR-203b-3p, which induced a calcium ion response in rodent dorsal root ganglion neurons and scratching behavior in mice through 5-HTR2B activation and the protein kinase C‒dependent phosphorylation of TRPV4. Computer simulation revealed that the miR-203b-3p core sequence (GUUAAGAA) that causes 5-HTR2B/TRPV4-dependent itch targets the extracellular side of 5-HTR2B by interacting with a portion of the receptor pocket consistent with its activation. Overall, we reveal the unconventional pathophysiological role of an extracellular microRNA that can behave as an itch promoter through 5-HTR2B and TRPV4.


Asunto(s)
MicroARNs , Prurito , Receptor de Serotonina 5-HT2B , Canales Catiónicos TRPV , Animales , Humanos , Ratones , Simulación por Computador , Ganglios Espinales , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Prurito/inducido químicamente , Prurito/genética , Prurito/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Receptor de Serotonina 5-HT2B/genética , Receptor de Serotonina 5-HT2B/metabolismo
4.
Biochem Pharmacol ; 208: 115368, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36493846

RESUMEN

Chronic itch is the most prominent feature of atopic dermatitis (AD), and antihistamine treatment is often less effective in reducing clinical pruritus severity in AD. Multiple studies have shown that histamine-independent itch pathway is thought to predominate in AD-induced chronic itch. Mas-related G-protein-coupled receptor (Mrgpr) A3+ sensory neurons have been identified as one of the major itch-sensing neuron populations, and transient receptor potential (TRP) channel A1 is the key downstream of MrgprA3-mediated histamine-independent itch. MrgprA3-TRPA1 signal pathway is necessary for the development of chronic itch and may be the potentially promising target of chronic itch in AD. Dictamnine is one of the main quinoline alkaloid components of Cortex Dictamni (a traditional Chinese medicine widely used in clinical treatment of skin diseases). However, the anti-inflammatory and anti-pruritic effect of dictamnine on AD have not been reported. In this study, we used the 2,4-dinitrofluorobenzene (DNFB)-induced AD mouse model to observe the scratching behavior, inflammatory manifestations, and to detect the expression of MrgprA3 and TRPA1 in skin and DRG. The data demonstrated that dictamnine effectively inhibited AD-induced chronic itch, inflammation symptoms, epidermal thickening, inflammatory cell infiltration, and downregulated the expression of MrgprA3 and TRPA1. Furthermore, dictamnine restrained the excitability of MrgprA3+ and TRPA1+ neurons. Molecular docking also indicated that dictamnine has better binding affinity with MrgprA3. These results suggest that dictamnine may inhibit chronic itch caused by AD through the MrgprA3-TRPA1 mediated histamine-independent itch pathway, and may have a potential utility in AD treatment.


Asunto(s)
Dermatitis Atópica , Quinolinas , Canales de Potencial de Receptor Transitorio , Ratones , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Dinitrofluorobenceno , Histamina/metabolismo , Simulación del Acoplamiento Molecular , Prurito/inducido químicamente , Prurito/tratamiento farmacológico , Prurito/metabolismo , Quinolinas/farmacología , Canales de Potencial de Receptor Transitorio/metabolismo , Células Receptoras Sensoriales , Receptores Acoplados a Proteínas G/metabolismo
5.
Brain Res ; 1789: 147950, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35618015

RESUMEN

Bombesin (BN) is an itch-specific mediator that causes intense itch-scratching activity in mammals. Although most examinations of BN-induced itch processing have focused on the spinal cord, the involvement of central nervous system mechanisms remains unclear. Here, we investigated how relationships among hypothalamic regions regulate BN-mediated itch-scratch processes. We found that intracerebroventricular (i.c.v.) administration of BN (0.04-4 µg) elicited intense itch scratching in mice, whereas BN (0.4-400 µg) administered via intravenous tail injection failed to evoke a scratching response. Additionally, nalfurafine had no significant effects on BN-induced scratching behavior, indicating that central modulation of BN is distinct from histamine-mediated histaminergic itch and chloroquine-mediated non-histaminergic itch signaling pathways. We labeled BN with a fluorescent tag, 7-nitrobenz-2-oxa-1 (NBD), and traced its fluorescence in the hypothalamus for 30 min following i.c.v. NBD-BN administration. Accordingly, we confirmed that i.c.v. administration of BN enhanced c-Fos expression in the dorsal medial nucleus of the hypothalamus, where neuromedin B receptors and gastrin-releasing peptide receptors are highly expressed. Interestingly, in situ injection of BN into the hypothalamus immediately and robustly induced itch-scratching behavior. Moreover, gene transcripts and western blot assay revealed that BN receptor-dependent PKA/CREB signaling was upregulated in the hypothalamus after i.c.v. administration of BN. Consistently, pretreatment with a PKA inhibitor, Rp-cAMP, significantly reduced BN-induced scratching behavior. Our results indicate that the dorsal medial nucleus of the hypothalamus may be a key nucleus in mediating BN-mediated itch and hypothalamic PKA/CREB signaling is involved in regulating BN-mediated itch.


Asunto(s)
Bombesina , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico , Hipotálamo , Animales , Bombesina/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ratones , Prurito/inducido químicamente , Prurito/metabolismo , Receptores de Bombesina/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Toxins (Basel) ; 13(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34678995

RESUMEN

Uremic pruritus is common among patients with advanced or end-stage renal disease, with an incidence of >40% among patients on dialysis. Uremic clearance granules (UCGs) are effective in managing uremic pruritus and delay the progression of chronic kidney disease. We conducted a systematic review and a meta-analysis to evaluate the efficacy of UCG in patients with uremic pruritus. Several electronic databases were searched systematically from their inceptions until 19 July 2021. Randomized control trials evaluating the efficacy of UCG in patients with uremic pruritus were selected. Eleven trials including 894 participants were published between 2011 and 2021. Patients administered UCGs had a significantly decreased visual analog scale score (mean difference [MD], -2.02; 95% confidence interval [CI], -2.17 to -1.88), serum levels of hsCRP (MD, -2.07 mg/dL; 95% CI, -2.89 to -1.25; p < 0.00001), TNF-α (MD, -15.23 mg/L; 95% CI, -20.00 to -10.47; p < 0.00001]), ß2-MG (MD, -10.18 mg/L; 95% CI, -15.43 to -4.93; p < 0.00001), and IL-6 (MD, -6.13 mg/L; 95% CI, -7.42 to -4.84; p < 0.00001). In addition, UCGs significantly reduced serum levels of creatinine, BUN, PTH, iPTH, phosphorus, and the overall effectiveness rate. UCGs could be an attractive complementary therapy for patients with uremic pruritus.


Asunto(s)
Prurito/metabolismo , Insuficiencia Renal Crónica/prevención & control , Uremia/metabolismo , Humanos , Prurito/sangre , Insuficiencia Renal Crónica/complicaciones
7.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 538-546, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33693534

RESUMEN

Peripheral inflammation is always accompanied by a noxious sensation, either pain or itch, providing a protective warning for the occurrence of pathological changes; however, the mechanisms determining whether pain, itch, or both will be elicited under certain inflammatory statuses are still far from clear. Complete Freund's adjuvant (CFA) contains heat killed and dried Mycobacterium tuberculosis widely used to induce inflammatory pain models, but how CFA treatment affects itch sensation and the possible mechanisms are still unclear. In this study, using itch behavior testing and calcium imaging, we showed that both the behaviors and calcium responses associated with Transient Receptor Potential Vanilloid 1 (TRPV1)-mediated histamine-dependent itch and Transient Receptor Potential Ankyrin 1 (TRPA1)-mediated histamine-independent itch were significantly suppressed by CFA treatment. Furthermore, to explore the possible cellular mechanisms, high-throughput single-cell RNA sequencing and real-time PCR were used to detect CFA-induced changes of itch-related genes in dorsal root ganglion (DRG) neurons. Our results revealed that although both nociceptive Trpv1+ and Trpa1+ DRG neurons were increased after CFA treatment, most known pruriceptors, including Hrh1+, Mrgpra3+, Mrgprd+, Htr3a+, Htr1f+, IL31ra+, Osmr+, and Lpar3+ DRG neurons, were significantly decreased, which may explain that CFA treatment caused itch suppression. This study indicated that itch sensation was affected after CFA treatment, although negatively, and comprehensive but not specific suppression of different pruriceptors was observed after CFA treatment, suggesting that a unified adaptive change of increased pain and decreased itch will occur simultaneously under CFA-induced inflammatory conditions.


Asunto(s)
Adyuvante de Freund/farmacocinética , Prurito/tratamiento farmacológico , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Masculino , Ratones , Prurito/metabolismo , Prurito/patología
8.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35008651

RESUMEN

The prevalence of atopic dermatitis (AD), a disease characterized by severe pruritus, immune imbalance, and skin barrier dysfunction, is rapidly increasing worldwide. Deacetylasperulosidic acid (DAA) has anti-atopic activity in the three main cell types associated with AD: keratinocytes, mast cells, and eosinophils. Our study investigated the anti-atopic activity of DAA in 2,4-dinitrochlorobenzene-induced NC/Nga mice. DAA alleviated the symptoms of AD, including infiltration of inflammatory cells (mast cells and eosinophils), epidermal thickness, ear thickness, and scratching behavior. Furthermore, DAA reduced serum IgE, histamine, and IgG1/IgG2a ratio and modulated the levels of AD-related cytokines and chemokines, namely interleukin (IL)-1ß, IL-4, IL-6, IL-9, IL-10, IL-12, tumor necrosis factor-α, interferon-γ, thymic stromal lymphopoietin, thymus and activation-regulated chemokine, macrophage-derived chemokine, and regulated on activation the normal T cell expressed and secreted in the serum. DAA restored immune balance by regulating gene expression and secretion of Th1-, Th2-, Th9-, Th17-, and Th22-mediated inflammatory factors in the dorsal skin and splenocytes and restored skin barrier function by increasing the expression of the pro-filaggrin gene and barrier-related proteins filaggrin, involucrin, and loricrin. These results suggest DAA as a potential therapeutic agent that can alleviate the symptoms of AD by reducing pruritus, modulating immune imbalance, and restoring skin barrier function.


Asunto(s)
Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dinitroclorobenceno/efectos adversos , Inmunidad/efectos de los fármacos , Extractos Vegetales/farmacología , Prurito/tratamiento farmacológico , Piel/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Quimiocinas/metabolismo , Dermatitis Atópica/metabolismo , Proteínas Filagrina/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Masculino , Mastocitos/efectos de los fármacos , Proteínas de la Membrana/farmacología , Ratones , Precursores de Proteínas/farmacología , Prurito/metabolismo , Piel/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
9.
Int J Mol Sci ; 21(11)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486523

RESUMEN

Atopic dermatitis (AD) is one of the most common skin diseases with inflammation, chronic relapses, and intense pruritus. Its pathogenesis includes genetic susceptibility, an abnormal epidermal lipid barrier, and an increased production of IgE due to immune dysregulation. Recently, AD has been reported to be associated with intestinal inflammation and dysbiosis in human and murine models. Various probiotics are being used to control intestinal dysbiosis and inflammatory reactions. However, it is difficult to predict or determine the therapeutic effects of the probiotics, since it is rare for clinicians to use the probiotics alone to treat AD. It is also difficult to check whether the intestinal inflammation in patients with AD has improved since probiotic treatment. The aim of the present study was to determine whether mice with induced atopic dermatitis had any changes in fecal calprotectin, an indicator of intestinal inflammation, after probiotic administration. Our results showed that the fecal calprotectin levels in mice with induced dermatitis decreased significantly after the administration of probiotics. In addition, epidermal skin lesions were attenuated and inflammatory-related cytokines were downregulated after the administration of probiotics in mice with induced dermatitis. These results suggest that changes in fecal calprotectin levels could be used to assess the effectiveness of a probiotic strain as an adjuvant treatment for AD.


Asunto(s)
Dermatitis Atópica/terapia , Inflamación/metabolismo , Complejo de Antígeno L1 de Leucocito/metabolismo , Probióticos/farmacología , Administración Oral , Animales , Citocinas/metabolismo , Dermatitis Atópica/microbiología , Modelos Animales de Enfermedad , Heces/química , Femenino , Microbioma Gastrointestinal , Ratones , Reacción en Cadena de la Polimerasa , Prurito/metabolismo , Recurrencia , Piel/metabolismo
10.
Nutrients ; 12(1)2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963703

RESUMEN

Morinda citrifolia, a fruit generally known as "Noni", has been traditionally used in parts of East Asia to relieve inflammatory diseases. Although several studies using noni have been reported, the effect of fermented Morinda citrifolia (F.NONI) on atopic dermatitis (AD) has not been investigated. Thus, we aimed to investigate the improving effect of F.NONI treatment on AD-like skin lesions and elucidate molecular mechanisms. F.NONI was prepared by the fermentation of noni fruit with probiotics and then extracted. F.NONI was orally administrated to NC/Nga mice to evaluate its therapeutic effect on 2,4-dinitrochlorobenzene (DNCB)-induced AD. Oral administration of F.NONI significantly alleviated AD lesions and symptoms such as dermatitis scores, ear thickness, scratching behavior, epidermal thickness, and infiltration of inflammatory cells (e.g., mast cells and eosinophils). In addition, F.NONI treatment reduced the levels of histamine, IgE and IgG1/IgG2a ratio, thymus and activation regulated chemokine (TARC), and thymic stromal lymphopoietin (TSLP) in serum and beneficially modulated the expressions of Th1, Th2, Th17, and Th22-mediated cytokines in lesioned skin and splenocytes. Furthermore, the expressions of the skin barrier-related proteins including filaggrin (FLG), loricrin (LOR), involucrin (IVL), zonula occludens-1 (ZO-1), and occludin (OCC) were restored by F.NONI treatment. Taken together, these results suggest that F.NONI could be a therapeutic agent to attenuate AD-like skin lesions through modulating the immune balance and skin barrier function.


Asunto(s)
Antiinflamatorios/farmacología , Dermatitis Atópica/prevención & control , Fermentación , Morinda , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Animales , Antiinflamatorios/aislamiento & purificación , Citocinas/sangre , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/inmunología , Dermatitis Atópica/metabolismo , Dinitroclorobenceno , Modelos Animales de Enfermedad , Proteínas Filagrina , Frutas , Histamina/sangre , Inmunoglobulina G/sangre , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ocludina/metabolismo , Extractos Vegetales/aislamiento & purificación , Precursores de Proteínas/metabolismo , Prurito/inducido químicamente , Prurito/inmunología , Prurito/metabolismo , Prurito/prevención & control , Piel/inmunología , Piel/metabolismo , Piel/patología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
11.
J Cutan Med Surg ; 23(5): 528-536, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31167547

RESUMEN

Itch treatment is a major challenge in the dermatologist's practice. We encounter patients suffering from pruritus on a regular basis, and often lack diverse treatment options to adequately respond to the patients' needs. In the last 20 years, novel pathways have been investigated that were beyond the scope of histamine. Although most did not result in a molecule available on the Canadian market, it is interesting and important as health care providers to stay up to date with new neuronal pathways involved in itch transmission and potential new therapeutic options. In this review, we will discuss pathways targeted in new topical treatments such as antagonist of proteinase-activated receptor-2, the endocannabinoid system, neurotrophins and tropomyosin-related kinase A receptor, the transient receptor potential-vanilloid or transient receptor potential-melastatine ion channels. New systemic therapies are now focusing on antagonizing the neurokinin receptor, modulating the opioidergic system, or targeting itch cytokines such as interleukin-31.


Asunto(s)
Antagonistas de Narcóticos/uso terapéutico , Prurito/tratamiento farmacológico , Prurito/metabolismo , Administración Cutánea , Animales , Aprepitant/uso terapéutico , Capsaicina/administración & dosificación , Endocannabinoides/administración & dosificación , Humanos , Interleucinas/antagonistas & inhibidores , Interleucinas/metabolismo , Mentol/administración & dosificación , Factor de Crecimiento Nervioso/antagonistas & inhibidores , Antagonistas del Receptor de Neuroquinina-1/uso terapéutico , Polidocanol/administración & dosificación , Receptor PAR-2/antagonistas & inhibidores , Receptor trkA/antagonistas & inhibidores , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPV/agonistas
12.
Nutrients ; 11(6)2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216667

RESUMEN

With a complex etiology involving multiple factors, the condition known as itch is a primary symptom of many skin diseases. Current treatment methods are ineffective for addressing itches caused by dry skin, for example. We developed a botanical extract, ACTPER, made from a mixture of Actinidia arguta and Perilla frutescens, which have traditionally been used to treat itch. The quality of ACTPER as a research agent was controlled in our experiment by cell-based bioassays, as well as by high-performance liquid chromatography (HPLC), using two chemical markers. In the acetone-induced dry skin mice model, the oral administration of ACTPER alleviated dry skin-related skin properties and itching behavior. The RNA and protein expression of the filament aggregating protein (filaggrin) gene, a key factor involved in the regulation of skin barrier function, was significantly increased, as measured by quantitative reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence assay. To understand the underlying mechanism(s) at the molecular level, HaCaT cells, a human keratinocyte-derived cell line, were treated with various concentrations of ACTPER. We found that the protein expression of filaggrin was indeed upregulated by ACTPER in a dose dependent manner. Data from experiments involving the reporter plasmid containing the xenobiotic response element (XRE), and the chemical antagonist for the aryl hydrocarbon receptor (AhR), indicated that the ACTPER-mediated upregulation of filaggrin was controlled through the activation of the AhR signaling pathway. The molecular docking simulation study predicted that ACTPER might contain chemical compounds that bind directly to AhR. Taken together, our results suggest that ACTPER may provide the platform, based upon which a variety of safe and effective therapeutic agents can be developed to treat itch.


Asunto(s)
Actinidia/química , Proteínas de Filamentos Intermediarios/metabolismo , Perilla frutescens/química , Extractos Vegetales/farmacología , Prurito/tratamiento farmacológico , Animales , Línea Celular , Proteínas Filagrina , Humanos , Queratinocitos , Ratones , Simulación del Acoplamiento Molecular , Prurito/metabolismo , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Piel/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Agua
13.
Neuroreport ; 30(5): 331-337, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30822282

RESUMEN

Pruritus is one of the common side effects of intrathecal or epidural injection of opioids. The aim of this study was to test the antipruritic effect of acupuncture and its possible mechanism. We used electroacupuncture (EA), toll-like receptor (TLR)2/4 antagonist sparstolonin B (SsnB), and TLR2/4 agonist peptidoglycan (PGN) to precondition female wild-type BALB/c mice, and then prepared a morphine-induced pruritus model. The mRNA and protein expression levels of TLR2, TLR4, MyD88, and NF-κB were detected by RT-PCR and western blotting. The contents of interleukin (IL)-1, IL-6, IL-12, IL-10, and tumor necrosis factor-α in serum were measured by ELISA assays. Flow cytometry was performed to analyze the ratio of M1-phenotype to M2-phenotype macrophages. Our results showed that EA preconditioning improved pruritus; reduced the expressions of TLR2, TLR4, MyD88, and NF-κB both at the mRNA and protein levels (P<0.05); reduced the expression of proinflammatory cytokines IL-1, IL-6, IL-12, and tumor necrosis factor-α; and increased the expression of anti-inflammatory cytokine IL-10 (P<0.05). EA promoted M2-phenotype macrophage differentiation. Moreover, these results showed no significant difference between the SsnB group and the EA+SsnB group (P>0.05), but showed a significant difference between the PGN group and the EA+PGN group (P<0.05). Therefore, we propose that EA may be involved in the remission of pruritus in morphine-induced pruritus model mice through the TLR2/4-MyD88-NF-κB pathway. EA is a potential therapeutic treatment for pruritus.


Asunto(s)
Analgésicos Opioides/toxicidad , Electroacupuntura , Morfina/toxicidad , Prurito/inducido químicamente , Prurito/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 2/metabolismo
14.
Mol Pharmacol ; 94(4): 1164-1173, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30108138

RESUMEN

Coumarin osthole is a dominant bioactive ingredient of the natural Cnidium monnieri plant commonly used for traditional Chinese herbal medicines for therapies and treatments including antipruritus and antidermatitis. However, the molecular mechanism underlying the action of osthole remains unclear. In this study, we report that osthole exerts an antipruritic effect through selective inhibition of Ca2+-permeable and thermosensitive transient receptor potential vanilloid 3 (TRPV3) cation channels that are primarily expressed in the keratinocytes of the skin. Coumarin osthole was identified as an inhibitor of TRPV3 channels transiently expressed in HEK293 cells in a calcium fluorescent assay. Inhibition of the TRPV3 current by osthole and its selectivity were further confirmed by whole-cell patch clamp recordings of TRPV3-expressing HEK293 cells and mouse primary cultured keratinocytes. Behavioral evaluation demonstrated that inhibition of TRPV3 by osthole or silencing by knockout of the TRPV3 gene significantly reduced the scratching induced by either acetone-ether-water or histamine in localized rostral neck skin in mice. Taken together, our findings provide a molecular basis for use of natural coumarin osthole from the C. monnieri plant in antipruritic or skin care therapy, thus establishing a significant role of the TRPV3 channel in chronic itch signaling or acute histamine-dependent itch sensation.


Asunto(s)
Antipruriginosos/farmacología , Cumarinas/farmacología , Prurito/tratamiento farmacológico , Piel/efectos de los fármacos , Piel/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Animales , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular , Células HEK293 , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prurito/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Acta Derm Venereol ; 98(9): 855-861, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29972224

RESUMEN

Skin thermal changes modulate itch sensitivity. However, the mechanisms of this modulation are still unclear. Using mouse models of acute and chronic itch, we investigated whether local innocuous thermal stimulation of the skin alters itch sensitivity and if blockade of thermosensitive transient receptor potential (TRP) channels can reduce these changes. Localized thermal changes were achieved by placing a thermal probe in contact with the back skin for 30 s. Warming the skin significantly increased serotonin-evoked scratching and spontaneous scratching in the ovalbumin model of atopic dermatitis but decreased histamine-evoked scratching. These changes were blocked by a TRPV4 antagonist. Cooling the skin significantly increased serotonin-evoked scratching but reduced histamine-evoked scratching. The increase in serotonin-evoked scratching, but not the reduction of histamine-evoked scratching, was blocked by TRPM8 antagonism. Chloroquine-evoked scratching was unaffected by either warming or cooling. Our data indicate that different itch signaling pathways are differentially modulated by skin thermal changes.


Asunto(s)
Dermatitis Atópica/prevención & control , Hipertermia Inducida , Hipotermia Inducida , Prurito/prevención & control , Piel/irrigación sanguínea , Animales , Antipruriginosos/farmacología , Regulación de la Temperatura Corporal , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/metabolismo , Dermatitis Atópica/fisiopatología , Modelos Animales de Enfermedad , Histamina , Masculino , Ratones Endogámicos C57BL , Ovalbúmina , Prurito/inducido químicamente , Prurito/metabolismo , Prurito/fisiopatología , Flujo Sanguíneo Regional , Serotonina , Piel/efectos de los fármacos , Piel/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo
16.
Biomed Res Int ; 2018: 9625936, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29850592

RESUMEN

Pruritus, the most common cutaneous symptom, is widely seen in many skin complaints. It is an uncomfortable feeling on the skin and sometimes impairs patients' quality of life. At present, the specific mechanism of pruritus still remains unclear. Antihistamines, which are usually used to relieve pruritus, ineffectively work in some patients with itching. Recent evidence has suggested that, apart from histamine, many mediators and signaling pathways are involved in the pathogenesis of pruritus. Various therapeutic options for itching correspondingly have been developed. In this review, we summarize the updated pathogenesis and therapeutic strategies for pruritus.


Asunto(s)
Prurito/patología , Prurito/terapia , Humanos , Medicina Tradicional China , Prurito/clasificación , Prurito/metabolismo , Transducción de Señal
17.
Acta Pharmacol Sin ; 39(5): 770-773, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29542680

RESUMEN

In this brief review we summarize the current fndings relative to the discovery of a small peptide ligand, phoenixin (PNX). Using a bioinformatic approach, two novel peptides PNX-14 and PNX-20 containing 14 and 20 amino acids, respectively, were isolated from diverse tissues including the brain, heart, lung and stomach. Mass spectrometry analysis identified a major and minor peak corresponding to PNX-14 and PNX-20, in rat or mouse spinal cord extracts. With the use of a rabbit polyclonal antiserum, phoenixin immunoreactivity (irPNX) was detected in discrete areas of the rodent brain including several hypothalamic subnuclei and dorsal motor nucleus of the vagus. In addition, irPNX was detected in a population of sensory ganglion cells including dorsal root ganglion, nodose ganglion and trigeminal ganglion, and in cell processes densely distributed to the superficial layers of the dorsal horn, nucleus of the solitary tract and spinal trigeminal tract. irPNX cell processes were also detected in the skin and myenteric plexus, suggesting a brain-gut and/or brain-skin connection. Pharmacological studies show that PNX-14 injected subcutaneously to the nape of the neck of mice provoked dose-dependent repetitive scratching bouts directed to the back of the neck with the hindpaws. Our result suggests that the peptide PNX-14 and/or PNX-20, may serve as one of the endogenous signal molecules transducing itch sensation. Additionally, results from other laboratories show that exogenous PNX may affect a number of diverse behaviors such as memory formation, depression, reproduction, food-intake and anxiolytic-like behaviors.


Asunto(s)
Hormonas Hipotalámicas/fisiología , Hormonas Peptídicas/fisiología , Péptidos/fisiología , Secuencia de Aminoácidos , Animales , Humanos , Hormonas Hipotalámicas/administración & dosificación , Hormonas Hipotalámicas/química , Hipotálamo/metabolismo , Memoria/fisiología , Plexo Mientérico/metabolismo , Hormonas Peptídicas/administración & dosificación , Hormonas Peptídicas/química , Péptidos/administración & dosificación , Péptidos/química , Prurito/metabolismo , Médula Espinal/metabolismo
18.
eNeuro ; 5(6)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30627644

RESUMEN

BDNF is a critical contributor to neuronal growth, development, learning, and memory. Although extensively studied in the brain, BDNF is also expressed by primary afferent sensory neurons in the peripheral nervous system. Unfortunately, anatomical and functional studies of primary afferent-derived BDNF have been limited by the availability of appropriate molecular tools. Here, we used targeted, inducible molecular approaches to characterize the expression pattern of primary afferent BDNF and the extent to which it contributes to a variety of pain and itch behaviors. Using a BDNF-LacZ reporter mouse, we found that BDNF is expressed primarily by myelinated primary afferents and has limited overlap with the major peptidergic and non-peptidergic subclasses of nociceptors and pruritoceptors. We also observed extensive neuronal, but not glial, expression in the spinal cord dorsal horn. In addition, because BDNF null mice are not viable and even Cre-mediated deletion of BDNF from sensory neurons could have developmental consequences, here we deleted BDNF selectively from sensory neurons, in the adult, using an advillin-Cre-ER line crossed to floxed BDNF mice. We found that BDNF deletion in the adult altered few itch or acute and chronic pain behaviors, beyond sexually dimorphic phenotypes in the tail immersion, histamine, and formalin tests. Based on the anatomical distribution of sensory neuron-derived BDNF and its limited contribution to pain and itch processing, we suggest that future studies of primary afferent-derived BDNF should examine behaviors evoked by activation of myelinated primary afferents.


Asunto(s)
Vías Aferentes/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Regulación de la Expresión Génica/fisiología , Fibras Nerviosas Mielínicas/metabolismo , Dolor/metabolismo , Prurito/metabolismo , Animales , Antineoplásicos Fitogénicos/toxicidad , Factor Neurotrófico Derivado del Encéfalo/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Adyuvante de Freund/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Genotipo , Histamina/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Paclitaxel/toxicidad , Dolor/inducido químicamente , Dimensión del Dolor , Prurito/inducido químicamente
19.
Molecules ; 22(9)2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28869563

RESUMEN

Radix Sophorae Flavescentis (RSF) and Fructus Cnidii (FC) compose a typical herbal synergic pair in traditional Chinese medicine (TCM) for pruritus symptom treatments. The mechanisms of action for the synergy are not understood. This paper aims at predicting the anti-pruritus targets and the main active ingredients for the RSF and FC herbal pair. We demonstrate that the RSF-FC herbal pair can be elucidated by mining the chemical structures of compounds derived from RSF and FC. Based on chemical structure data, the putative targets for RSF and FC were predicted. Additional putative targets that interact with the anti-pruritus targets were derived by mapping the putative targets onto a PPI network. By examining the annotations of these proteins, we conclude that (1) RSF's active compounds are mainly alkaloids and flavonoids. The representative putative targets of the alkaloids are inflammation-related proteins (MAPK14, PTGS2, PTGS2, and F2) and pruritus-related proteins (HRH1, TRPA1, HTR3A, and HTR6). The representative putative targets of the flavonoids are inflammation-related proteins (TNF, NF-κB, F2, PTGS2, and PTGS2) and pruritus-related proteins (NR3C1 and IL2). (2) FC's active compounds are mainly coumarins. Their representative putative targets are CNS-related proteins (AChE and OPRK1) and inflammation-related proteins (PDE4D, TLR9, and NF-κB). (3) Both RSF and FC display anti-inflammatory effects, though they exhibit their anti-pruritus effects in different ways. Their synergy shows that RSF regulates inflammation-related pruritus and FC regulates CNS-related pruritus.


Asunto(s)
Antipruriginosos/farmacología , Medicamentos Herbarios Chinos/farmacología , Prurito/tratamiento farmacológico , Alcaloides/química , Alcaloides/farmacología , Alcaloides/uso terapéutico , Antipruriginosos/química , Antipruriginosos/uso terapéutico , Cumarinas/química , Sinergismo Farmacológico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Flavonoides/química , Flavonoides/farmacología , Flavonoides/uso terapéutico , Humanos , Estructura Molecular , Prurito/metabolismo , Relación Estructura-Actividad
20.
Brain Behav Immun ; 61: 165-175, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27865948

RESUMEN

Pruritus is the major symptom of ocular allergy but currently available treatments are often ineffective. Previous studies demonstrated that subpopulations of primary sensory neurons express Fc receptors and may contribute to antigen-specific pain. We investigated the role of neuronal Fc-epsilon Receptor I (FcεRI) in allergic ocular pruritus. Ovalbumin (OVA) was used as allergen together with alum adjuvant (OVA+alum) to produce a mouse model of ocular allergy with a significant elevation in the serum levels of both antigen-specific IgE and IgG. Mice sensitized by OVA without alum only induced elevation of serum IgG but not IgE. Scratching behavior toward the eyes with the hindlimb was used as an indicator of ocular itch. Topical OVA challenging to the eye dose-dependently induced scratching toward the eye in the OVA+alum sensitized mice, but not those sensitized by OVA only. The antigen-induced scratching was largely abolished by topical application of the blocking antibody to FcεRIα, but was only partially alleviated by pretreatment of mast cell stabilizer or histamine I receptor antagonist. The expression of FcεRI was detected in subpopulations of trigeminal ganglion (TG) neurons including those expressing pruriceptive markers and innervating the conjunctiva in the naïve mice. Moreover, FcεRI was found significantly upregulated in small-sized TG neurons in the OVA+alum sensitized mice. In acutely dissociated TG neurons, IgE-immune complex (IC), but not the antibody or antigen alone, induced intracellular calcium increase. The neuronal responses to IgE-IC could be specifically blocked by pre-application of a siRNA for FcεRIα. Our results indicate that FcεRI expressed on peripheral nociceptive neurons in the TG may be directly activated by IgE-IC and contribute to allergic ocular pruritus. This study may suggest a novel mechanism for the development of pathological itch in allergic diseases.


Asunto(s)
Oftalmopatías/metabolismo , Hipersensibilidad/metabolismo , Neuronas/metabolismo , Prurito/metabolismo , Receptores de IgE/metabolismo , Compuestos de Alumbre , Animales , Modelos Animales de Enfermedad , Oftalmopatías/inmunología , Hipersensibilidad/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Neuronas/inmunología , Ovalbúmina , Prurito/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA