Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Tipo del documento
Intervalo de año de publicación
1.
Plant Sci ; 342: 112028, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38360401

RESUMEN

Iron (Fe) and phosphate (Pi) are two essential nutrients that are poorly available in the soil and should be supplemented either as fertilizers or organic amendments to sustain crop production. Currently, determining how rhizosphere bacteria contribute to plant mineral nutrient acquisition is an area of growing interest regarding its potential application in agriculture. The aim of this study was to investigate the influence of root colonization by Pseudomonas putida for Arabidopsis growth through Fe and Pi nutritional signaling. We found that root colonization by the bacterium inhibits primary root elongation and promotes the formation of lateral roots. These effects could be related to higher expression of two Pi starvation-induced genes and AtPT1, the major Pi transporter in root tips. In addition, P. putida influenced the accumulation of Fe in the root and the expression of different elements of the Fe uptake pathway. The loss of function of the protein ligase BRUTUS (BTS), and the bHLH transcription factors POPEYE (PYE) and IAA-LEUCINE RESISTANT3 (ILR3) compromised the root branching stimulation triggered by bacterial inoculation while the leaf chlorosis in the fit1 and irt1-1 mutant plants grown under standard conditions could be bypassed by P. putida inoculation. The WT and both mutant lines showed similar Fe accumulation in roots. P. putida repressed the expression of the IRON-REGULATED TRANSPORTER 1 (IRT1) gene suggesting that the bacterium promotes an alternative Fe uptake mechanism. These results open the door for the use of P. putida to enhance nutrient uptake and optimize fertilizer usage by plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas putida , Arabidopsis/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Fosfatos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Microb Biotechnol ; 16(5): 931-946, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36682039

RESUMEN

The soil bacterium Pseudomonas putida KT2440 has been shown to produce selenium nanoparticles aerobically from selenite; however, the molecular actors involved in this process are unknown. Here, through a combination of genetic and analytical techniques, we report the first insights into selenite metabolism in this bacterium. Our results suggest that the reduction of selenite occurs through an interconnected metabolic network involving central metabolic reactions, sulphur metabolism, and the response to oxidative stress. Genes such as sucA, D2HGDH and PP_3148 revealed that the 2-ketoglutarate and glutamate metabolism is important to convert selenite into selenium. On the other hand, mutations affecting the activity of the sulphite reductase decreased the bacteria's ability to transform selenite. Other genes related to sulphur metabolism (ssuEF, sfnCE, sqrR, sqr and pdo2) and stress response (gqr, lsfA, ahpCF and sadI) were also identified as involved in selenite transformation. Interestingly, suppression of genes sqrR, sqr and pdo2 resulted in the production of selenium nanoparticles at a higher rate than the wild-type strain, which is of biotechnological interest. The data provided in this study brings us closer to understanding the metabolism of selenium in bacteria and offers new targets for the development of biotechnological tools for the production of selenium nanoparticles.


Asunto(s)
Nanopartículas , Pseudomonas putida , Selenio , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Selenio/metabolismo , Nanopartículas/metabolismo , Ácido Selenioso/metabolismo , Estrés Oxidativo , Azufre/metabolismo
3.
ACS Synth Biol ; 11(10): 3216-3227, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130255

RESUMEN

Engineered microbes can be used for producing value-added chemicals from renewable feedstocks, relieving the dependency on nonrenewable resources such as petroleum. These microbes often are composed of synthetic metabolic pathways; however, one major problem in establishing a synthetic pathway is the challenge of precisely controlling competing metabolic routes, some of which could be crucial for fitness and survival. While traditional gene deletion and/or coarse overexpression approaches do not provide precise regulation, cis-repressors (CRs) are RNA-based regulatory elements that can control the production levels of a particular protein in a tunable manner. Here, we describe a protocol for a generally applicable fluorescence-activated cell sorting technique used to isolate eight subpopulations of CRs from a semidegenerate library in Escherichia coli, followed by deep sequencing that permitted the identification of 15 individual CRs with a broad range of protein production profiles. Using these new CRs, we demonstrated a change in production levels of a fluorescent reporter by over two orders of magnitude and further showed that these CRs are easily ported from E. coli to Pseudomonas putida. We next used four CRs to tune the production of the enzyme PpsA, involved in pyruvate to phosphoenolpyruvate (PEP) conversion, to alter the pool of PEP that feeds into the shikimate pathway. In an engineered P. putida strain, where carbon flux in the shikimate pathway is diverted to the synthesis of the commodity chemical cis,cis-muconate, we found that tuning PpsA translation levels increased the overall titer of muconate. Therefore, CRs provide an approach to precisely tune protein levels in metabolic pathways and will be an important tool for other metabolic engineering efforts.


Asunto(s)
Petróleo , Pseudomonas putida , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfoenolpiruvato/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ingeniería Metabólica , Ácido Pirúvico/metabolismo , Genómica , ARN/metabolismo , Petróleo/metabolismo
4.
Microb Cell Fact ; 21(1): 156, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35934698

RESUMEN

The inclusion of biosafety strategies into strain engineering pipelines is crucial for safe-by-design biobased processes. This in turn might enable a more rapid regulatory acceptance of bioengineered organisms in both industrial and environmental applications. For this reason, we equipped the industrially relevant microbial chassis Pseudomonas putida KT2440 with an effective biocontainment strategy based on a synthetic dependency on phosphite, which is generally not readily available in the environment. The produced PSAG-9 strain was first engineered to assimilate phosphite through the genome-integration of a phosphite dehydrogenase and a phosphite-specific transport complex. Subsequently, to deter the strain from growing on naturally assimilated phosphate, all native genes related to its transport were identified and deleted generating a strain unable to grow on media containing any phosphorous source other than phosphite. PSAG-9 exhibited fitness levels with phosphite similar to those of the wild type with phosphate, and low levels of escape frequency. Beyond biosafety, this strategy endowed P. putida with the capacity to be cultured under non-sterile conditions using phosphite as the sole phosphorous source with a reduced risk of contamination by other microbes, while displaying enhanced NADH regenerative capacity. These industrially beneficial features complement the metabolic advantages for which this species is known for, thereby strengthening it as a synthetic biology chassis with potential uses in industry, with suitability towards environmental release.


Asunto(s)
Fosfitos , Pseudomonas putida , Ingeniería Metabólica , Fosfatos/metabolismo , Fosfitos/metabolismo , Fósforo/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Biología Sintética
5.
J Biotechnol ; 353: 51-60, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35691257

RESUMEN

Adhatoda vasica is used in the treatment of cold, cough, chronic bronchitis, asthma, diarrhea, and dysentery. The biological activities of this species are attributed with the presence of alkaloids, triterpenoids, and flavonoids. Agrobacterium rhizogenes-mediated transformation of A. vasica, produces pyrroloquinazoline alkaloids, was achieved by infecting leaf discs with strain ATCC15834. The bacterial strain infected 82.7% leaf discs and 5-7 hairy root initials were developed from the cut edges of leaf discs. In this study, seven strains of Azotobacter chroococcum and five strains of Pseudomonas putida were used for the biotization of hairy roots. Plant growth-promoting rhizobacteria (PGPR) develops symbiotic association with roots of plants and increases the growth parameters of plants. PGPR (A. chroococcum and P. putida) increased the profiles of nitrogenase and acid phosphatase enzymes, biomass, dry matter contents, anthranilate synthase activity and accumulation of pyrroloquizoline alkaloids in the biotized hairy roots. Both enzymes (nitrogenase and acid phosphatase) maintain sufficient supply of nitrogen and dissolved phosphorus to the cells of hairy roots therefore, the levels of anthranilate synthase activity and pyrroloquinazoline alkaloids are increased. Total seven pyrroloquinazoline alkaloids (vasicine, vasicinone, vasicine acetate, 2-acetyl benzyl amine, vasicinolone, deoxyvasicine and vasicol) were identified from the biotized hairy roots of A. vasica. In our study, biotization increased the profiles of pyrroloquinazoline alkaloids therefore, this strategy may be used in increasing the production of medicinally important secondary metabolites in other plant species also. Our hypothetical model demonstrates that P. putida cell surface receptors receive root exudates by attaching on hairy roots. After attachment, the bacterial strain penetrates in the biotized hairy roots. This endophytic interaction stimulates acid phosphatase activity in the cells of biotized hairy roots. The P. putida plasmid gene (ppp1) expression led to the synthesis of acid phosphatase in cytosol. The enzyme enhances phosphorus availability as well as induces the formation of phosphoribosyl diphosphate. Later, phosphoribosyl diphosphate metabolizes to tryptophan and finally tryptophan converts to anthranilic acid. The synthesized anthranilic acid used in the synthesis of alkaloids in A. vasica.


Asunto(s)
Alcaloides , Género Justicia , Pseudomonas putida , Fosfatasa Ácida/metabolismo , Alcaloides/metabolismo , Alcaloides/farmacología , Antranilato Sintasa/genética , Antranilato Sintasa/metabolismo , Azotobacter , Difosfatos/metabolismo , Nitrogenasa/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Pseudomonas putida/genética , Triptófano/metabolismo
6.
Environ Microbiol ; 24(4): 1902-1917, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35229442

RESUMEN

Bacteria possess various regulatory mechanisms to detect and coordinate a response to elemental nutrient limitation. In pseudomonads, the two-component system regulators CbrAB, NtrBC and PhoBR, are responsible for regulating cellular response to carbon (C), nitrogen (N) and phosphorus (P) respectively. Phosphonates are reduced organophosphorus compounds produced by a broad range of biota and typified by a direct C-P bond. Numerous pseudomonads can use the environmentally abundant phosphonate species 2-aminoethylphosphonate (2AEP) as a source of C, N, or P, but only PhoBR has been shown to play a role in 2AEP utilization. On the other hand, utilization of 2AEP as a C and N source is considered substrate inducible. Here, using the plant-growth-promoting rhizobacterium Pseudomonas putida BIRD-1 we present evidence that 2AEP utilization is under dual regulation and only occurs upon depletion of C, N, or P, controlled by CbrAB, NtrBC, or PhoBR respectively. However, the presence of 2AEP was necessary for full gene expression, i.e. expression was substrate inducible. Mutation of a LysR-type regulator, termed AepR, upstream of the 2AEP transaminase-phosphonatase system (PhnWX), confirmed this dual regulatory mechanism. To our knowledge, this is the first study identifying coordination between global stress response and substrate-specific regulators in phosphonate metabolism.


Asunto(s)
Organofosfonatos , Pseudomonas putida , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Organofosfonatos/metabolismo , Fósforo/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
7.
Microbiologyopen ; 9(10): e1110, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32979040

RESUMEN

Directed enzyme prodrug therapy (DEPT) is a cancer chemotherapy strategy in which bacterial enzymes are delivered to a cancer site before prodrug administration, resulting in prodrug activation at the cancer site and more localized treatment. A major limitation to DEPT is the poor effectiveness of the most studied enzyme for the CB1954 prodrug, NfnB from Escherichia coli, at concentrations suitable for human use. Much research into finding alternative enzymes to NfnB has resulted in the identification of the Xenobiotic reductases, XenA and XenB, which have been shown in the literature to reduce environmentally polluting nitro-compounds. In this study, they were assessed for their potential use in cancer prodrug therapy strategies. Both proteins were cloned into the pET28a+ expression vector to give the genetically modified proteins XenA-his and XenB-his, of which only XenB-his was active when tested with CB1954. XenB-his was further modified to include a cysteine-tag to facilitate direct immobilization on to a gold surface for future magnetic nanoparticle DEPT (MNDEPT) treatments and was named XenB-cys. When tested using high-performance liquid chromatography (HPLC), XenB-his and XenB-cys both demonstrated a preference for reducing CB1954 at the 4-nitro position. Furthermore, XenB-his and XenB-cys successfully induced cell death in SK-OV-3 cells when combined with CB1954. This led to XenB-cys being identified as a promising candidate for use in future MNDEPT treatments.


Asunto(s)
Antineoplásicos/química , Proteínas Bacterianas/química , Flavoproteínas/química , Nanopartículas de Magnetita/química , Oxidorreductasas/química , Pseudomonas putida/enzimología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Flavoproteínas/genética , Flavoproteínas/metabolismo , Flavoproteínas/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/farmacología , Profármacos/química , Profármacos/metabolismo , Profármacos/farmacología , Pseudomonas putida/química , Pseudomonas putida/genética
8.
Int J Biol Macromol ; 164: 1600-1607, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32768477

RESUMEN

The acyl-CoA dehydrogenase (FadE) and (R)-specific enoyl-CoA hydratase (PhaJ) are functionally related to the degradation of fatty acids and the synthesis of polyhydroxyalkanoates (PHAs). To verify this, a recombinant Cupriavidus necator H16 harboring the plasmid -pMPJAS03- with fadE from Escherichia coli strain K12 and phaJ1 from Pseudomonas putida strain KT2440 under the arabinose promoter (araC-PBAD) was constructed. The impact of co-expressing fadE and phaJ genes on C. necator H16/pMPJAS03 maintaining the wild-type synthase on short-chain-length/medium-chain-length PHA formation from canola or avocado oil at different arabinose concentrations was investigated. The functional activity of fadEE.c led to obtaining higher biomass and PHA concentrations compared to the cultures without expressing the gene. While high transcriptional levels of phaJ1P.p, at 0.1% of arabinose, aid the wild-type synthase to polymerize larger-side chain monomers, such as 3-Hydroxyoctanoate (3HO) and 3-Hydroxydecanoate (3HD). The presence of even small amounts of 3HO and 3HD in the co-polymers significantly depresses the melting temperature of the polymers, compared to those composed of pure 3-hydroxybutyrate (3HB). Our data presents supporting evidence that the synthesis of larger-side chain monomers by the recombinant strain relies not only upon the affinity of the wild-type synthase but also on the functionality of the intermediate supplying enzymes.


Asunto(s)
Acil-CoA Deshidrogenasa/genética , Cupriavidus necator/genética , Enoil-CoA Hidratasa/genética , Aceites de Plantas/metabolismo , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/genética , Acil-CoA Deshidrogenasa/metabolismo , Arabinosa/genética , Arabinosa/metabolismo , Caprilatos/metabolismo , Cupriavidus necator/metabolismo , Ácidos Decanoicos/metabolismo , Enoil-CoA Hidratasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Hidroxibutiratos/metabolismo , Plásmidos/genética , Polihidroxialcanoatos/metabolismo , Regiones Promotoras Genéticas/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Transcripción Genética/genética
9.
J Biosci Bioeng ; 130(1): 71-75, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32238321

RESUMEN

Lignosulfonate is a by-product of the cooking process by sulfite pulping for paper manufacturing. The treatment of wood chips by various salts of sulfurous acid solubilizes lignin to produce a cellulose-rich wood pulp. Developing a technique for the conversion of lignosulfonate by-product to high value materials has an important industrial utility. Sphingobium sp. strain SYK-6, which was isolated from pulping wastewater, is one of the best enzymatically or genetically characterized bacteria for degrading lignin-derived aromatics. We have previously established a system for the production of 2-pyrone-4,6-dicarboxylic acid (PDC), a novel platform chemical that can produce a variety of bio-based polymers, by introducing of ligA, ligB, and ligC genes from SYK-6 into a mutant strain of Pseudomonas putida PpY1100. In this study, extracts from lignosulfonates, which were desulphonated and depolymerized by alkaline oxidation, were evaluated as substrates for microbiological conversion to PDC by the transgenic bacteria.


Asunto(s)
Lignina/metabolismo , Extractos Vegetales/metabolismo , Pseudomonas putida/metabolismo , Pironas/metabolismo , Sphingomonadaceae/metabolismo , Celulosa/metabolismo , Ácidos Dicarboxílicos/metabolismo , Pseudomonas putida/genética , Sphingomonadaceae/genética , Residuos/análisis
10.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30097438

RESUMEN

Many proteobacteria harbor FinR homologues in their genomes as putative LysR-type proteins; however, the function of FinR is poorly studied except in the induction of fpr-1 under superoxide stress conditions in Pseudomonas putida and Pseudomonas aeruginosa Here, by analyzing the influence of finR deletion on the transcriptomic profile of P. putida KT2440 through RNA sequencing and real-time quantitative PCR (RT-qPCR), we found 11 operons that are potentially regulated by FinR. Among them, the expression of nicC and nicX operons, which were reported to be responsible for the aerobic degradation of nicotinic acid (NA), was significantly decreased in the finR mutant, and complementation with intact finR restored the expression of the two operons. The results of bacterial NA utilization demonstrated that the deletion of finR impaired bacterial growth in minimal medium supplemented with NA/6HNA (6-hydroxynicotinic acid) as the sole carbon source and that complementation with intact finR restored the growth of the mutant strain. The expression of nicC and nicX operons was previously revealed to be repressed by the NicR repressor and induced by NA/6HNA. Our transcriptional assay revealed that the deletion of finR weakened the induction of nicC and nicX by NA/6HNA. Meanwhile, the deletion of finR largely decreased the effect of nicR deletion on the expression of nicC and nicX operons. These results suggest that finR plays a positive role and cooperates with NicR in the regulation of nicC and nicX operons. In vitro experiments showed that both FinR and NicR bound to nicX and nicC promoter regions directly. The results of this study deepened our knowledge of FinR function and nicotinic acid degradation in P. putidaIMPORTANCE This study analyzed the influence of finR deletion on the transcriptomic profile of Pseudomonas putida KT2440. The FinR regulator is widely distributed but poorly studied in diverse proteobacteria. Here, we found 11 operons that potentially are regulated by FinR in KT2440. We further demonstrated that FinR played a positive role and cooperated with the NicR repressor in bacterial nicotinic acid (NA) degradation via regulating the expression of nicC and nicX operons. Furthermore, a transcriptomic analysis also indicated a potentially negative role of FinR in the expression of the hut cluster involved in bacterial histidine utilization. The work deepened our knowledge of FinR function and nicotinic acid degradation in P. putida.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Niacina/metabolismo , Operón , Pseudomonas putida/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Mutación , Niacina/genética , Estrés Oxidativo
11.
Microb Cell Fact ; 15(1): 181, 2016 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-27776509

RESUMEN

BACKGROUND: Although a transition toward sustainable production of chemicals is needed, the physiochemical properties of certain biochemicals such as biosurfactants make them challenging to produce in conventional bioreactor systems. Alternative production platforms such as surface-attached biofilm populations could potentially overcome these challenges. Rhamnolipids are a group of biosurfactants highly relevant for industrial applications. However, they are mainly produced by the opportunistic pathogen Pseudomonas aeruginosa using hydrophobic substrates such as plant oils. As the biosynthesis is tightly regulated in P. aeruginosa a heterologous production of rhamnolipids in a safe organism can relive the production from many of these limitations and alternative substrates could be used. RESULTS: In the present study, heterologous production of biosurfactants was investigated using rhamnolipids as the model compound in biofilm encased Pseudomonas putida KT2440. The rhlAB operon from P. aeruginosa was introduced into P. putida to produce mono-rhamnolipids. A synthetic promoter library was used in order to bypass the normal regulation of rhamnolipid synthesis and to provide varying expression levels of the rhlAB operon resulting in different levels of rhamnolipid production. Biosynthesis of rhamnolipids in P. putida decreased bacterial growth rate but stimulated biofilm formation by enhancing cell motility. Continuous rhamnolipid production in a biofilm was achieved using flow cell technology. Quantitative and structural investigations of the produced rhamnolipids were made by ultra performance liquid chromatography combined with high resolution mass spectrometry (HRMS) and tandem HRMS. The predominant rhamnolipid congener produced by the heterologous P. putida biofilm was mono-rhamnolipid with two C10 fatty acids. CONCLUSION: This study shows a successful application of synthetic promoter library in P. putida KT2440 and a heterologous biosynthesis of rhamnolipids in biofilm encased cells without hampering biofilm capabilities. These findings expands the possibilities of cultivation setups and paves the way for employing biofilm flow systems as production platforms for biochemicals, which as a consequence of physiochemical properties are troublesome to produce in conventional fermenter setups, or for production of compounds which are inhibitory or toxic to the production organisms.


Asunto(s)
Biopelículas , Glucolípidos/biosíntesis , Pseudomonas putida/fisiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
12.
Environ Microbiol ; 18(10): 3535-3549, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27233093

RESUMEN

Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial-driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD-1 (BIRD-1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole-cell proteomic analysis of BIRD-1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well-characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD-1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO-dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P.


Asunto(s)
Fósforo/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas putida/genética , Pseudomonas stutzeri/genética , Microbiología del Suelo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Genómica , Fosfatos/metabolismo , Proteómica , Pseudomonas fluorescens/metabolismo , Pseudomonas putida/metabolismo , Pseudomonas stutzeri/metabolismo , Regulón , Rizosfera
13.
Appl Microbiol Biotechnol ; 99(14): 5875-83, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25616526

RESUMEN

Threonine aldolases (TAs) are useful enzymes for the synthesis of ß-hydroxy-α-amino acids due to their capability to catalyze asymmetric aldol reactions. Starting from two prochiral compounds, an aldehyde and glycine, two chiral stereocenters were formed in a single step via C-C bond formation. Owing to poor diastereoselectivity and low activity, the enzymatic synthesis of ß-hydroxy-α-amino acids by TAs is still a challenge. For identification of new TAs, a growth-dependent selection system in Pseudomonas putida KT2440 has been developed. This bacterium is able to use aromatic compounds such as benzaldehyde, which is the cleavage product of the TA-mediated retro-aldol reaction of phenylserine, as sole carbon source via the ß-ketoadipate pathway. With DL-threo-ß-phenylserine as sole carbon source, this strain showed only slight growth in minimal medium. This growth deficiency can be restored by introducing and expressing genes encoding TAs. In order to develop a highly efficient selection system, the gene taPp of P. putida KT2440 encoding a TA was successfully deleted by replacement with an antibiotic resistance cassette. Different growth studies were carried out to prove the operability of the selection system. Genes encoding for L- and D-specific TAs (L-TA genes of Escherichia coli (ltaE) and Saccharomyces cerevisiae (gly1) and D-TA gene of Achromobacter xylosoxidans (dtaAX)) were introduced into the selection strain P. putida KT2440ΔtaPp, followed by cultivation on minimal medium supplemented with DL-threo-ß-phenylserine. The results demonstrate that only the selection strains with plasmid-encoded L-TAs were able to grow on this racemic amino acid, whereas the corresponding strain harboring the gene coding for a D-specific TA showed no growth. In summary, it can be stated that a powerful screening tool was developed to identify easily by growth new L-specific threonine aldolases or other enzymes from genomic or metagenomic libraries liberating benzaldehyde.


Asunto(s)
Medios de Cultivo/química , Glicina Hidroximetiltransferasa/aislamiento & purificación , Glicina Hidroximetiltransferasa/metabolismo , Pseudomonas putida/enzimología , Pseudomonas putida/crecimiento & desarrollo , Selección Genética , Achromobacter denitrificans/enzimología , Achromobacter denitrificans/genética , Benzaldehídos/metabolismo , Carbono/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Glicina Hidroximetiltransferasa/genética , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Pseudomonas putida/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
14.
Biosci Biotechnol Biochem ; 79(4): 673-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25485871

RESUMEN

Pseudomonas sp. StFLB209 was isolated from potato leaf as an N-acylhomoserine lactone (AHL)-producing bacterium and showed a close phylogenetic relationship with P. cichorii, a known plant pathogen. Although there are no reports of potato disease caused by pseudomonads in Japan, StFLB209 was pathogenic to potato leaf. In this study, we reveal the complete genome sequence of StFLB209, and show that the strain possesses a ppuI-rsaL-ppuR quorum-sensing system, the sequence of which shares a high similarity with that of Pseudomonas putida. Disruption of ppuI results in a loss of AHL production as well as remarkable reduction in motility. StFLB209 possesses strong pectate lyase activity and causes maceration on potato tuber and leaf, which was slightly reduced in the ppuI mutant. These results suggest that the quorum-sensing system is well conserved between StFLB209 and P. putida and that the system is essential for motility, full pectate lyase activity, and virulence in StFLB209.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Polisacárido Liasas/genética , Pseudomonas/genética , Pseudomonas/patogenicidad , Percepción de Quorum/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lactonas/metabolismo , Datos de Secuencia Molecular , Hojas de la Planta/microbiología , Polisacárido Liasas/metabolismo , Pseudomonas/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Solanum tuberosum/microbiología , Virulencia
15.
Mol Biol Rep ; 41(3): 1385-99, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24407601

RESUMEN

The inoculation of Pseudomonas putida NBRIC19 protected wheat plant from phytotoxic effect of Parthenium hysterophorus (Parthenium) and enhanced root length, shoot length, dry weight, spike length and chlorophyll content. With the aim to screen for genes differentially expressed in P. putida NBRIC19-inoculated wheat grown along with Parthenium (WPT), the suppression subtractive hybridization (SSH) methodology was employed. The SSH analysis was performed with WPC (uninoculated wheat grown along with Parthenium) as driver and WPT as tester. The cDNA library, enriched with differentially expressed ESTs (expressed sequence tags), were constructed from WPT. Following an initial screen of 165 ESTs in our library, 32 ESTs were identified, annotated and further validated by semiquantitative RT-PCR. The differentially expressed ESTs were associated with general stress response, defense response, growth and development, metabolic process, photosynthesis, signal transduction, and some other with unknown function. Five ESTs showing downregulation in expression level in response to Parthenium got upregulated due to P. putida NBRIC19 inoculation and further validated by quantitative real time PCR analysis at different time intervals viz. 15, 30, 45 and 90 days. SSH has been implemented for the first time to gain insights into molecular events underlying successful role of P. putida NBRIC19 in providing protection to wheat against Parthenium. The information generated in this study provides new clues to aid the understanding of genes corresponding to differentially expressed ESTs putatively involved in allelopathic interactions. Further characterization and functional analysis of these genes may provide valuable information for future studies of the molecular mechanism by which plants adapt to allelopathic effect of Parthenium.


Asunto(s)
Extractos Vegetales/administración & dosificación , Pseudomonas putida/genética , Transcriptoma/genética , Triticum/genética , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Análisis por Micromatrices , Partenogénesis , Fotosíntesis/genética , Enfermedades de las Plantas/genética , Pseudomonas putida/crecimiento & desarrollo , Triticum/microbiología
16.
Biotechnol Lett ; 36(4): 761-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24322773

RESUMEN

A Pseudomonas putida whole-cell bioreporter for detecting bioavailable copper was constructed by inserting a CueR-regulated sensor element upstream of a promoterless green fluorescent protein (GFP) reporter gene. The constructed bioreporter cells expressed GFP only in response to Cu and Ag when cultivated in different metal salt solutions. M9 supplemented medium provided higher sensitivity compared with LB medium. The optimal test condition was cell suspension with an OD600 of 0.4-0.5 incubated at 30 °C. The detection range of Cu is 1-70 mg/l under optimal test condition in M9 supplemented medium.


Asunto(s)
Técnicas Biosensibles/métodos , Cobre/análisis , Proteínas Fluorescentes Verdes/análisis , Pseudomonas putida/química , Pseudomonas putida/efectos de los fármacos , Fusión Artificial Génica , Cobre/metabolismo , Medios de Cultivo/química , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Regiones Promotoras Genéticas , Pseudomonas putida/genética
17.
J Appl Microbiol ; 114(4): 923-33, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23163356

RESUMEN

A significant number of bacterial strains are able to use toxic aromatic hydrocarbons as carbon and energy sources. In a number of cases, the evolution of the corresponding degradation pathway was accompanied by the evolution of tactic behaviours either towards or away from these toxic carbon sources. Reports are reviewed which show that a chemoattraction to heterogeneously distributed aromatic pollutants increases the bioavailability of these compounds and their biodegradation efficiency. An extreme form of chemoattraction towards aromatic pollutants, termed 'hyperchemotaxis', was described for Pseudomonas putida DOT-T1E, which is based on the action of the plasmid-encoded McpT chemoreceptor. Cells with this phenotype were found of being able to approach and of establishing contact with undiluted crude oil samples. Although close McpT homologues are found on other degradation plasmids, the sequence of their ligand-binding domains does not share significant similarity with that of NahY, the other characterized chemoreceptor for aromatic hydrocarbons. This may suggest the existence of at least two families of chemoreceptors for aromatic pollutants. The use of receptor chimers comprising the ligand-binding region of McpT for biosensing purposes is discussed.


Asunto(s)
Quimiotaxis , Contaminantes Ambientales/metabolismo , Hidrocarburos Aromáticos/metabolismo , Pseudomonas putida/fisiología , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Técnicas Biosensibles , Petróleo/metabolismo , Fenotipo , Plásmidos , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Receptores de Superficie Celular/metabolismo
18.
Environ Microbiol ; 15(3): 780-94, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23206161

RESUMEN

Pseudomonas putida BIRD-1 is a plant growth-promoting rhizobacterium whose genome size is 5.7 Mbp. It adheres to plant roots and colonizes the rhizosphere to high cell densities even in soils with low moisture. This property is linked to its ability to synthesize trehalose, since a mutant deficient in the synthesis of trehalose exhibited less tolerance to desiccation than the parental strain. The genome of BIRD-1 encodes a wide range of proteins that help it to deal with reactive oxygen stress generated in the plant rhizosphere. BIRD-1 plant growth-promoting rhizobacteria properties derive from its ability to enhance phosphorous and iron solubilization and to produce phytohormones. BIRD-1 is capable of solubilizing insoluble inorganic phosphate forms through acid production. The genome of BIRD-1 encodes at least five phosphatases related to phosphorous solubilization, one of them being a phytase that facilitates the utilization of phytic acid, the main storage form of phosphorous in plants. Pyoverdine is the siderophore produced by this strain, a mutant that in the FvpD siderophore synthase failed to grow on medium without supplementary iron, but the mutant was as competitive as the parental strain in soils because it captures the siderophores produced by other microbes. BIRD-1 overproduces indole-3-acetic acid through convergent pathways.


Asunto(s)
Genoma , Pseudomonas putida/genética , Microbiología del Suelo , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Ácidos Indolacéticos/metabolismo , Fosfatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/microbiología , Pseudomonas putida/enzimología , Pseudomonas putida/metabolismo , Plantones/crecimiento & desarrollo , Plantones/microbiología , Sideróforos/metabolismo
19.
Appl Microbiol Biotechnol ; 96(1): 265-72, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22218771

RESUMEN

To improve phosphorus removal from wastewater, we constructed a high-phosphate-accumulating microorganism, KTPPK, using Pseudomonas putida KT2440 as a host. The expression plasmid was constructed by inserting and expressing polyphosphate kinase gene (ppk) from Microcystis aeruginosa NIES-843 into broad-host-range plasmid, pBBR1MCS-2. KTPPK was then added to a sequencing batch biofilm reactor (SBBFR) using lava as a biological carrier. The results showed that SBBFR with KTPPK not only efficiently removed COD, NH(3)-N, and NO(3)(-)-N but also had a high removal capacity for PO(4)(3-)-P, resulting in a low phosphorus concentration remaining in the outflow of the SBBFR. The biofilm increased by 30-53% on the lava in the SBBFR that contained KTPPK after 11 days when compared with the reactor that contained P. putida KT2440. Real-time quantitative polymerase chain reaction confirmed that the copy of ppk was maintained at about 3.5 × 10(10) copies per µL general DNA in the biofilm after 20 days. Thus, the transgenic bacteria KTPPK could maintain a high density and promote phosphorus removal in the SBBFR. In summary, this study indicates that the use of SBBFR with transgenic bacteria has the potential to remove phosphorus and nitrogen from wastewater.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Ingeniería Metabólica , Nitrógeno/metabolismo , Organismos Modificados Genéticamente/metabolismo , Fósforo/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Pseudomonas putida/metabolismo , Reactores Biológicos/microbiología , Perfilación de la Expresión Génica , Inestabilidad Genómica , Microcystis/enzimología , Microcystis/genética , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/fisiología , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Plásmidos , Pseudomonas putida/genética , Pseudomonas putida/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Huan Jing Ke Xue ; 33(11): 3949-55, 2012 Nov.
Artículo en Chino | MEDLINE | ID: mdl-23323430

RESUMEN

To obtain efficient halotolerant petroleum-degrading bacteria, 39 bacteria strains were isolated from 30 petroleum contaminated saline soil samples in Yellow River Delta, an important base of petroleum production in China. One bacterium (strain BM38) was found to efficiently degrade crude oil in highly saline environments based on a series of liquid and soil incubation experiments. According to its morphology, physiochemical characteristics and 16S rDNA sequence analysis, this strain was identified as Pseudomonas putida. Moreover, a series of liquid incubation experiments were conducted to investigate its characteristics such as halotolerance, biosurfactants production and degrading efficiency for various hydrocarbons. The salt resistance test demonstrated that strain BM38 grew well at NaCl concentrations ranging from 0.5% to 6.0%. Petroleum degradation experiments showed that strain BM38 could degrade 73.5% crude oil after 7 days in a liquid culture medium containing 1.0% NaCl and remove more than 40% of total petroleum hydrocarbons after 40 days in the soil with 0.22% and 0.61% of salinity, these results proved that the strain was effective in removing petroleum hydrocarbons. Strain BM38 could produce a bioemulsifier in a liquid culture medium. The NaCl concentration had the significant effect on the EI24 of fermentation broth, which decreased sharply if the NaCl concentration was greater than 1.0%. However, the EI24 of BM38 was still quite high in the presence of 2.0% of NaCl, and the value was 61.0%. Furthermore, this strain was also able to grow in mineral liquid media amended with hexadecane, toluene, phenanthrene, isooctane and cyclohexane as the sole carbon sources. Among these hydracarbons, strain BM38 showed relatively high ability in degrading n-alkanes and aromatic hydracarbons. The results indicated that strain BM38 had potential for application in bioremediation of petroleum-contaminated saline soil.


Asunto(s)
Petróleo/metabolismo , Pseudomonas putida/aislamiento & purificación , Cloruro de Sodio/metabolismo , Contaminantes del Suelo/aislamiento & purificación , Contaminantes del Suelo/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodegradación Ambiental , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA